Enhancing Wheat Yield and Quality Through Late-Season Foliar Nitrogen Application: A Global Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Selection Criteria
2.2. Effect Size Calculation
2.3. Statistical Analysis
2.4. Data Visualization
2.5. Model Assumptions and Sensitivity Analysis
2.6. Research Framework
3. Results
3.1. Overall Effect of Late-Season Foliar N Application on Wheat Yield and Quality
3.2. Effects of Late-Season Foliar N Application on Wheat Yield and Quality Under Different N Rates
3.3. Effects of Late-Season Foliar N Application on Wheat Yield and Quality Under Different N Application Timings
3.4. Effects of Late-Season Foliar N Application on Wheat Yield and Quality Under Different Late-Stage N Application Ratios
3.5. Correlations Between Wheat Grain Yield and Protein Concentration Under Various N Management Strategies
4. Discussion
4.1. Effects of Different Late-Season Foliar N Management Strategies on Wheat Grain Yield and Quality
4.1.1. Impacts of N Management Strategies on Yield and Quality Formation
4.1.2. Effects of Application Levels, Timing, and Proportions on Grain Yield and Quality
4.2. Correlation Between Wheat Grain Yield and Protein Concentration Under Different Late-Season Foliar N Management Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. FAOSTAT Food Balance Sheets. 2022. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 16 March 2024).
- Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Curtis, T.; Halford, N.G. Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014, 164, 354–372. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef]
- Blandino, M.; Vaccino, P.; Reyneri, A. Late-Season Nitrogen Increases Improver Common and Durum Wheat Quality. Agron. J. 2015, 107, 680–690. [Google Scholar] [CrossRef]
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on Wheat Yield and Quality with Re-duced Nitrogen Supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef]
- Barneix, A.J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J. Plant Physiol. 2007, 164, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Ercoli, L.; Masoni, A.; Pampana, S.; Mariotti, M.; Arduini, I. As durum wheat productivity is affected by nitrogen fertilisation management in Central Italy. Eur. J. Agron. 2013, 44, 38–45. [Google Scholar] [CrossRef]
- Blandino, M.; Visioli, G.; Marando, S.; Marti, A.; Reyneri, A. Impact of late-season N ferti-lisation strategies on the gluten content and composition of high protein wheat grown under hu-mid Mediterranean conditions. J. Cereal Sci. 2020, 94, 102995. [Google Scholar] [CrossRef]
- Xue, C.; Auf’m Erley, G.S.; Rossmann, A.; Schuster, R.; Koehler, P.; Muhling, K.H. Split Ni-trogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration. Front. Plant Sci. 2016, 7, 738. [Google Scholar] [CrossRef]
- Wang, C.; Liu, W.; Li, Q.; Ma, D.; Lu, H.; Feng, W.; Xie, Y.; Zhu, Y.; Guo, T. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res. 2014, 165, 138–149. [Google Scholar] [CrossRef]
- Niu, J.H.; Liu, C.; Huang, M.L.; Liu, K.Z.; Yan, D.Y. Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. J. Soil. Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Lyu, X.; Liu, Y.; Li, N.; Ku, L.; Hou, Y.; Wen, X. Foliar applications of various nitrogen (N) forms to winter wheat affect grain protein accumulation and quality via N metabolism and re-mobilization. Crop J. 2022, 10, 1165–1177. [Google Scholar] [CrossRef]
- Rossmann, A.; Buchner, P.; Savill, G.P.; Hawkesford, M.J.; Scherf, K.A.; Mühling, K.H. Foliar N application at anthesis alters grain protein composition and enhances baking quality in winter wheat only under a low N fertiliser regimen. Eur. J. Agron. 2019, 109, 125909. [Google Scholar] [CrossRef]
- Blandino, M.; Pilati, A.; Reyneri, A. Effect of foliar treatments to durum wheat on flag leaf senescence, grain yield, quality and deoxynivalenol contamination in North Italy. Field Crops Res. 2009, 114, 214–222. [Google Scholar] [CrossRef]
- Tea, I.; Genter, T.; Naulet, N.; Boyer, V.; Lummerzheim, M.; Kleiber, D. Effect of Foliar Sul-fur and Nitrogen Fertilization on Wheat Storage Protein Composition and Dough Mixing Proper-ties. Cereal Chem. 2004, 81, 759–766. [Google Scholar] [CrossRef]
- Rekowski, A.; Wimmer, M.A.; Henkelmann, G.; Zörb, C. Is a Change of Protein Composition after Late Application of Nitrogen Sufficient to Improve the Baking Quality of Winter Wheat? Agriculture 2019, 9, 101. [Google Scholar] [CrossRef]
- Roy, S.; Verma, O. Seed Quality and Storage of Wheat (Triticum aestivum L.) as Influenced by Basal and Foliar Application of Nitrogen. Natl. Acad. Sci. Lett. 2018, 41, 337–340. [Google Scholar] [CrossRef]
