Solution XAS Analysis for Reactions of Phenoxide-Modified (Arylimido)vanadium(V) Dichloride and (Oxo)vanadium(V) Complexes with Al Alkyls: Effect of Al Cocatalyst in Ethylene (Co)polymerization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solution V K-Edge XANES Spectra of (Oxo)vanadium(V) and (Arylimido)vanadium(V) Complexes
2.2. Solution V K-Edge XANES Analysis for Reactions of V(NAr)Cl2(OAr) (1, Ar = 2,6-Me2C6H3) and (Oxo)vanadium(V) Complexes with Al Alkyls: Effect of Al Cocatalyst in Ethylene (Co)polymerization
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaminsky, W.; Engehausen, R.; Kopf, J. A Tailor-Made Metallocene for the Copolymerization of Ethene with Bulky Cycloalkenes. Angew. Chem. Int. Ed. 1995, 34, 2273–2275. [Google Scholar] [CrossRef]
- Kaminsky, W.; Arndt, M. Metallocenes for polymer catalysis. Adv. Polym. Sci. 2007, 127, 143–187. [Google Scholar] [CrossRef]
- McKnight, A.L.; Waymouth, R. Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. Chem. Rev. 1998, 98, 2587–2598. [Google Scholar] [CrossRef] [PubMed]
- Osakada, K. Organometallic Reactions and Polymerization; Lecture Notes in Chemistry; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Nomura, K.; Zhang, S. Design of Vanadium Complex Catalysts for Precise Olefin Polymerization. Chem. Rev. 2010, 111, 2342–2362. [Google Scholar] [CrossRef]
- Delferro, M.; Marks, T.J. Multinuclear Olefin Polymerization Catalysts. Chem. Rev. 2011, 111, 2450–2485. [Google Scholar] [CrossRef]
- Valente, A.; Mortreux, A.; Visseaux, M.; Zinck, P. Coordinative Chain Transfer Polymerization. Chem. Rev. 2013, 113, 3836–3857. [Google Scholar] [CrossRef]
- Nomura, K.; Liu, J.; Padmanabhan, S.; Kitiyanan, B. Nonbridged half-metallocenes containing anionic ancillary donor ligands: New promising candidates as catalysts for precise olefin polymerization. J. Mol. Catal. A Chem. 2007, 267, 1–29. [Google Scholar] [CrossRef]
- Nomura, K.; Liu, J. Half-titanocenes for precise olefin polymerisation: Effects of ligand substituents and some mechanistic aspects. Dalton Trans. 2011, 40, 7666–7682. [Google Scholar] [CrossRef]
- Baier, M.S.M.C.; Zuideveld, M.A.; Mecking, S. Post-Metallocenes in the Industrial Production of Polyolefins. Angew. Chem. Int. Ed. 2014, 53, 9722–9744. [Google Scholar] [CrossRef]
- Hoff, R.; Mathers, R.T. Handbook of Transition Metal Polymerization Catalysts; John and Wiley and Sons: Hoboken, NJ, USA, 2018; pp. 313–338. [Google Scholar]
- Carrick, W.L. Mechanism of Ethylene Polymerization with Vanadium Catalysts. J. Am. Chem. Soc. 1958, 80, 6455–6456. [Google Scholar] [CrossRef]
- Carrick, W.L.; Kluiber, R.W.; Bonner, E.F.; Wartman, L.H.; Rugg, F.M.; Smith, J.J. Transition Metal Catalysts. I. Ethylene Polymerization with a Soluble Catalyst Formed from an Aluminum Halide, Tetraphenyltin and a Vanadium Halide1. J. Am. Chem. Soc. 1960, 82, 3883–3887. [Google Scholar] [CrossRef]
- Phillips, G.W.; Carrick, W.L. Transition metal catalysts. VIII. The role of oxygen in ethylene polymerizations with the AlBr3-VXn-Sn(C6H5)4 catalyst. J. Polym. Sci. 1962, 59, 401–412. [Google Scholar] [CrossRef]
