Influence of the Metal Incorporation into Hydroxyapatites on the Deactivation Behavior of the Solids in the Esterification of Glycerol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Performance and Reusability in the Esterification of Glycerol
2.2. Influence of the Reaction Temperature and Glycerol to Acetic Acid Molar Ratios
2.3. Reusability of the Most Active Catalysts
2.4. Spent Catalysts Characterizations
2.4.1. Structure of the Spent Samples
2.4.2. Morphology and Composition
2.4.3. Valence States and Surface Properties
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the Hydroxyapatites
3.3. Characterizations of the Spent Hydroxyapatites
3.4. Catalytic Tests in Esterification of Glycerol
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mamtani, K.; Shahbaz, K.; Farid, M.M. Glycerolysis of free fatty acids: A review. Renew. Sustain. Energy Rev. 2021, 137, 110501. [Google Scholar] [CrossRef]
- Alves, N.F.; Neto, A.B.S.; Bessa, B.D.S.; Oliveira, A.C.; Mendes Filho, J.; Campos, A.F. Binary Oxides with Defined Hierarchy of Pores in the Esterification of Glycerol. Catalysts 2016, 6, 151. [Google Scholar] [CrossRef]
- Mou, R.; Wang, X.; Wang, Z.; Zhang, D.; Yin, Z.; Lv, Y.; Wei, Z. Synthesis of fuel bioadditive by esterification of glycerol with acetic acid over hydrophobic polymer-based solid acid. Fuel 2021, 302, 121175. [Google Scholar] [CrossRef]
- Carlucci, C.A. Focus on the Transformation Processes for the Valorization of Glycerol Derived from the Production Cycle of Biofuels. Catalysts 2021, 11, 280. [Google Scholar] [CrossRef]
- Magar, S.; Mohanraj, G.T.; Jana, S.K.; Rode, C.V. Synthesis and characterization of supported heteropoly acid: Efficient solid acid catalyst for glycerol esterification to produce biofuel additives. Inorg. Nano-Met. Chem. 2020, 50, 1157–1165. [Google Scholar] [CrossRef]
- Costa, D.; Carmo, J.V.; Oliveira, A.C.; Araújo, J.C.S.; Campos, A.; Duarte, G.C.S. Synthesis of highly porous alumina-based oxides with tailored catalytic properties in the esterification of glycerol. J. Mater. Res. 2018, 33, 3625–3633. [Google Scholar] [CrossRef]
- Malaik, A.; Ptaszyńsk, K.; Kozłowski, M. Conversion of renewable feedstock to bio-carbons dedicated for the production of green fuel additives from glycerol. Fuel 2021, 288, 119609. [Google Scholar] [CrossRef]
- Neto, A.B.S.; Oliveira, A.C.; Rodriguez-Castellón, E.; Campos, A.F.; Freire, P.T.C.; Sousa, F.F.F.; Filho, J.M.; Araujo, J.C.S.; Lang, R.A. A comparative study on porous solid acid oxides as catalysts in the esterification of glycerol with acetic acid. Catal. Today 2020, 349, 57–67. [Google Scholar] [CrossRef]
- Valter, M.; dos Santos, E.C.; Pettersson, L.G.M.; Hellman, A. Selectivity of the First Two Glycerol Dehydrogenation Steps Determined Using Scaling Relationships. ACS Catal. 2021, 11, 3487–3497. [Google Scholar] [CrossRef]
- Canck, E.D.; Dosuna-Rodríguez, I.; Gaigneaux, E.M.; Van Der Voort, P. Periodic Mesoporous Organosilica Functionalized with Sulfonic Acid Groups as Acid Catalyst for Glycerol Acetylation. Materials 2013, 6, 3556–3570. [Google Scholar] [CrossRef]
- Zaher, S.; Christ, L.; El Rahim, M.A.; Kanj, A.; Karamé, I. Green acetalization of glycerol and carbonyl catalyzed by FeCl3·6H2O. Mol. Catal. 2017, 438, 204–213. [Google Scholar] [CrossRef]
- Kale, S.S.; Armbruster, U.; Eckelt, R.; Bentrup, U.; Umbarkar, S.B.; Dongare, M.K.; Martin, A. Understanding the role of Keggin type heteropolyacid catalysts for glycerol acetylation using toluene as an entrainer. Appl. Catal. A Gen. 2016, 527, 9–18. [Google Scholar] [CrossRef]
