Microbial Biopesticides in Agroecosystems
Abstract
1. Introduction
2. Entomopathogenic Microorganisms
2.1. Bacteria
2.2. Fungi
2.3. Baculoviruses
2.4. Nematodes
3. Benefits of Microbial Biopesticides and Market Scenario
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Biopesticides. Available online: www.epa.gov/pesticides/biopesticides (accessed on 30 August 2018).
- Price, P.W. Insect Ecology; John Wiley & Sons: New York, NY, USA, 1975; p. 514. [Google Scholar]
- Kenis, M.; Hurley, B.P.; Hajek, A.E.; Cock, M.J.W. Classical biological control of insect pests of trees: Facts and figures. Biol. Invasions 2017, 19, 3401–3417. [Google Scholar] [CrossRef]
- Kaya, H.K.; Vega, F.E. Scope and Basic Principles of Insect Pathology. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 1–12. [Google Scholar]
- Marrone, P.G. The market and potential for biopesticides. In Biopesticides: State of the Art and Future Opportunities; Gross, A.D., Coats, J.R., Duke, S.O., Seiber, J.N., Eds.; American Chemical Society: Washington, DC, USA, 2014; pp. 245–258. [Google Scholar]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014, 70, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Castagnola, A.; Stock, S.P. Common virulence factors and tissue targets of entomopathogenic bacterial for biological control of Lepidopteran pests. Insects 2014, 5, 139–166. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, L. Insect Pathogenic Bacteria in Integrated Pest Management. Insects 2015, 6, 352–367. [Google Scholar] [CrossRef] [PubMed]
- Jurat-Fuentes, J.L.; Jackson, T.A. Bacterial Entomopathogens. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 265–349. [Google Scholar]
- Pigott, C.R.; Ellar, D.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 2007, 71, 255–281. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Gill, S.S.; Soberon, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Charles, J.F.; Silva-Filha, M.H.; Nielsen-LeRoux, C. Mode of action of Bacillus sphaericus on mosquito larvae: Incidence on resistance. In Entomopathogenic Bacteria: From Laboratory to Field Application; Charles, J.F., Delecluse, A., Nielsen-LeRoux, C., Eds.; Kluwer Academic Publishers: London, UK, 2000; pp. 237–252. [Google Scholar]
- Ruiu, L. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species. Insects 2013, 4, 476–492. [Google Scholar] [CrossRef] [PubMed]
- Marche, M.G.; Mura, M.E.; Falchi, G.; Ruiu, L. Spore surface proteins of Brevibacillus laterosporus are involved in insect pathogenesis. Sci. Rep. 2017, 7, 43805. [Google Scholar] [CrossRef] [PubMed]
- Marche, M.G.; Camiolo, S.; Porceddu, A.; Ruiu, L. Survey of Brevibacillus laterosporus insecticidal protein genes and virulence factors. J. Invertebr. Pathol. 2018, 155, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, L.; Satta, A.; Floris, I. Comparative applications of azadirachtin- and Brevibacillus laterosporus-based formulations for house fly management experiments in dairy farms. J. Med. Entomol. 2011, 48, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, L.; Satta, A.; Floris, I. Administration of Brevibacillus laterosporus spores as a poultry feed additive to inhibit house fly development in feces: A new eco-sustainable concept. Poultry Sci. 2014, 93, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Ffrench-Constant, R.; Waterfield, N. An ABC guide to the bacterial toxin complexes. Adv. Appl. Microbiol. 2006, 58, 169–183. [Google Scholar] [PubMed]
- Hurst, M.R.; Glare, T.R.; Jackson, T.A.; Ronson, C.W. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J. Bacteriol. 2000, 182, 5127–5138. [Google Scholar] [CrossRef] [PubMed]