- Junghanns, V.E.; Gumboldt, A.; Bier, G. Polymerisation von äthylen und propylen zu amorphen copolymerisaten mit katalysatoren aus vanadiumoxychlorid und aluminiumhalogenalkylen. Makromol. Chem. 1962, 58, 18–42. [Google Scholar] [CrossRef]
- Natta, G.; Mazzanti, G.; Valvassori, A.; Sartori, G.; Fiumani, D. Ethylene–propylene copolymerization in the presence of catalysts prepared from vanadium triacetylacetonate. J. Polym. Sci. 1961, 51, 411–427. [Google Scholar] [CrossRef]
- Christman, D.L.; Keim, G.I. Reactivities of Nonconjugated Dienes Used in Preparation of Terpolymers in Homogeneous Systems. Macromolecules 1968, 1, 358–363. [Google Scholar] [CrossRef]
- Christman, D.L. Preparation of polyethylene in solution. J. Polym. Sci. Part A-1 Polym. Chem. 1972, 10, 471–487. [Google Scholar] [CrossRef]
- Hagen, H.; Boersma, J.; van Koten, G. Homogeneous vanadium-based catalysts for the Ziegler–Natta polymerization of α-olefins. Chem. Soc. Rev. 2002, 31, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Gambarotta, S. Vanadium-based Ziegler–Natta: Challenges, promises, problems. Coord. Chem. Rev. 2003, 237, 229–243. [Google Scholar] [CrossRef]
- Redshaw, C. Vanadium procatalysts bearing chelating aryloxides: Structure–activity trends in ethylene polymerisation. Dalton Trans. 2010, 39, 5595–5604. [Google Scholar] [CrossRef]
- Natta, G.; Zambelli, A.; Lanzi, G.; Pasquon, I.; Mognaschi, E.R.; Segre, A.L.; Centola, P. Polymerization of propylene to syndiotactic polymer. Part. I: Valence of active vanadium in the catalytic systems. Makromol. Chem. 1965, 81, 161–172. [Google Scholar] [CrossRef]
- Zambelli, A.; Pasquon, I.; Signorini, R.; Natta, G. Polymerization of propylene to syndiotactic polymer. III. Behaviour of the catalyst system VCl4–Al(C2H5)2Cl in the presence of lewis bases. Makromol. Chem. 1968, 112, 160–182. [Google Scholar] [CrossRef]
- Lehr, M.H. The Active Oxidation State of Vanadium in Soluble Monoolefin Polymerization Catalysts. Macromolecules 1968, 1, 178–184. [Google Scholar] [CrossRef]
- Lehr, M.H.; Carman, C.J. Electron Spin Resonance Evidence of Inactive V(III) Precursor to Catalytically Active V(III) in Vanadium Tetrachloride Ziegler Catalysts. Macromolecules 1969, 2, 217–219. [Google Scholar] [CrossRef]
- Talsi, E.; Bryliakov, K. Applications of EPR and NMR Spectroscopy in Homogeneous Catalysis; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Goswami, M.; Chirila, A.; Rebreyend, C.; de Bruin, B. EPR Spectroscopy as a Tool in homogeneous catalysis research. Top. Catal. 2015, 58, 12–13. [Google Scholar] [CrossRef] [Green Version]
- Soshnikov, I.E.; Semikolenova, N.V.; Shubin, A.A.; Bryliakov, K.; Zakharov, V.A.; Redshaw, C.; Talsi, E.P. EPR Monitoring of Vanadium(IV) Species Formed upon Activation of Vanadium(V) Polyphenolate Precatalysts with AlR2Cl and AlR2Cl/Ethyltrichloroacetate (R = Me, Et). Organometallics 2009, 28, 6714–6720. [Google Scholar] [CrossRef]
- Soshnikov, I.E.; Semikolenova, N.V.; Bryliakov, K.; Zakharov, V.A.; Redshaw, C.; Talsi, E.P. An EPR study of the vanadium species formed upon interaction of vanadyl N and C-capped tris(phenolate) complexes with AlEt3 and AlEt2Cl. J. Mol. Catal. A Chem. 2009, 303, 23–29. [Google Scholar] [CrossRef]