- Betiha, M.A.; Hassan, H.M.A.; El-Sharkawy, E.A.; Al-Sabagh, A.M.; Menoufy, M.F.; Abdelmoniem, H.M. Application for glycerol acetylation using robust sustainable acidic heterogeneous–homogenous catalyst. Appl. Catal. B Environ. 2016, 182, 15–25. [Google Scholar] [CrossRef]
- Zhou, L.; Al-Zaini, E.; Adesina, A.A. Catalytic characteristics and parameters optimization of the glycerol acetylation over solid acid catalysts. Fuel 2013, 103, 617–625. [Google Scholar] [CrossRef]
- Kong, P.S.; Aroua, M.K.; Daud, W.M.A.W.; Lee, H.V.; Cognet, P.; Perez, Y. Catalytic role of solid acid catalysts in glycerol acetylation for the production of bio-additives: A review. RSC Adv. 2016, 6, 68885. [Google Scholar] [CrossRef]
- Osatiashtiani, A.; Puértolas, B.; Oliveira, C.C.S.; Manayil, J.C.; Pérez-Ramírez, J.; Barbero, B.; Isaacs, M.; Michailof, C.; Heracleous, E.; Lee, A.F.; et al. On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. Biomass Conv. Biorefin. 2017, 7, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Suprum, W.; Lutecki, M.; Glaser, R.; Paap, H. Catalytic activity of bifunctional transition metal oxide containing phosphated alumina catalysts in the dehydration of glycerol. J. Mol. Catal. A Chem. 2011, 342, 91–100. [Google Scholar] [CrossRef]
- Carvalho, D.C.; Pinheiro, L.G.; Oliveira, A.C.; Millet, E.R.C.; de Sousa, F.F.; Saraiva, G.D.; da Silva Filho, E.C.; Fonseca, M.G. Characterization and catalytic performances of copper and cobalt-exchanged hydroxyapatite in glycerol conversion for 1-hydroxyacetone production. Appl. Catal. A Gen. 2014, 471, 39–49. [Google Scholar] [CrossRef]
- Silvester, L.; Lamonier, J.-F.; Vannier, R.-N.; Lamonier, C.; Capron, M.; Mamede, A.-S.; Pourpoint, F.; Gervasini, A.; Dumeignil, F. Structural, textural and acid-base properties of carbonate-containing hydroxyapatites. J. Mater. Chem. A 2014, 2, 11073–11090. [Google Scholar] [CrossRef] [Green Version]
- Ebadipour, N.; Paul, S.; Katryniok, B.; Dumeignil, F. Calcium Hydroxyapatite: A Highly Stable and Selective Solid Catalyst for Glycerol Polymerization. Catalysts 2021, 11, 1247. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yan, B.; Liang, Y.; Xu, B.Q. Comparative study of gas-phase “dehydration” of alkyl lactates and lactic acid for acrylic acid production over hydroxyapatite catalysts. Mol. Catal. 2020, 494, 111370. [Google Scholar] [CrossRef]
- Bolis, V.; Busco, C.; Gianmario, M.; Bertinetti, L.; Sakhno, Y.; Ugliengo, P.; Chiatti, F.; Corno, M.; Roveri, N. Coordinationchemistry of Ca sites at the surface of nanosized hydroxyapatite: Interaction with H2O and CO. Philos. Trans. R. Soc. A 2012, 370, 1313–13236. [Google Scholar] [CrossRef] [Green Version]
- Coelho, D.C.; Oliveira, A.C.; Filho, J.M.; Oliveira, A.C.; Lucredio, A.F.; Assaf, E.M.; Rodríguez-Castellón, E. Effect of the active metal on the catalytic activity of the titanate nanotubes for dry reforming of methane. Chem. Eng. J. 2016, 290, 438–453. [Google Scholar] [CrossRef]
- Khayoon, M.S.; Hameed, B.H. Yttrium-grafted mesostructured SBA-3 catalyst for the transesterification of glycerol with methyl acetate to synthesize fuel oxygenates. Appl. Catal. A Gen. 2013, 460–461, 61–69. [Google Scholar] [CrossRef]
- Kotbagi, T.V.M.; Pandhare, S.L.; Dongare, M.; Umbarkar, S. In situ Formed Supported Silicomolybdic Heteropolyanions: Efficient Solid Catalyst for Acetylation of Glycerol. J. Environ. Anal. Chem. 2015, 2, 2380–2391. [Google Scholar]
- Liao, Y.; Zhu, Y.; Wang, S.-G.; Li, Y. Producing triacetylglycerol with glycerol by two steps: Esterification and acetylation. Fuel Process. Technol. 2009, 90, 988–993. [Google Scholar] [CrossRef]