- Landsberg, M.J.; Jones, S.A.; Rothnagel, R.; Busby, J.N.; Marshall, S.D.G.; Simpson, R.M.; Lott, J.S.; Hankamer, B.; Hurst, M.R.H. 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc. Natl. Acad. Sci. USA 2011, 108, 20544–20549. [Google Scholar] [CrossRef] [PubMed]
- Vodovar, N.; Vallenet, D.; Cruveiller, S.; Rouy, Z.; Barbe, V.; Acosta, C.; Cattolico, L.; Jubin, C.; Lajus, A.; Segurens, B.; et al. Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat. Biotechnol. 2006, 24, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Cordova-Kreylos, A.L.; Fernandez, L.E.; Koivunen, M.; Yang, A.; Flor-Weiler, L.; Marrone, P.G. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Appl. Environ. Microbiol. 2013, 79, 7669–7678. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.A.W.; Gundersen-Rindal, D.; Blackburn, M.; Buyer, J. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int. J. Syst. Evolut. Microbiol. 2007, 57, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Copping, G.L.; Menn, J.J. Biopesticides: A review of their action, applications and efficacy. Pest Manag. Sci. 2000, 56, 651–676. [Google Scholar] [CrossRef]
- Kirst, H.A. The spinosyn family of insecticides: Realizing the potential of natural products research. J. Antibiot. 2010, 63, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.E.; Meyling, N.V.; Luangsa-ard, J.J.; Blackwell, M. Fungal Entomopathogens. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 171–220. [Google Scholar]
- Zimmermann, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- McKinnon, A.C.; Saari, S.; Moran-Diez, M.E.; Meyling, N.V.; Raad, M.; Glare, T.R. Beauveria bassiana as an endophyte: A critical review on associated methodology and biocontrol potential. BioControl 2017, 62, 1–17. [Google Scholar] [CrossRef]
- Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- Schrank, A.; Vainstein, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon 2010, 56, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Koike, M.; Hiyama, N.; Nagao, H. Genetic, morphological, and virulence characterization of the entomopathogenic fungus Verticillium lecanii. J. Invertebr. Pathol. 2003, 82, 176–187. [Google Scholar] [CrossRef]
- Kim, J.J.; Goettel, M.S.; Gillespie, D.R. Evaluation of Lecanicillium longisporum, Vertalec® for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers. Biol. Control 2008, 45, 404–409. [Google Scholar] [CrossRef]
- Kaya, H.K.; Koppenhöfer, A.M. Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Sci. Technol. 1996, 6, 357–371. [Google Scholar] [CrossRef]
- Zimmermann, G. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): Biology, ecology and use in biological control. Biocontrol Sci. Technol. 2008, 18, 865–901. [Google Scholar] [CrossRef]
- Sawyer, A.J.; Griggs, M.H.; Wayne, R. Dimensions, density, and settling velocity of entomophthoralean conidia: Implications for aerial dissemination of spores. J. Invertebr. Pathol. 1994, 63, 43–55. [Google Scholar] [CrossRef]
- Vidal, S.; Jaber, L.R. Entomopathogenic fungi as endophytes: Plant-endophyte-herbivore interactions and prospects for use in biological control. Curr. Sci. 2015, 109, 46–54. [Google Scholar]
- Clem, R.J.; Passarelli, A.L. Baculoviruses: Sophisticated Pathogens of Insects. PLoS Pathog. 2013, 9, e1003729. [Google Scholar] [CrossRef] [PubMed]
- Haase, S.; Sciocco-Cap, A.; Romanowski, V. Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives. Viruses 2015, 7, 2230–2267. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, G.F. Baculovirus Molecular Biology, 2nd ed.; National Library of Medicine (US), National Center for Biotechnology Information: Bethesda, MD, USA, 2011. Available online: http://www.ncbi.nlm.nih.gov/books/NBK49500/ (accessed on 29 August 2018).