- Soshnikov, I.E.; Semikolenova, N.V.; Bryliakov, K.P.; Shubin, A.A.; Zakharov, V.A.; Redshaw, C.; Talsi, E.P. An EPR Study of the V(IV) Species Formed Upon Activation of a Vanadyl Phenoxyimine Polymerization Catalyst with AlR3 and AlR2Cl (R = Me, Et). Macromol. Chem. Phys. 2009, 210, 542–548. [Google Scholar] [CrossRef]
- Zhang, S.; Nomura, K. Highly Efficient Dimerization of Ethylene by (Imido)vanadium Complexes Containing (2-Anilidomethyl)pyridine Ligands: Notable Ligand Effect toward Activity and Selectivity. J. Am. Chem. Soc. 2010, 132, 4960–4965. [Google Scholar] [CrossRef]
- Igarashi, A.; Zhang, S.; Nomura, K. Ethylene Dimerization/Polymerization Catalyzed by (Adamantylimido)vanadium(V) Complexes Containing (2-Anilidomethyl)pyridine Ligands: Factors Affecting the Ethylene Reactivity. Organometallics 2012, 31, 3575–3581. [Google Scholar] [CrossRef]
- Nomura, K.; Sagara, A.; Imanishi, Y. Olefin Polymerization and Ring-Opening Metathesis Polymerization of Norbornene by (Arylimido)(aryloxo)vanadium(V) Complexes of the Type VX2(NAr)(OAr‘). Remarkable Effect of Aluminum Cocatalyst for the Coordination and Insertion and Ring-Opening Metathesis Polymerization. Macromolecules 2002, 35, 1583–1590. [Google Scholar] [CrossRef]
- Wang, W.; Nomura, K. Remarkable Effects of Aluminum Cocatalyst and Comonomer in Ethylene Copolymerizations Catalyzed by (Arylimido)(aryloxo)vanadium Complexes: Efficient Synthesis of High Molecular Weight Ethylene/Norbornene Copolymer. Macromolecules 2005, 38, 5905–5913. [Google Scholar] [CrossRef]
- Wang, W.; Nomura, K. Notable Effects of Aluminum Alkyls and Solvents for Highly Efficient Ethylene (Co)polymerizations Catalyzed by (Arylimido)- (aryloxo)vanadium Complexes. Adv. Synth. Catal. 2006, 348, 743–750. [Google Scholar] [CrossRef]
- Igarashi, A.; Kolychev, E.; Tamm, M.; Nomura, K. Synthesis of (Imido)Vanadium(V) Dichloride Complexes Containing Anionic N-Heterocyclic Carbenes That Contain a Weakly Coordinating Borate Moiety: New MAO-Free Ethylene Polymerization Catalysts. Organometallics 2016, 35, 1778–1784. [Google Scholar] [CrossRef] [Green Version]
- Nomura, K.; Nagai, G.; Izawa, I.; Mitsudome, T.; Tamm, M.; Yamazoe, S. XAS Analysis of Reactions of (Arylimido)vanadium(V) Dichloride Complexes Containing Anionic NHC That Contains a Weakly Coordinating B(C6F5)3 Moiety (WCA-NHC) or Phenoxide Ligands with Al Alkyls: A Potential Ethylene Polymerization Catalyst with WCA-NHC Ligands. ACS Omega 2019, 4, 18833–18845. [Google Scholar] [CrossRef] [Green Version]
- Nomura, K.; Oshima, M.; Mitsudome, T.; Harakawa, H.; Hao, P.; Tsutsumi, K.; Nagai, G.; Ina, T.; Takaya, H.; Sun, W.-H.; et al. Synthesis and Structural Analysis of (Imido)vanadium Dichloride Complexes Containing 2-(2′-Benz-imidazolyl)pyridine Ligands: Effect of Al Cocatalyst for Efficient Ethylene (Co)polymerization. ACS Omega 2017, 2, 8660–8673. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Nakatani, N.; Nomura, K.; Hada, M. Time-dependent DFT study of the K-edge spectra of vanadium and titanium complexes: Effects of chloride ligands on pre-edge features. Phys. Chem. Chem. Phys. 2020, 22, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Nakatani, N.; Nomura, K. Solution XANES and EXAFS analysis of active species of titanium, vanadium complex catalysts in ethylene polymerisation/dimerisation and syndiospecific styrene polymerisation. Dalton Trans. 2020, 49, 8008–8028. [Google Scholar] [CrossRef]
