Tissue-Mimicking Materials for Breast Ultrasound Elastography Phantoms: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
Article Selections
3. Results
3.1. Biopolymers
3.2. Chemically Synthesized Polymers
4. Discussion
4.1. Comparison of Materials and Their Properties
4.1.1. Biopolymer-Based Properties
4.1.2. Chemically Synthesized Materials
4.1.3. Polyvinyl Chloride Plastisol-Based Materials
4.2. Clinical and Training Applications
4.3. Review Challenges and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barr, R.G. Future of Breast Elastography. Ultrasonography 2019, 38, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Rositch, A.F.; Shakoor, D.; Ambinder, E.; Pool, K.-L.; Pollack, E.; Mollura, D.J.; Mullen, L.A.; Harvey, S.C. Ultrasound for Breast Cancer Detection Globally: A Systematic Review and Meta-Analysis. J. Glob. Oncol. 2019, 5, JGO.19.00127. [Google Scholar] [CrossRef]
- D’Orsi, C.J.; Sickles, E.A.; Mendelson, E.B.; Morris, E.A. (Eds.) ACR BI-RADS Atlas: Breast Imaging Reporting and Data System; Mammography, Ultrasound, Magnetic Resonance Imaging, Follow-up and Outcome Monitoring, Data Dictionary, 5th ed.; ACR, American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Athanasiou, A.; Tardivon, A.; Tanter, M.; Sigal-Zafrani, B.; Bercoff, J.; Deffieux, T.; Gennisson, J.-L.; Fink, M.; Neuenschwander, S. Breast Lesions: Quantitative Elastography with Supersonic Shear Imaging—Preliminary Results. Radiology 2010, 256, 297–303. [Google Scholar] [CrossRef]
- Duncan, J.L.; Cederbom, G.J.; Champaign, J.L.; Smetherman, D.H.; King, T.A.; Farr, G.H.; Waring, A.N.; Bolton, J.S.; Fuhrman, G.M. Benign Diagnosis by Image-Guided Core-Needle Breast Biopsy. Am. Surg. 2000, 66, 5–9; discussion 9–10. [Google Scholar] [CrossRef] [PubMed]
- Versaggi, S.L.; De Leucio, A. Breast Biopsy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Armstrong, S.A.; Jafary, R.; Forsythe, J.S.; Gregory, S.D. Tissue-Mimicking Materials for Ultrasound-Guided Needle Intervention Phantoms: A Comprehensive Review. Ultrasound Med. Biol. 2023, 49, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.; Han, B.-K.; Choi, J.S.; Ko, E.S.; Ko, E.Y. Accuracy and Reproducibility of Shear Wave Elastography According to the Size and Elasticity of Lesions: A Phantom Study. Medicine 2022, 101, e31095. [Google Scholar] [CrossRef] [PubMed]
- Oca, S.R.; Havas, J.; Bridgeman, L.J.; Buckland, D.M. Durable Breast Phantom with Geometric and Mechanical Properties Approximating Human Tissue for Ultrasound Image and Robotic System Testing. In Proceedings of the 2022 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 13–15 April 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Jafary, R.; Armstrong, S.; Byrne, T.; Stephens, A.; Pellegrino, V.; Gregory, S.D. Fabrication and Characterization of Tissue-Mimicking Phantoms for Ultrasound-Guided Cannulation Training. ASAIO J. 2022, 68, 940–948. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wear, K.A.; Joshua Pfefer, T.; Vogt, W.C. Tissue-Mimicking Phantoms for Performance Evaluation of Photoacoustic Microscopy Systems. Biomed. Opt. Express 2022, 13, 1357. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Singh, M.; Mishra, S.P. Tissue-Equivalent Materials Used to Develop Phantoms in Radiation Dosimetry: A Review. Mater. Today Proc. 2021, 47, 7170–7173. [Google Scholar] [CrossRef]
- Cabrelli, L.C.; Pelissari, P.I.B.G.B.; Deana, A.M.; Carneiro, A.A.O.; Pavan, T.Z. Stable Phantom Materials for Ultrasound and Optical Imaging. Phys. Med. Biol. 2017, 62, 432–447. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, G.; Vishnupriyan, R.; Selvadeepak, S. Tissue Mimicking Material an Idealized Tissue Model for Clinical Applications: A Review. Mater. Today Proc. 2020, 22, 2696–2703. [Google Scholar] [CrossRef]