- Landau, M.V.; Hos, T.; Nehemya, R.V.; Nomikos, G.; Herskowitz, M. Eco-Friendly and Sustainable Process for Converting Hydrous Bioethanol to Butanol. Catalysts 2021, 11, 498. [Google Scholar] [CrossRef]
- Guo, J.; Yu, H.; Dong, F.; Zhu, B.; Huang, W.; Zhang, S. High efficiency and stability of Au-Cu/hydroxyapatite catalyst for the oxidation of carbon monoxide. High efficiency and stability of Au-Cu/hydroxyapatite catalyst for the oxidation of carbon monoxide. RSC Adv. 2017, 7, 45420. [Google Scholar] [CrossRef] [Green Version]
- Chang, Q.; Xu, W.; Li, N.; Xue, C.; Wang, Y.; Li, Y.; Wang, H.; Yang, Y.; Hu, S. Dynamic restructuring of carbon dots/copper oxide supported on mesoporous hydroxyapatite brings exceptional catalytic activity in the reduction of 4-nitrophenol. Appl. Catal. B Environ. 2020, 263, 118299. [Google Scholar] [CrossRef]
- Belik, A.A.; Koo, H.-J.; Whangbo, M.-H.; Tsujii, N.; Naumov, P.; Takayama-Muromachi, E. Magnetic Properties of Synthetic Libethenite Cu2PO4OH: A New Spin-Gap System. Inorg. Chem. 2007, 46, 8684–8689. [Google Scholar] [CrossRef]
- Kramer, E.; Itzkowitz, E.; Wei, M. Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceram. Inter. 2014, 40, 13471–13480. [Google Scholar] [CrossRef]
- Dayan, C.; Giraudon, J.M.; Labaki, M.; Lamonier, J.-F. Formaldehyde Total Oxidation on Manganese-Doped Hydroxyapatite: The Effect of Mn Content. Catalysts 2020, 10, 1422. [Google Scholar]
- Stanic, V.; Dimitrijevic, S.; Stankovi, J.A.; Mitric, M.; Jokic, B.; Pleca, I.B.; Raicevi, S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 2010, 256, 6083–6089. [Google Scholar] [CrossRef]
- Carvalho, D.C.; Oliveira, A.C.; Ferreira, O.P.; Filho, J.M.; Tehuacanero-Cuapa, S.; Oliveira, A.C. Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: Influence of the synthesis time and the role of structure on the catalytic performance. Chem. Eng. J. 2017, 313, 1454–1467. [Google Scholar] [CrossRef]
- Neira, I.S.; Kolen’ko, Y.V.; Lebedev, O.I.; Tendeloo, G.V.; Gupta, H.S.; Guitián, F.; Yoshimura, M. An Effective Morphology Control of Hydroxyapatite Crystals via Hydrothermal Synthesis. Cryst. Growth Des. 2009, 9, 466–474. [Google Scholar] [CrossRef]
- Putrakumar, B.; Seelam, P.K.; Srinivasarao, G.; Rajan, K.; Rajesh, R.; Rao, K.R.; Liang, T. High Performance and Sustainable Copper-Modified Hydroxyapatite Catalysts for Catalytic Transfer Hydrogenation of Furfural. Catalysts 2020, 10, 1045. [Google Scholar] [CrossRef]
- Gabbasov, B.; Gafurov, M.; Starshov, A.; Mamin, G.; Orlinskii, S. Conventional, pulsed and high-field electron paramagnetic resonance for studying metal impurities in calcium phosphates of biogenic and synthetic origins. J. Magn. Magn. Mater. 2019, 470, 109–117. [Google Scholar] [CrossRef]
- Sadło, J.; Lukasz, P.; Michalik, J.; Kolodziejski, W. EPR studies of radicals generated by c-radiation in nanocrystalline hydroxyapatites prepared by dry milling. J. Mol. Struct. 2012, 1022, 61–67. [Google Scholar] [CrossRef]
- Carmo, J.C.; Lima, C.L.; Mota, G.; Santos, A.M.S.; Costa, L.N.; Ghosh, A.; Viana, B.C.; Silva, M.; Soares, J.M.; Tehuacanero-Cuapa, S.; et al. Effects of the Incorporation of Distinct Cations in Titanate Nanotubes on the Catalytic Activity in NOx Conversion. Materials 2021, 14, 2181. [Google Scholar] [CrossRef]
- Oliveira, A.P.S.; Gomes, I.S.; Neto, A.S.B.; Oliveira, A.C.; Filho, J.M.; Saraiva, G.D.; Soares, J.M.; Tehuacanero-Cuapa, S. Catalytic performance of MnFeSi composite in selective oxidation of styrene, ethylbenzene and benzyl alcohol. Mol. Catal. 2017, 436, 29–42. [Google Scholar] [CrossRef]
- Lamkhao, S.; Phaya, M.; Jansakun, C.; Chandet, N.; Thongkorn, K.; