Performance and Mechanism of Hydrothermally Synthesized MoS2 on Copper Dissolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Catalyst Characterization Results
2.1.1. XRD and Raman Analysis of Catalysts
2.1.2. SEM and TEM Analysis of Catalysts
2.1.3. PFM Analysis of Catalysts
2.1.4. BET Analysis of Catalyst
2.2. MoS2 Catalyst for the Extraction of Copper in Cu Powder
2.2.1. The Effect of Catalyst on Copper Dissolution
2.2.2. Influence of pH and Different Gas Conditions on Copper Dissolution
2.2.3. Diagram of the Dissolution Process of Copper
2.3. Dissolution Mechanism of Cu2+ in Cu Powder
2.3.1. S vacancy Formation and Cu2+ Dissolution Mechanism
2.3.2. Free Radical Trapping Experiment
2.3.3. Dissolution Effect of MoS2 Catalyst on Copper in Circuit Board
3. Materials and Methods
3.1. Preparation of MoS2 by Hydrothermal Method
3.2. Characterization and Analysis Methods
3.3. Piezoelectric Catalysis in the Dissolution of Copper from Circuit Boards
4. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Zhang, S.; Li, B.; Pan, D.a.; Wu, Y.; Zuo, T. Recovery of waste printed circuit boards through pyrometallurgical processing: A review. Resour. Conserv. Recy. 2017, 126, 209–218. [Google Scholar] [CrossRef]
- Ma, W.; Yao, B.; Zhang, W.; He, Y.; Yu, Y.; Niu, J.; Wang, C. A novel multi-flaw MoS2 nanosheet piezocatalyst with superhigh degradation efficiency for ciprofloxacin. Environ. Sci. Nano. 2018, 5, 2876–2887. [Google Scholar] [CrossRef]
- Ghodrat, M.; Samali, B.; Rhamdhani, M.A.; Brooks, G. Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process. Energies 2019, 12, 1313. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Swaraz, A.M.; Teo, S.H.; Taufiq-Yap, Y.H.; Vo, D.N.; Ibrahim, M.L.; Abdulkreem-Alsultan, G.; Rashid, U.; Awual, M.R. Advances in physiochemical and biotechnological approaches for sustainable metal recovery from e-waste: A critical review. J. Clean. Prod. 2021, 323, 129015. [Google Scholar] [CrossRef]
- Yuan, Z.; Ruan, J.; Li, Y.; Qiu, R. A new model for simulating microbial cyanide production and optimizing the medium parameters for recovering precious metals from waste printed circuit boards. J. Hazard. Mater. 2018, 353, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, H.; Liang, W.; Fu, J.; Yi, X. Liberation characteristic and physical separation of printed circuit board (PCB). Waste Manag. 2011, 31, 2161–2166. [Google Scholar] [CrossRef]
- Joda, N.N.; Rashchi, F. Recovery of ultra fine grained silver and copper from PC board scraps. Sep. Purif. Technol. 2012, 92, 36–42. [Google Scholar] [CrossRef]
- Awual, M.R.; Eldesoky, G.E.; Yaita, T.; Naushad, M.; Shiwaku, H.; AlOthman, Z.A.; Suzuki, S. Schiff based ligand containing nano-composite adsorbent for optical copper (II) ions removal from aqueous solutions. Chem. Eng. J. 2015, 279, 639–647. [Google Scholar] [CrossRef]
- Ulloa, R.; Moya-Beltran, A.; Rojas-Villalobos, C.; Nunez, H.; Chiacchiarini, P.; Donati, E.; Giaveno, A.; Quatrini, R. Domestication of Local Microbial Consortia for Efficient Recovery of Gold Through Top-Down Selection in Airlift Bioreactors. Front. Microbiol. 2019, 10, 60. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, M.; Wen, J.; Wan, Y.; Zhao, Q.; Cao, X.; Ding, Y.; Wang, Z.L.; Li, H.; Bian, Z. Selective recovery of precious metals through photocatalysis. Nat. Sustain. 2021, 4, 618–626. [Google Scholar] [CrossRef]
- Muscetta, M.; Andreozzi, R.; Marotta, R.; Di Somma, I. Recovery of palladium (II) from aqueous solution through photocatalytic deposition in presence of ZnO under UV/Visible-light radiation. J. Chem. Eng. 2021, 9, 106523. [Google Scholar] [CrossRef]
- Lan, S.; Feng, J.; Xiong, Y.; Tian, S.; Liu, S.; Kong, L. Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination. Environ. Sci. Technol. 2017, 51, 6560–6569. [Google Scholar] [CrossRef] [PubMed]
- Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems. Environ. Sci. Technol. 2017, 51, 7304–7317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Zhao, S.; Zhao, Z.; Li, S.; Wang, F. Piezocatalytic Effect Induced Hydrogen Production from Water over Non-noble Metal Ni Deposited Ultralong GaN Nanowires. ACS Appl. Mater. 2021, 13, 10916–10924. [Google Scholar] [CrossRef]
- Yu, C.; Tan, M.; Li, Y.; Liu, C.; Yin, R.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering. J. Colloid Interface Sci. 2021, 596, 288–296. [Google Scholar] [CrossRef]
- Nie, Q.; Xie, Y.; Ma, J.; Wang, J.; Zhang, G. High piezo-catalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. J. Clean. Prod. 2020, 242, 118532. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, X.; Jia, Y.; Huang, M.; Wang, F.; Zhang, X.; Bai, Y.; Yuan, G.; Wang, Y. Piezo-catalysis for nondestructive tooth whitening. Nat. Commun. 2020, 11, 1328. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.M.; Chang, W.E.; Chang, Y.T.; Chang, C.K. Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers. Adv. Mater. 2016, 28, 3718–3725. [Google Scholar] [CrossRef]
- Wei, Y.; Kong, Z.; Pan, Y.; Cao, Y.; Long, D.; Wang, J.; Qiao, W.; Ling, L. Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 5899–5909. [Google Scholar] [CrossRef]
- Hu, T.; Wang, J.; Xie, Y.; Cao, F.; Jia, L.; Wu, X.; Sun, G. Silver incorporated into tunneled manganese oxide promotes hydrogen production from aqueous formaldehyde. Appl. Surf. Sci. 2022, 589, 152908. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, Y.; Zhao, X.; Yang, L.; Lu, H.; Wang, J. Peroxymonosulfate activation in ultrasound-driven molybdenum disulfide piezocatalysis: The effect of sulfur vacancy. J. Clean. Prod. 2022, 380, 135002. [Google Scholar] [CrossRef]
- Xu, H.; Wu, J.; Liu, J.; Chen, Y.; Fan, X. Growth of cobalt-nickel layered double hydroxide on nitrogen-doped graphene by simple co-precipitation method for supercapacitor electrodes. J. Mater. Sci. Mater. 2018, 29, 17234–17244. [Google Scholar] [CrossRef]
- Luo, N.; Chen, C.; Yang, D.; Hu, W.; Dong, F. S defect-rich ultrathin 2D MoS2: The role of S point-defects and S stripping-defects in the removal of Cr(VI) via synergistic adsorption and photocatalysis. Appl. Catal. B Environ. 2021, 299, 120664. [Google Scholar] [CrossRef]
- Yang, J.E.; Zhu, M.; Duan, X.; Wang, S.; Yuan, B.; Fu, M. The mechanistic difference of 1T-2H MoS2 homojunctions in persulfates activation: Structure-dependent oxidation pathways. Appl. Catal. B Environ. 2021, 297, 120460. [Google Scholar] [CrossRef]
- Yu, M.; Ni, C.; Hou, T.; Guo, W.; Wang, J. Peroxymonosulfate Activation by BaTiO3 Piezocatalyst. Catalysts 2022, 12, 1452. [Google Scholar] [CrossRef]
- Ma, J.; Cao, R.; Dang, Y.; Wang, J. A recent progress of room-temperature airborne ozone decomposition catalysts. Chinese Chem. Lett. 2021, 32, 2985–2993. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Cao, F.; Huang, X.; Yang, H. Performance and Mechanism of Hydrothermally Synthesized MoS2 on Copper Dissolution. Catalysts 2023, 13, 147. https://doi.org/10.3390/catal13010147
Lu H, Cao F, Huang X, Yang H. Performance and Mechanism of Hydrothermally Synthesized MoS2 on Copper Dissolution. Catalysts. 2023; 13(1):147. https://doi.org/10.3390/catal13010147
Chicago/Turabian StyleLu, Hao, Fang Cao, Xiaoyu Huang, and Honggang Yang. 2023. "Performance and Mechanism of Hydrothermally Synthesized MoS2 on Copper Dissolution" Catalysts 13, no. 1: 147. https://doi.org/10.3390/catal13010147
APA StyleLu, H., Cao, F., Huang, X., & Yang, H. (2023). Performance and Mechanism of Hydrothermally Synthesized MoS2 on Copper Dissolution. Catalysts, 13(1), 147. https://doi.org/10.3390/catal13010147