- Liao, Y.L.; Chen, H.B.; Zhou, L.H.; Zhen, X. Construction of an Anthropopathic Abdominal Phantom for Accuracy Validation of Deformable Image Registration. Technol. Health Care 2016, 24 (Suppl. S2), S717–S723. [Google Scholar] [CrossRef]
- Lowes, S.; Bydder, M.; Sinnatamby, R. A National Survey Exploring UK Trainees’ Perceptions, Core Training Experience, and Decisions to Pursue Advanced Training in Breast Radiology. Clin. Radiol. 2017, 72, 991.e1–991.e13. [Google Scholar] [CrossRef] [PubMed]
- PRISMA-P Group; Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Kashif, A.S.; Lotz, T.F.; McGarry, M.D.; Pattison, A.J.; Chase, J.G. Silicone Breast Phantoms for Elastographic Imaging Evaluation. Med. Phys. 2013, 40 Pt 1, 063503. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.L.; Pavan, T.Z.; Junior, J.E.; Carneiro, A.A.O. Paraffin-Gel Tissue-Mimicking Material for Ultrasound-Guided Needle Biopsy Phantom. Ultrasound Med. Biol. 2013, 39, 2477–2484. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Kruse, D.E.; Ferrara, K.W.; Caskey, C.F. Creation and Characterization of an Ultrasound and CT Phantom for Noninvasive Ultrasound Thermometry Calibration. IEEE Trans. Biomed. Eng. 2014, 61, 502–512. [Google Scholar] [CrossRef]
- Manickam, K.; Reddy, M.R.; Seshadri, S.; Raghavan, B. Development of a Training Phantom for Compression Breast Elastography—Comparison of Various Elastography Systems and Numerical Simulations. J. Med. Imaging 2015, 2, 047002. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, I.M.; De Matheo, L.L.; Costa Júnior, J.F.S.; Borba, C.D.M.; Von Krüger, M.A.; Infantosi, A.F.C.; Pereira, W.C.D.A. Polyvinyl Chloride Plastisol Breast Phantoms for Ultrasound Imaging. Ultrasonics 2016, 70, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.; Song, H.-W.; Lee, Y.-J.; Park, S.J.; Yim, M.J.; Lee, S.S.; Kim, B.K. Fabrication and Characterization of PVCP Human Breast Tissue-Mimicking Phantom for Photoacoustic Imaging. BioChip J. 2017, 11, 67–75. [Google Scholar] [CrossRef]
- Browne, J.E.; Cannon, L.M.; McDermott, R.; Ryan, M.; Fagan, A.J. Pilot Investigation into the Use of an Anthropomorphic Breast Sonography Phantom as a Training and Assessment Tool. Ultrasound Med. Biol. 2017, 43, 2733–2740. [Google Scholar] [CrossRef] [PubMed]
- De Matheo, L.L.; Geremia, J.; Calas, M.J.G.; Costa-Júnior, J.F.S.; Da Silva, F.F.F.; Von Krüger, M.A.; Pereira, W.C.D.A. PVCP-Based Anthropomorphic Breast Phantoms Containing Structures Similar to Lactiferous Ducts for Ultrasound Imaging: A Comparison with Human Breasts. Ultrasonics 2018, 90, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Ustbas, B.; Kilic, D.; Bozkurt, A.; Aribal, M.E.; Akbulut, O. Silicone-Based Composite Materials Simulate Breast Tissue to Be Used as Ultrasonography Training Phantoms. Ultrasonics 2018, 88, 9–15. [Google Scholar] [CrossRef]
- Browne, J.E.; Gu, C.; Fazzio, R.T.; Fagan, A.J.; Tradup, D.J.; Hangiandreou, N.J. Use of Novel Anthropomorphic Breast Ultrasound Phantoms for Radiology Resident Education. J. Am. Coll. Radiol. 2019, 16, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.Y.; Lin, C.L. Tunability of Acoustic and Mechanical Behaviors in Breast Tissue Mimicking Materials. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1998–2002. [Google Scholar] [CrossRef]
- Suzuki, A.; Tsubota, Y.; Wu, W.; Yamanaka, K.; Terada, T.; Otake, Y.; Kawabata, K. Oil Gel-Based Phantom for Evaluating Quantitative Accuracy of Speed of Sound Measured in Ultrasound Computed Tomography. Ultrasound Med. Biol. 2019, 45, 2554–2567. [Google Scholar] [CrossRef]
