Classification of Intense Rainfall Days in Southern West Africa and Associated Atmospheric Circulation
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sets
2.2. Definition of Intense Rainfall Events
2.3. Classification of the Rainfall Events
2.4. Atmospheric Patterns Associated with Each Cluster of Intense Events
3. Results
3.1. Classification of Intense Rainfall Events
3.2. Atmospheric Circulation Associated with Intense Rainfall Events
4. Summary and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- CIESIN (Center for International Earth Science Information Network, Columbia University). Gridded Population of the World, Version 4 (GPWv4): Administrative Unit Center Points with Population Estimates; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2016; Available online: http://dx.doi.org/10.7927/H4F47M2C (accessed on 25 November 2019).
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Douglas, I.; Alam, K.; Maghenda, M.; Mcdonnell, Y.; McLean, L.; Campbell, J. Unjust waters: Climate change flooding and the urban poor in Africa. In Environ. Urban; 2008; Volume 20, pp. 187–205. [Google Scholar]
- Goussard, J.J.; Ducrocq, M. West African coastal area: Challenges and outlook. In The Land/Ocean Interactions in the Coastal Zone of West and Central Africa; Springer: Cham, Switzerland, 2014; pp. 9–21. [Google Scholar]
- Appeaning Addo, K.; Larbi, L.; Amisigo, B.; Ofori-Danson, P.K. Impacts of coastal inundation due to climate change in a cluster of urban coastal communities in Ghana, West Africa. Remote Sens. 2011, 3, 2029–2050. [Google Scholar] [CrossRef] [Green Version]
- Mounier, F.; Kiladis, G.N.; Janicot, S. Analysis of the dominant mode of convectively coupled Kelvin waves in the West African monsoon. J. Clim. 2007, 20, 1487–1503. [Google Scholar] [CrossRef]
- Mekonnen, A.; Thorncroft, C.D.; Aiyyer, A.R.; Kiladis, G.N. Convectively coupled Kelvin waves over tropical Africa during the boreal summer: Structure and variability. J. Clim. 2008, 21, 6649–6667. [Google Scholar] [CrossRef]
- Kamsu-Tamo, P.H.; Janicot, S.; Monkam, D.; Lenouo, A. Convection activity over the Guinean coast and Central Africa during northern spring from synoptic to intra-seasonal timescales. Clim. Dyn. 2014, 43, 3377–3401. [Google Scholar] [CrossRef] [Green Version]
- Diedhiou, A.; Janicot, S.; Viltard, A.; De Felice, P.; Laurent, H. Easterly wave regimes and associated convection over West Africa and tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalyses. Clim. Dyn. 1999, 15, 795–822. [Google Scholar] [CrossRef]
- Schlueter, A.; Fink, A.H.; Knippertz, P.; Vogel, P. A systematic comparison of tropical waves over northern Africa. Part I: Influence on rainfall. J. Clim. 2019, 32, 1501–1523. [Google Scholar] [CrossRef] [Green Version]
- Knippertz, P.; Fink, A.H.; Deroubaix, A.; Morris, E.; Tocquer, F.; Evans, M.J.; Marsham, J.H. A meteorological and chemical overview of the DACCIWA field campaign in West Africa in June–July 2016. Atmos. Chem. Phys. 2017, 17, 10893–10918. [Google Scholar] [CrossRef] [Green Version]
- Fink, A.H.; Vincent, D.G.; Ermert, V. Rainfall types in the West African Sudanian zone during the summer monsoon 2002. Mon. Weather Rev. 2006, 134, 2143–2164. [Google Scholar] [CrossRef] [Green Version]
- Fink, A.H.; Paeth, H.; Ermert, V.; Pohle, S.; Diederich, M. Meteorological processes influencing the weather and climate of Benin. In Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa; Speth, P., Christoph, M., Diekkrueger, B., Eds.; Springer: Heidelberg, Germany, 2010; pp. 135–149. [Google Scholar]
- Acheampong, P.K. Rainfall anomaly along the coast of Ghana—Its nature and causes. Geogr. Ann. Ser. A Phys. Geogr. 1982, 64, 199–211. [Google Scholar]
- Maranan, M.; Fink, A.H.; Knippertz, P. Rainfall types over southern West Africa: Objective identification, climatology and synoptic environment. Q. J. R. Meteorol. Soc. 2018, 144, 1628–1648. [Google Scholar] [CrossRef] [Green Version]
- Thorncroft, C.D.; Nguyen, H.; Zhang, C.; Peyrillé, P. Annual cycle of the West African monsoon: Regional circulations and associated water vapour transport. Q. J. R. Meteorol. Soc. 2011, 137, 129–147. [Google Scholar] [CrossRef]
- Nguyen, H.; Thorncroft, C.D.; Zhang, C. Guinean coastal rainfall of the West African Monsoon. Q. J. R. Meteorol. Soc. 2011, 137, 1828–1840. [Google Scholar] [CrossRef]
- Leduc-Leballeur, M.; De Coëtlogon, G.; Eymard, L. Air-sea interaction in the Gulf of Guinea at intraseasonal time-scales: Wind bursts and coastal precipitation in boreal spring. Q. J. R. Meteorol. Soc. 2013, 139, 387–400. [Google Scholar] [CrossRef]
- Meynadier, R.; De Coëtlogon, G.; Leduc-Leballeur, M.; Eymard, L.; Janicot, S. Seasonal influence of the sea surface temperature on the low atmospheric circulation and precipitation in the eastern equatorial Atlantic. Clim. Dyn. 2016, 47, 1127–1142. [Google Scholar] [CrossRef] [Green Version]
- Panthou, G.; Vischel, T.; Lebel, T.; Blanchet, J.; Quantin, G.; Ali, A. Extreme rainfall in West Africa: A regional modeling. Water Resour. Res. 2012, 48, W08501. [Google Scholar] [CrossRef]
- Panthou, G.; Vischel, T.; Lebel, T. Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef]
- Nkrumah, F.; Vischel, T.; Panthou, G.; Klutse, N.A.B.; Adukpo, D.C.; Diedhiou, A. Recent trends in the daily rainfall regime in Southern West Africa. Atmosphere 2019, 10, 741. [Google Scholar] [CrossRef] [Green Version]
- Sossa, A.; Liebmann, B.; Bladé, I.; Allured, D.; Hendon, H.H.; Peterson, P.; Hoell, A. Statistical connection between the madden—Julian oscillation and large daily precipitation events in West Africa. J. Clim. 2017, 30, 1999–2010. [Google Scholar] [CrossRef]
- Crétat, J.; Vizy, E.K.; Cook, K.H. The relationship between African easterly waves and daily rainfall over West Africa: Observations and regional climate simulations. Clim. Dyn. 2015, 44, 385–404. [Google Scholar] [CrossRef]
- Engel, T.; Fink, A.H.; Knippertz, P.; Pante, G.; Bliefernicht, J. Extreme precipitation in the West African cities of Dakar and Ouagadougou: Atmospheric dynamics and implications for flood risk assessments. J. Hydrometeorol. 2017, 18, 2937–2957. [Google Scholar] [CrossRef]
- Lafore, J.P.; Beucher, F.; Peyrillé, P.; Diongue-Niang, A.; Chapelon, N.; Bouniol, D.; Poan, E. A multi-scale analysis of the extreme rain event of Ouagadougou in 2009. Q. J. R. Meteorol. Soc. 2017, 143, 3094–3109. [Google Scholar] [CrossRef]
- Maranan, M.; Fink, A.H.; Knippertz, P.; Francis, S.D.; Akpo, A.B.; Jegede, G.; Yorke, C. Interactions between convection and a moist vortex associated with an extreme rainfall event over Southern West Africa. Mon. Weather Rev. 2019, 147, 2309–2328. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Some, B.; McCollum, J.; Nelkin, E.; Klotter, D.; Berte, Y.; Noukpozounkou, J.N. Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteorol. 2003, 42, 1355–1368. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of satellite-based precipitation products over sparsely gauged African river basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Gosset, M.; Viarre, J.; Quantin, G.; Alcoba, M. Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Q. J. R. Meteorol. Soc. 2013, 139, 923–940. [Google Scholar] [CrossRef]