- Gooding, M.J.; Davies, W.P. Foliar urea fertilization of cereals: A review. Fertil. Res. 1992, 32, 209–222. [Google Scholar] [CrossRef]
- Ma, G.; Liu, W.; Li, S.; Zhang, P.; Wang, C.; Lu, H.; Wang, L.; Xie, Y.; Ma, D.; Kang, G. Deter-mining the Optimal N Input to Improve Grain Yield and Quality in Winter Wheat with Reduced Apparent N Loss in the North China Plain. Front. Plant Sci. 2019, 10, 181. [Google Scholar] [CrossRef]
- Vasilas, B.L.; Legg, J.O.; Wolf, D.C. Foliar Fertilization of Soybeans: Absorption and Translocation of 15N-Labeled Urea. Agron. J. 1980, 72, 271–275. [Google Scholar] [CrossRef]
- Sarandón, S.J.; Gianibelli, M.C. Effect of foliar urea spraying and nitrogen application at sowing upon dry matter and nitrogen distribution in wheat (Triticum aestivum L.). Agronomie 1990, 10, 183–189. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Charnel, A. Foliar absorption and transport of inorganic nutrients. Crit. Rev. Plant Sci. 1986, 4, 341–375. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Y.; Wang, L.; Xu, H.S.; Zörb, C.; Geilfus, C.M.; Xue, C.; Sun, Z.M.; Ma, W.Q. Booting stage is the key timing for split nitrogen application in improving grain yield and quality of wheat—A global meta-analysis. Field Crops Res. 2022, 287, 108665. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-Analysis of Response Ratios in Experi-mental Ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Coulter, J.A.; Xie, J.; Luo, Z.; Zhang, R.; Deng, X.; Li, L. Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis. Agr. Water Manag. 2020, 229, 105934. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. Can knowledge-based N manage-ment produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollu-tion? A meta-analysis. Global Change Biol. 2017, 23, 1917–1925. [Google Scholar] [CrossRef]
- Huang, S.; Lv, W.; Bloszies, S.; Shi, Q.; Pan, X.; Zeng, Y. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis. Field Crops Res. 2016, 192, 118–125. [Google Scholar] [CrossRef]
- Valkama, E.; Salo, T.; Esala, M.; Turtola, E. Nitrogen balances and yields of spring cereals as affected by nitrogen fertilization in northern conditions: A meta-analysis. Agr. Ecosyst. Environ. 2013, 164, 1–13. [Google Scholar] [CrossRef]
- Hu, C.; Sadras, V.O.; Lu, G.; Zhang, P.; Han, Y.; Liu, L.; Xie, J.; Yang, X.; Zhang, S. A global meta-analysis of split nitrogen application for improved wheat yield and grain protein content. Soil Tillage Res. 2021, 213, 105111. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Q.; Zhang, T.; Ma, W.; Velthof, G.L.; Hou, Y.; Oenema, O.; Zhang, F. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, J.; Zhang, Z.; Xu, P.; Shangguan, Z. Winter wheat grain yield in response to different production practices and soil fertility in northern China. Soil. Till Res. 2018, 176, 10–17. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; LangelÜDdeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Benitez-Lopez, A.; Alkemade, R.; Schipper, A.M.; Ingram, D.J.; Verweij, P.A.; Eikelboom, J.A.; Huijbregts, M.A. The impact of hunting on tropical mammal and bird populations. Science 2017, 356, 180–183. [Google Scholar] [CrossRef]
- Philibert, A.; Loyce, C.; Makowski, D. Assessment of the quality of meta-analysis in agronomy. Agr. Ecosyst. Environ. 2012, 148, 72–82. [Google Scholar] [CrossRef]
- Yu, Y.; Stomph, T.-J.; Makowski, D.; van der Werf, W. Temporal niche differentiation in-creases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Res. 2015, 184, 133–144. [Google Scholar] [CrossRef]
- Martin-Guay, M.O.; Paquette, A.; Dupras, J.; Rivest, D. The new Green Revolution: Sustaina-ble intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A Review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, S.; Lin, X.; Gu, S.; Wang, D. Supplemental irrigation at jointing improves spike formation of wheat tillers by regulating sugar distribution in ear and stem. Agr. Water Manage. 2023, 279, 108160. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, M.; Cai, J.; Wang, X.; Zhou, Q.; Cao, W.; Dai, T.; Jiang, D. Nitrogen top-dressing timing influences the spatial distribution patterns of protein components and quality traits of flours from different pearling fractions of wheat (Triticum aestivum L. ) grains. Field Crops Res. 2018, 216, 120–128. [Google Scholar] [CrossRef]
- Morris, C.F.; Paulsen, G.M. Development of Hard Winter Wheat after Anthesis as Affected by Nitrogen Nutrition. Crop. Sci. 1985, 25, 1007–1010. [Google Scholar] [CrossRef]