- Ruvio, G.; Solimene, R.; Cuccaro, A.; Fiaschetti, G.; Fagan, A.J.; Cournane, S.; Cooke, J.; Ammann, M.J.; Tobon, J.; Browne, J.E. Multimodal Breast Phantoms for Microwave, Ultrasound, Mammography, Magnetic Resonance and Computed Tomography Imaging. Sensors 2020, 20, 2400. [Google Scholar] [CrossRef] [PubMed]
- Chatelin, S.; Breton, E.; Arulrajah, A.; Giraudeau, C.; Wach, B.; Meylheuc, L.; Vappou, J. Investigation of PolyVinyl Chloride Plastisol Tissue-Mimicking Phantoms for MR- and Ultrasound-Elastography. Front. Phys. 2020, 8, 577358. [Google Scholar] [CrossRef]
- Altun, B.; Demirkan, I.; Isik, E.O.; Kocaturk, O.; Unlu, M.B.; Garipcan, B. Acoustic Impedance Measurement of Tissue Mimicking Materials by Using Scanning Acoustic Microscopy. Ultrasonics 2021, 110, 106274. [Google Scholar] [CrossRef]
- Schmidt, G.; Gerlinger, C.; Endrikat, J.; Gabriel, L.; Müller, C.; Baus, S.; Volk, T.; Findeklee, S.; Solomayer, E.F.; Hamza, A.; et al. Teaching Breast Ultrasound Skills Including Core-Needle Biopsies on a Phantom Enhances Undergraduate Student’s Knowledge and Learning Satisfaction. Arch. Gynecol. Obstet. 2021, 304, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Browne, J.E.; Cannon, L.M.; Fagan, A.J.; Cournane, S. Development of a Focal Lesion Phantom with Clinically Relevant Lesion Characteristics for Image Quality Evaluation of Breast Ultrasound Scanners. Phys. Med. 2022, 94, 65–74. [Google Scholar] [CrossRef]
- Leonov, D.; Venidiktova, D.; Costa-Júnior, J.F.S.; Nasibullina, A.; Tarasova, O.; Pashinceva, K.; Vetsheva, N.; Bulgakova, J.; Kulberg, N.; Borsukov, A.; et al. Development of an Anatomical Breast Phantom from Polyvinyl Chloride Plastisol with Lesions of Various Shape, Elasticity and Echogenicity for Teaching Ultrasound Examination. Int. J. Comput. Assist. Radiol. Surg. 2023, 19, 151–161. [Google Scholar] [CrossRef]
- Hariyanto, A.P.; Budiarti, N.T.; Suprijanto; Ng, K.H.; Haryanto, F.; Endarko. Evaluation of Physical Properties and Image of Polyvinyl Chloride as Breast Tissue Equivalence for Dual-Modality (Mammography and Ultrasound). Phys. Eng. Sci. Med. 2023, 46, 1175–1185. [Google Scholar] [CrossRef]
- Cannon, L.M.; Fagan, A.J.; Browne, J.E. Novel Tissue Mimicking Materials for High Frequency Breast Ultrasound Phantoms. Ultrasound Med. Biol. 2011, 37, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Teirlinck, C.J.P.M.; Bezemer, R.A.; Kollmann, C.; Lubbers, J.; Hoskins, P.R.; Fish, P.; Fredfeldt, K.-E.; Schaarschmidt, U.G. Development of an Example Flow Test Object and Comparison of Five of These Test Objects, Constructed in Various Laboratories. Ultrasonics 1998, 36, 653–660. [Google Scholar] [CrossRef]
- Brewin, M.P.; Pike, L.C.; Rowland, D.E.; Birch, M.J. The Acoustic Properties, Centered on 20 MHZ, of an IEC Agar-Based Tissue-Mimicking Material and Its Temperature, Frequency and Age Dependence. Ultrasound Med. Biol. 2008, 34, 1292–1306. [Google Scholar] [CrossRef] [PubMed]
- Maggi, L.E.; Von Kruger, M.A.; Pereira, W.C.A.; Monteiro, E.E.C. Development of Silicon-Based Materials for Ultrasound Biological Phantoms. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 1962–1965. [Google Scholar] [CrossRef]
- Grigorova, N.; Kaloyanova, D.; Dukov, N.; Bliznakova, K. Ultrasound Breast Phantom for Breast Biopsy Training. In Proceedings of the 2024 E-Health and Bioengineering Conference (EHB), Iași, Romania, 13–14 November 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Caldas, A.; Valente, S.; Rodrigues, N.S.; De Araújo, A.R.V.F.; Storzs, R.; Real, A.; Ribeiro, R.R.; Ferreira, M.R.; Morais, P.; Matos, D.; et al. Development of a Breast Ultrasound Phantom for Medical Training. In Proceedings of the 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), L’Aquila, Italy, 22–24 June 2023; pp. 398–403. [Google Scholar] [CrossRef]