- Amekudzi, L.K.; Osei, M.A.; Atiah, W.A.; Aryee, J.N.; Ahiataku, M.A.; Quansah, E.; Fink, A.H. Validation of TRMM and FEWS satellite rainfall estimates with rain gauge measurement over Ashanti region, Ghana. Atmos. Clim. Sci. 2016, 6, 500–518. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Mitra, A.K.; Pai, D.S.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Coppola, E.; Mariotti, L. Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Climatol. 2013, 33, 1805–1817. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the global historical climatology network daily database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Bechtold, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Crétat, J.; Vizy, E.K.; Cook, K.H. How well are daily intense rainfall events captured by current climate models over Africa? Clim. Dyn. 2014, 42, 2691–2711. [Google Scholar] [CrossRef]
- Sylla, M.B.; Giorgi, F.; Pal, J.S.; Gibba, P.; Kebe, I.; Nikiema, M. Projected changes in the annual cycle of high-intensity precipitation events over West Africa for the late twenty-first century. J. Clim. 2015, 28, 6475–6488. [Google Scholar] [CrossRef]
- Ta, S.; Kouadio, K.Y.; Ali, K.E.; Toualy, E.; Aman, A.; Yoroba, F. West Africa extreme rainfall events and large-scale ocean surface and atmospheric conditions in the tropical Atlantic. Adv. Meteorol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Soro, G.É.; Dao, A.; Fadika, V.; Goula Bi, T.A.; Srohorou, B. Estimation des pluies journalières extrêmes supérieures à un seuil en climat tropical: Cas de la Côte d’Ivoire. Physio-Géo Géogr. Phys. Environ. 2016, 10, 211–227. [Google Scholar] [CrossRef]
- Fink, A.H.; Engel, T.; Ermert, V.; van der Linden, R.; Schneidewind, M.; Redl, R.; Janicot, S. Mean climate and seasonal cycle. In Meteorology of Tropical West Africa: The Forecasters’ Handbook; John Wiley & Sons Ltd.: Hoboken, NY, USA, 2017; pp. 1–39. [Google Scholar]
- Kpanou, M.; Laux, P.; Brou, T.; Vissin, E.; Camberlin, P.; Roucou, P. Spatial patterns and trends of extreme rainfall over the southern coastal belt of West Africa. Theor. Appl. Climatol. 2019. under review. [Google Scholar]
- Mathon, V.; Laurent, H. Life cycle of Sahelian mesoscale convective cloud systems. Q.J.R. Meteorol. Soc. 2001, 127, 377–406. [Google Scholar] [CrossRef]
- Michelangeli, P.-A.; Vautard, R.; Legras, B. Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci. 1995, 52, 1237–1256. [Google Scholar] [CrossRef]
- Moron, V.; Robertson, A.W.; Ward, M.N.; Ndiaye, O. Weather types and rainfall over Senegal. Part I: Observational analysis. J. Clim. 2008, 21, 266–287. [Google Scholar] [CrossRef] [Green Version]
- Reed, R.J.; Klinker, E.; Hollingsworth, A. The structure and characteristics of African easterly wave disturbances as determined from the ECMWF operational analysis/forecast system. Meteor. Atmos. Phys. 1988, 38, 22. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Thorncroft, C.D.; Hall, N.M. Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci. 2006, 63, 2212–2230. [Google Scholar] [CrossRef]
- Berry, G.; Thorncroft, C.; Hewson, T. African easterly waves during 2004—Analysis using objective techniques. Mon. Weather Rev. 2007, 135, 1251–1267. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Wheeler, M.C.; Haertel, P.T.; Straub, K.H.; Roundy, P.E. Convectively coupled equatorial waves. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Nicholls, S.D.; Mohr, K.I. An analysis of the environments of intense convective systems in West Africa in 2003. Mon. Weather Rev. 2010, 138, 3721–3739. [Google Scholar] [CrossRef] [Green Version]
- Gaye, A.; Viltard, A.; de Félice, P. Lignes de grains et pluies en Afrique de l’Ouest: Part des lignes de grains à la pluie totale des étés 1986 et 1987. Sci. Chang. Planétaires/Sécheresse 2005, 16, 269–273. [Google Scholar]
- Wang, H.; Fu, R. The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J. Clim. 2007, 20, 1188–1201. [Google Scholar] [CrossRef] [Green Version]
- Schlueter, A.; Fink, A.H.; Knippertz, P. A systematic comparison of tropical waves over northern Africa. Part II: Dynamics and thermodynamics. J. Clim. 2019, 32, 2605–2625. [Google Scholar] [CrossRef]