- Thomas, J.M.; Sankar, G. The role of XAFS in the in situ and ex situ elucidation of active sites in designed solid catalysts. J. Synchrotron Radiat. 2001, 8, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Dent, A.J. Development of Time-Resolved XAFS Instrumentation for Quick EXAFS and Energy-Dispersive EXAFS Measurements on Catalyst Systems. Top. Catal. 2002, 18, 27–35. [Google Scholar] [CrossRef]
- Thomas, J.M.; Catlow, C.R.A.; Sankar, G. Determining the structure of active sites, transition states and intermediates in heterogeneously catalysed reactions. Chem. Commun. 2002, 24, 2921–2925. [Google Scholar] [CrossRef]
- Bare, S.R.; Ressler, T. Chapter 6 Characterization of Catalysts in Reactive Atmospheres by X-ray Absorption Spectroscopy. Adv. Catal. 2009, 52, 339–465. [Google Scholar] [CrossRef]
- Iwasawa, Y.; Asakura, K.; Tada, M. XAFS Techniques for Catalysts, Nanomaterials, and Surfaces; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Nomura, K.; Mitsudome, T.; Tsutsumi, K.; Yamazoe, S. Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis. J. Phys. Soc. Jpn. 2018, 87, 061014. [Google Scholar] [CrossRef]
- Nomura, K. Solution X-ray Absorption Spectroscopy (XAS) for Analysis of Catalytically Active Species in Reactions with Ethylene by Homogeneous (Imido)vanadium(V) Complexes—Al Cocatalyst Systems. Catalysts 2019, 9, 1016. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: Electric dipole or quadrupole? X-Ray Spectrom. 2008, 37, 572–584. [Google Scholar] [CrossRef]
- Srivastava, U.; Nigam, H. X-ray absorption edge spectrometry (xaes) as applied to coordination chemistry. Co-ord. Chem. Rev. 1973, 9, 275–310. [Google Scholar] [CrossRef]
- Wong, J.; Lytle, F.W.; Messmer, R.P.; Maylotte, D.H. K-edge absorption spectra of selected vanadium compounds. Phys. Rev. B 1984, 30, 5596–5610. [Google Scholar] [CrossRef]
- Kayda, A.S.; Rumyantsev, A.V.; Zubkevich, S.V.; Zhizhko, P.A.; Takazova, R.U.; Tuskaev, V.A.; Gagieva, S.C.; Buzin, M.I.; Shatokhin, S.S.; Nikiforova, G.G.; et al. Vanadium(V) imido chlorides and n-propoxides—Towards a rational design of vanadium imido precatalysts for ethylene polymerization. J. Organomet. Chem. 2021, 934, 121665. [Google Scholar] [CrossRef]