- Rabell Montiel, A.; Browne, J.E.; Pye, S.D.; Anderson, T.A.; Moran, C.M. Broadband Acoustic Measurement of an Agar-Based Tissue-Mimicking-Material: A Longitudinal Study. Ultrasound Med. Biol. 2017, 43, 1494–1505. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Ultrasound phantom | Studies that use numerical or commercial breast phantoms |
Phantoms made using tissue-mimicking materials | Studies published before 2013 |
Breast phantom | Studies written in languages other than English |
Original research studies | Reviews, expert opinions, letters, conference proceedings, and book chapters |
Studies written in English | |
Studies published from 2013 to August 2023 |
Author (Year) | TMM | Phantom Type | SOS (m/s) | AC (dB/MHz/cm) | Elasticity (kPa) |
---|---|---|---|---|---|
Kashif et al., 2013 [18] | Silicone | Breast phantom | - | - | 2–570 |
Vieira et al., 2013 [19] | Paraffin gel wax + glass microspheres | Breast phantom | 1425.4–1480.3 | 0.32–2.04 | - |
Chun-Yen et al., 2014 [20] | Agarose + evaporated milk | Ultrasound-guided breast biopsy training | 1480–1540 | - | - |
Manickam et al., 2015 [21] | Agar + N-propanol + graphite powder | Ultrasound and CT phantom | 1564–1671 | 0.69–0.82 | 12.5–25 |
De Carvalho et al., 2016 [22] | PVCP + graphite powder | Ultrasound breast phantom | 1379.3–1388 | 0.37–0.4 | - |
Jeong et al., 2016 [23] | PVCP + Al2O3 | Ultrasound breast phantom | 1370 | 0.71 | - |
Browne et al., 2017 [24] | IEC agar | Ultrasound breast phantom | 1497–1553 | 0.6–2.0 | - |
Matheo et al., 2018 [25] | PVC plastisol + TiO3 | Ultrasound breast phantom | 1400 | 0.5 | - |
Ustbas et al., 2018 [26] | Silicone + PDMS | Ultrasound breast phantom | 1290 | 12.99 dB/cm | - |
Browne et al., 2019 [27] | IEC agar | Ultrasound breast phantom | 1497–1553 | 0.6–2.0 | - |
Ng et al., 2019 [28] | IEC agar | Ultrasound breast and needle insertion feedback phantom | 1479–1553 | 0.6–2 | 120–401 |
Suzuki et al., 2019 [29] | SEBS + paraffin oil | Ultrasound and CT phantom | 1456–1503 | 0.4–1.2 | - |
Ruvio et al., 2020 [30] | IEC agar | Microwave, ultrasound, mammography, MRI, and CT phantom | 1532–1710 | 0.73–4.0 | - |
Chatelin et al., 2020 [31] | PVCP + bis(2-ethylhexyl) adipate | MR and ultrasound elastography phantom | 1400–1500 | 0.14–1.641 | - |
Altun et al., 2021 [32] | Gelatine + glycerol | Ultrasound breast phantom | - | - | - |
Schmidt et al., 2021 [33] | Agar | Ultrasound breast and needle insertion feedback phantom | - | - | - |
Browne et al., 2022 [34] | IEC agar | Ultrasound breast phantom | 1551 | 0.46–0.6 | - |
Leonov et al., 2023 [35] | PVCP + graphite powder + metallic glitter | Ultrasound breast phantom | 1400–1550 | 0.05–0.45 | - |
Hariyanto et al., 2023 [36] | PVC + DOP + graphite + silicone oil | Mammography and ultrasound phantom | 1436–2021 | 0.51–0.063 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldehani, W.; Jawali, A.; Savaridas, S.L.; Huang, Z.; Manfredi, L. Tissue-Mimicking Materials for Breast Ultrasound Elastography Phantoms: A Systematic Review. Polymers 2025, 17, 521. https://doi.org/10.3390/polym17040521
Aldehani W, Jawali A, Savaridas SL, Huang Z, Manfredi L. Tissue-Mimicking Materials for Breast Ultrasound Elastography Phantoms: A Systematic Review. Polymers. 2025; 17(4):521. https://doi.org/10.3390/polym17040521
Chicago/Turabian StyleAldehani, Wadhhah, Adel Jawali, Sarah Louise Savaridas, Zhihong Huang, and Luigi Manfredi. 2025. "Tissue-Mimicking Materials for Breast Ultrasound Elastography Phantoms: A Systematic Review" Polymers 17, no. 4: 521. https://doi.org/10.3390/polym17040521
APA StyleAldehani, W., Jawali, A., Savaridas, S. L., Huang, Z., & Manfredi, L. (2025). Tissue-Mimicking Materials for Breast Ultrasound Elastography Phantoms: A Systematic Review. Polymers, 17(4), 521. https://doi.org/10.3390/polym17040521