- Gbambie, A.S.B.; Steyn, D.G. Sea breezes at Cotonou and their interaction with the West African monsoon. Int. J. Climatol. 2013, 33, 2889–2899. [Google Scholar] [CrossRef]
- Cautenet, S.; Rosset, R. Numerical simulation of sea breezes with vertical wind shear during dry season at cape of three points, West Africa. Mon. Weather Rev. 1989, 117, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Skinner, C.B.; Diffenbaugh, N.S. Projected changes in African easterly wave intensity and track in response to greenhouse forcing. PNAS 2014, 111, 6882–6887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, E.R.; Thorncroft, C. Representation of African easterly waves in CMIP5 models. J. Clim. 2015, 28, 7702–7715. [Google Scholar] [CrossRef]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef] [Green Version]
OBS | TRMM | PERSIANN | CHIRPS | |
---|---|---|---|---|
Mean | 55 | 49 | 29 (28) | 40 (39) |
Bias | −6 | −26 | −15 | |
RMSE | 11 | 27 | 17 |
Type | Abidjan | Accra | Cotonou | Kumasi |
---|---|---|---|---|
1 | 1,8 | 1,5 | 1,5 | 2,7 |
1A | 0,6 | 0,3 | 0,6 | 0,6 |
1B | 0,3 | 0,3 | 0,3 | 1,0 |
1C | 0,8 | 0,9 | 0,5 | 1,1 |
2 | 1,0 | 0,5 | 0,4 | 0,2 |
3 | 0,9 | 1,7 | 1,8 | 0,7 |
Rainfall types | Rainfall Pattern | Most Frequent Location (and season) | Atmospheric Pattern |
---|---|---|---|
1 | Oval-shaped, westward to southwestward- moving disturbance | Land areas (Whole year except winter) | Easterly wave |
1A | Isolated, small-size and short duration event | Land areas, especially Ghana-Ivory Coast border (March-June + October) | Very weak anomalies – low-level moisture convergence and westward-moving easterly wind anomaly |
1B | Large-scale, westward-moving disturbance | Mostly land areas, Eastern Ghana and Central Ivory Coast (June-October) | Clearly defined easterly wave and low-level westward-moving vortex, upper tropospheric outflow |
1C | Isolated rain cell, ahead of a westward to southwestward-moving disturbance | Land areas, 50-200 km the Ghana, Togo and Benin coast (April-June + September-October) | Less-well defined easterly wave, eastward-moving low level zonal wind anomalies over G. of Guinea (likely Kelvin wave), upper tropospheric outflow |
2 | Zonal band, very persistent, with secondary westward-moving disturbance | Ocean (south of 5°N) (May-July, sharp peak in June) | Westward propagating cyclonic vortex (mid- and low troposphere) to the north Kelvin wave to the south (low troposphere zonal wind and moisture anomalies) Southward upper-tropospheric outflow |
3 | Westward-moving disturbance north of a persistent rainband | Ocean (Bight of Benin) (April-June) | Westward propagating cyclonic vortex (mid- troposphere) to the north Kelvin wave to the south (low troposphere zonal wind and moisture anomalies) Upper-tropospheric outflow |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camberlin, P.; Kpanou, M.; Roucou, P. Classification of Intense Rainfall Days in Southern West Africa and Associated Atmospheric Circulation. Atmosphere 2020, 11, 188. https://doi.org/10.3390/atmos11020188
Camberlin P, Kpanou M, Roucou P. Classification of Intense Rainfall Days in Southern West Africa and Associated Atmospheric Circulation. Atmosphere. 2020; 11(2):188. https://doi.org/10.3390/atmos11020188
Chicago/Turabian StyleCamberlin, Pierre, Marc Kpanou, and Pascal Roucou. 2020. "Classification of Intense Rainfall Days in Southern West Africa and Associated Atmospheric Circulation" Atmosphere 11, no. 2: 188. https://doi.org/10.3390/atmos11020188
APA StyleCamberlin, P., Kpanou, M., & Roucou, P. (2020). Classification of Intense Rainfall Days in Southern West Africa and Associated Atmospheric Circulation. Atmosphere, 11(2), 188. https://doi.org/10.3390/atmos11020188