- Williams, T.; Virto, C.; Murillo, R.; Caballero, P. Covert infection of insects by baculoviruses. Front. Microbiol. 2017, 8, 1337. [Google Scholar] [CrossRef] [PubMed]
- Katsuma, S.; Koyano, Y.; Kang, W.; Kokusho, R.; Kamita, S.G.; Shimada, T. The baculovirus uses a captured host phosphatase to induce enhanced locomotory activity in host caterpillars. PLoS Pathog. 2012, 8, e1002644. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.; Hoover, K. Baculoviruses and Other Occluded Insect Viruses. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 73–131. [Google Scholar]
- Sun, X. History and Current Status of Development and Use of Viral Insecticides in China. Viruses 2015, 7, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.E.; Clarke, D.J. Nematode Parasites and Entomopathogens. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 395–424. [Google Scholar]
- Poinar, G.O. Biology and taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control; Gaugler, R., Kaya, H.K., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 23–62. [Google Scholar]
- Ffrench-Constant, R.H.; Dowling, A.; Waterfield, N.R. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 2007, 49, 436–451. [Google Scholar] [CrossRef] [PubMed]
- Shapiro-Ilan, D.I.; Han, R.; Dolinksi, C. Entomopathogenic nematode production and application technology. J. Nematol. 2012, 44, 206–217. [Google Scholar] [PubMed]
- Musser, F.R.; Nyrop, J.P.; Shelton, A.M. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. J. Econ. Entomol. 2006, 99, 1538–1549. [Google Scholar] [CrossRef] [PubMed]
- Satinder, K.B.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 2006, 41, 323–342. [Google Scholar]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect pathogens as biological control agents: Do they have a future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef]
- Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Kohl, J.; Marrone, P.; Morin, L.; Stewart, A. Have biopesticides come of age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Global Markets for Biopesticides (CHM029F). BCC Research. Available online: https://www.bccresearch.com/pressroom/chm/market-forecasts:-modest-growth-for-synthetic-pesticides-big-growth-for-biopesticides (accessed on 30 August 2018).
- Abdelfattah, A.; Malacrinò, A.; Wisniewski, M.; Cacciola, S.O.; Schena, L. Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biol. Control 2018, 120, 1–10. [Google Scholar] [CrossRef]
- Malacrinò, A.; Campolo, O.; Medina, R.F.; Palmeri, V. Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata. PLoS ONE 2018, 13, e0194131. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.E.; Orrell, P.; Malacrinò, A.; Pozo, M.J. Fungal-Mediated Above–Belowground Interactions: The Community Approach, Stability, Evolution, Mechanisms, and Applications. In Aboveground–Belowground Community Ecology. Ecological Studies (Analysis and Synthesis); Ohgushi, T., Wurst, S., Johnson, S., Eds.; Springer: Cham, Switzerland, 2018; Volume 234, pp. 85–116. [Google Scholar]
Active Substances | Commercial Names 1 | Main Targets |
---|---|---|
Bacillus thuringiensis aizawai | Able-WG, Agree-WP, Florbac, XenTari | Armyworms, diamondback moth |
Bacillus thuringiensis kurstaki | Biobit, Cordalene, Costar-WG, Crymax-WDG, Deliver, Dipel, Foray, Javelin-WG, Lepinox Plus, Lipel, Rapax | Lepidoptera |
Bacillus thuringiensis israelensis | Teknar, VectoBac, Vectobar | Mosquitoes and Black flies |
Bacillus thuringiensis tenebrionis | Novodor, Trident | Colorado potato beetle |
Bacillus thuringiensis sphaericus | VectoLex, VectoMax | Mosquitoes |
Burkholderia spp. | Majestene, Venerate | Chewing and sucking insects and mites; nematodes |
Saccharopolyspora spinosa | Tracer™ 120, Conserve | Insects |
Chromobacterium subtsugae | Grandevo | Chewing and sucking insects and mites |
Bacillus firmus | Bionemagon | Nematodes |
Active Substances | Commercial Names 1 | Main Targets |
---|---|---|