- Du, K.; Zhao, W.; Lv, Z.; Xu, B.; Hu, W.; Zhou, Z.; Wang, Y. Optimal rate of nitrogen fertilizer improves maize grain yield by delaying the senescence of ear leaves and thereby altering their ni-trogen remobilization. Field Crops Res. 2024, 310, 109359. [Google Scholar] [CrossRef]
- Tedone, L.; Alhajj Ali, S.; Verdini, L.; De Mastro, G. Nitrogen management strategy for op-timizing agronomic and environmental performance of rainfed durum wheat under Mediterra-nean climate. J. Clean. Prod. 2018, 172, 2058–2074. [Google Scholar] [CrossRef]
- Woodard, H.J.; Bly, A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. J. Plant Nutr. 1998, 21, 217–233. [Google Scholar] [CrossRef]
- Xue, C.; Schulte auf’m Erley, G.; Rücker, S.; Koehler, P.; Obenauf, U.; Mühling, K.H. Late ni-trogen application increased protein concentration but not baking quality of wheat. J. Plant Nutr. Soil. Sci. 2016, 179, 591–601. [Google Scholar] [CrossRef]
- Pan, Y.; Han, X.; Xu, H.; Wu, W.; Liu, X.; Li, Y.; Xue, C. Elevated atmospheric CO2 delays the key timing for split N applications to improve wheat (Triticum aestivum L.) protein composition. Front. Plant Sci. 2023, 14, 1186890. [Google Scholar] [CrossRef] [PubMed]
- Martre, P.; Jamieson, P.D.; Semenov, M.A.; Zyskowski, R.F.; Porter, J.R.; Triboï, E. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. Eur. J. Agron. 2006, 25, 138–154. [Google Scholar] [CrossRef]
- Fan, M.; Cui, Z.; Chen, X.; Jiang, R.; Zhang, F. Integrated nutrient management for improving crop yields and nutrient utilization efficiencies in China. J. Soil. Water Conserv. 2008, 63, 126A. [Google Scholar] [CrossRef]
- Wang, J.; Lü, G.; Guo, X.; Wang, Y.; Ding, S.; Wang, D. Conservation tillage and optimized fertilization reduce winter runoff losses of nitrogen and phosphorus from farmland in the Chaohu Lake region, China. Nutr. Cycl. Agroecosyst. 2015, 101, 93–106. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Xu, M.; Feng, G.; Zhang, W.; Lu, C.a. Crop yield and soil organic matter after long-term straw return to soil in China. Nutr. Cycl. Agroecosyst. 2015, 102, 371–381. [Google Scholar] [CrossRef]
- Miralles, D.; Slafer, G.A. Wheat development. In Wheat; CRC Press: Boca Raton, FL, USA, 1999; pp. 13–43. [Google Scholar]
- Roychowdhury, R.; Zilberman, O.; Chandrasekhar, K.; Curzon, A.Y.; Nashef, K.; Abbo, S.; Slafer, G.A.; Bonfil, D.J.; Ben-David, R. Pre-anthesis spike growth dynamics and its association to yield components among elite bread wheat cultivars (Triticum aestivum L. spp.) under Mediter-ranean climate. Field Crops Res. 2023, 298, 108948. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Z.; Wang, D.; Li, Y.; Wang, X. Effects of nitrogen rate and ratio of base fertilizer and topdressing on uptake, translocation of nitrogen and yield in wheat. Front. Agric. China 2007, 1, 142–148. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Simmonds, N.W. The relation between yield and protein in cereal grain. J. Sci. Food Agric. 2006, 67, 309–315. [Google Scholar] [CrossRef]
- Munier-Jolain, N.G.; Salon, C. Are the carbon costs of seed production related to the quan-titative and qualitative performance? An appraisal for legumes and other crops. Plant Cell Environ. 2005, 28, 1388–1395. [Google Scholar] [CrossRef]
- Acreche, M.M.; Slafer, G.A. Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. J. Agric. Sci. 2009, 147, 657–667. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, D.; Blennow, A.; Zörb, C. Mineral nutrients and crop starch quality. Trends Food Sci. Technol. 2021, 114, 148–157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Wang, Y.; Xu, H.; Liu, M.; Xue, C. Enhancing Wheat Yield and Quality Through Late-Season Foliar Nitrogen Application: A Global Meta-Analysis. Agronomy 2025, 15, 1058. https://doi.org/10.3390/agronomy15051058
Wu W, Wang Y, Xu H, Liu M, Xue C. Enhancing Wheat Yield and Quality Through Late-Season Foliar Nitrogen Application: A Global Meta-Analysis. Agronomy. 2025; 15(5):1058. https://doi.org/10.3390/agronomy15051058
Chicago/Turabian StyleWu, Wei, Yang Wang, Huasen Xu, Mengmeng Liu, and Cheng Xue. 2025. "Enhancing Wheat Yield and Quality Through Late-Season Foliar Nitrogen Application: A Global Meta-Analysis" Agronomy 15, no. 5: 1058. https://doi.org/10.3390/agronomy15051058
APA StyleWu, W., Wang, Y., Xu, H., Liu, M., & Xue, C. (2025). Enhancing Wheat Yield and Quality Through Late-Season Foliar Nitrogen Application: A Global Meta-Analysis. Agronomy, 15(5), 1058. https://doi.org/10.3390/agronomy15051058