- Nagai, G.; Mitsudome, T.; Tsutsumi, K.; Sueki, S.; Ina, T.; Tamm, M.; Nomura, K. Effect of Al Cocatalyst in Ethylene and Ethylene/Norbornene (Co)polymerization by (Imido)vanadium Dichloride Complexes Containing Anionic N-Heterocyclic Carbenes Having Weakly Coordinating Borate Moiety. J. Jpn. Pet. Inst. 2017, 60, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Nomura, K.; Mitsudome, T.; Igarashi, A.; Nagai, G.; Tsutsumi, K.; Ina, T.; Omiya, T.; Takaya, H.; Yamazoe, S. Synthesis of (Adamantylimido)vanadium(V) Dimethyl Complex Containing (2-Anilidomethyl)pyridine Ligand and Selected Reactions: Exploring the Oxidation State of the Catalytically Active Species in Ethylene Dimerization. Organometallics 2017, 36, 530–542. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Nomura, K. Synthesis of (1-Adamantylimido)vanadium(V) Complexes Containing Aryloxo, Ketimide Ligands: Effect of Ligand Substituents in Olefin Insertion/Metathesis Polymerization. Inorg. Chem. 2008, 47, 6482–6492. [Google Scholar] [CrossRef]
Run | Cat.1/μmol | Al Cocat. | Solvent | Activity b ×10−3 | Mnc ×10−5 | Mw/Mnc | NBE d /mol% |
---|---|---|---|---|---|---|---|
2 | 1.0 | MAO | toluene | 880 | 3.02 | 1.79 | 23.9 |
3 | 0.05 | Me2AlCl | n-hexane | 2400 | - | - | - |
4 | 0.05 | EtAlCl2 | n-hexane | 47,300 | 3.56 | 3.85 | - |
5 | 0.05 | Me2AlCl | toluene | 27,500 | 89.8 e | - | - |
6 | 0.05 | Me2AlCl | toluene | 23,400 | 9.56 | 1.83 | 15.2 |
7 | 0.05 | Et2AlCl | toluene | 11,700 | 25.7 | 1.42 | - |
9 | 0.05 | EtAlCl2 | toluene | 37,400 | 1.98 | 3.04 | - |
Complex 1 | 1 + Me2AlCl (50 Equiv) | Complex 2 | 2 + AliBu3 (100 Equiv) | Complex 3 | 3 + Me2AlCl (10 Equiv) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Atom | C.N. | r (Å) | C.N. | r (Å) | C.N. | r (Å) | C.N. | r (Å) | C.N. | r (Å) | C.N. | r (Å) |
N(O) | 2.4 (3) | 1.80 (5) | 1.3 (2) | 1.64 (4) | 2.1 (2) | 1.62 (3) | 0.8 (3) | 1.66 (17) | 1.7 (2) | 1.683 (5) | 0.9 (3) | 1.64 (2) |
N | 1.2 (8) | 2.290 (42) | ||||||||||
Cl | 1.9 (2) | 2.18 (3) | 2.0 (2) | 2.45 (3) | 1.0 (2) 1.0 (2) | 2.16 (4) 2.34 (5) | 1.0 (2) | 2.34 (4) | 1.6 (2) | 2.293 (3) | 2.6 (1) | 2.455 (7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nomura, K.; Izawa, I.; Kuboki, M.; Inoue, K.; Aoki, H.; Tsutsumi, K. Solution XAS Analysis for Reactions of Phenoxide-Modified (Arylimido)vanadium(V) Dichloride and (Oxo)vanadium(V) Complexes with Al Alkyls: Effect of Al Cocatalyst in Ethylene (Co)polymerization. Catalysts 2022, 12, 198. https://doi.org/10.3390/catal12020198
Nomura K, Izawa I, Kuboki M, Inoue K, Aoki H, Tsutsumi K. Solution XAS Analysis for Reactions of Phenoxide-Modified (Arylimido)vanadium(V) Dichloride and (Oxo)vanadium(V) Complexes with Al Alkyls: Effect of Al Cocatalyst in Ethylene (Co)polymerization. Catalysts. 2022; 12(2):198. https://doi.org/10.3390/catal12020198
Chicago/Turabian StyleNomura, Kotohiro, Itsuki Izawa, Mahaharu Kuboki, Kensuke Inoue, Hirotaka Aoki, and Ken Tsutsumi. 2022. "Solution XAS Analysis for Reactions of Phenoxide-Modified (Arylimido)vanadium(V) Dichloride and (Oxo)vanadium(V) Complexes with Al Alkyls: Effect of Al Cocatalyst in Ethylene (Co)polymerization" Catalysts 12, no. 2: 198. https://doi.org/10.3390/catal12020198
APA StyleNomura, K., Izawa, I., Kuboki, M., Inoue, K., Aoki, H., & Tsutsumi, K. (2022). Solution XAS Analysis for Reactions of Phenoxide-Modified (Arylimido)vanadium(V) Dichloride and (Oxo)vanadium(V) Complexes with Al Alkyls: Effect of Al Cocatalyst in Ethylene (Co)polymerization. Catalysts, 12(2), 198. https://doi.org/10.3390/catal12020198