Beauveria bassiana | Bio-Power, Biorin/Kargar, Botanigard, Daman, Naturalis, Nagestra, Beauvitech-WP, Bb-Protec, Racer, Mycotrol | Wide range of insects and mites |
Beauveria brongniartii | Bas-Eco | Helicoverpa armigera, Berry borer, Root grubs |
Hirsutella thompsonii | No-Mite | Spider mites |
Isaria fumosorosea | Nofly | Whitefly |
Metarhizium anisopliae | Biomet/Ankush, Bio-Magic, Devastra, Kalichakra, Novacrid, Met52/BIO1020 granular, Pacer | beetles and caterpillar pests; grasshoppers, termites |
Metarhizium brunneum | Attracap | Agriotes spp. |
Paecilomyces lilacinus | Bio-Nematon, MeloCon, Mytech-WP, Paecilo | Plant pathogenic nematodes |
Paecilomyces fumosoroseus | Bioact WG, No-Fly-WP, Paecilomite | Insects, Mites, Nematodes, Thrips |
Verticillium lecanii | Bio-Catch, Mealikil, Bioline/Verti-Star | Mealy bugs and sucking insects |
Lecanicillium lecanii | Lecatech-WP, Varunastra | Aphids, leafminers, mealybugs, scale insects, thrips, whiteflies |
Myrothecium verrucaria | DiTera | Nematodes |
Active Substances | Commercial Names 1 | Main Targets |
---|---|---|
Helicoverpa zea nucleopolyhedrovirus | Heligen | Helicoverpa spp. and Heliothis virescens |
Spodoptera litura nucleopolyhedrovirus | Biovirus–S, Somstar-SL | Spodoptera litura |
Adoxophyes orana granulovirus (AoGV) | Capex | Summer fruit tortrix moth (Adoxophyes orana) |
Cryptophlebia leucotreta granulovirus | Cryptex | False codling moth (Thaumatotibia leucotreta) |
Helicoverpa armigera nucleopolyhedrovirus (HearNPV) | Biovirus–H, Helicovex, Helitec, Somstar-Ha | African cotton bollworm (Helicoverpa armigera), Corn earworm (H. zea) and other Helicoverpa species (H. virescens, H. punctigera) |
Helicoverpa zea Nuclear Polyhedrosis Virus | Gemstar | Heliothis and Helicoverpa species |
Plutella xylostella granulovirus | Plutellavex | Plutella xylostella |
Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) | Littovir | African cotton leaf worm (Spodoptera littoralis) |
Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) | Gypchek | Lymantria dispar |
Cydia pomonella granulovirus (CpGV) | CYD-X, Madex, Carpovirusine | Cydia pomonella |
Neodiprion abietis nucleopolyhedrovirus (NeabNPV) | Neodiprion abietis NPV | Neodiprion abietis |
Spodoptera exigua nucleopolyhedrovirus (SeNPV) | Spexit, Spod-X | Spodoptera exigua |
Active Substances | Commercial Names 1 | Main Targets |
---|---|---|
Steinernema carpocapsae | Capsanem, Carpocapsae-System, Exhibitline SC, Optinem-C, NemaGard, Nemastar, NemaTrident-T, NemaRed, Nemasys C, Palma-Life | Borer beetles, caterpillars, cranefly, moth larvae, Rhynchophorus ferrugineus, Tipulidae. |
Steinernema feltiae | Entonem, NemaShield, NemaTrident-F, Nemapom, Nemaplus, Nemaflor, NemaFly, Nemafrut, Nemasys F, Nematrip, Nematech-S SP, NemaTrident-S, Nemax-F, Nemycel, Steinernema-System, Optinem-F | Bradysia spp., Chromatomyia syngenesiae, Phytomyza vitalbae, soil dwelling pests, codling moth larvae, sciarids, thrips |
Steinernema kraussei | Kraussei-System | Vine Weevil larvae |
Heterorhabditis bacteriophora | Larvanem, Nemaplant, NemaShield-HB, Nematop, Nematech-H NemaTrident-H, NemaTrident-C, Nema-green, Optinem-H | Otiorhynchus spp., chestnut moths, black vine weevil and soil-dwelling beetle larvae, Melolontha melolontha, caterpillars, cutworms, leafminers |
Heterorhabditis downesi | NemaTrident-CT | Black Vine Weevil Otiorhynchus sulcatus |
Phasmarhabditis hermaphrodita | Slugtech-SP | Molluscs |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiu, L. Microbial Biopesticides in Agroecosystems. Agronomy 2018, 8, 235. https://doi.org/10.3390/agronomy8110235
Ruiu L. Microbial Biopesticides in Agroecosystems. Agronomy. 2018; 8(11):235. https://doi.org/10.3390/agronomy8110235
Chicago/Turabian StyleRuiu, Luca. 2018. "Microbial Biopesticides in Agroecosystems" Agronomy 8, no. 11: 235. https://doi.org/10.3390/agronomy8110235
APA StyleRuiu, L. (2018). Microbial Biopesticides in Agroecosystems. Agronomy, 8(11), 235. https://doi.org/10.3390/agronomy8110235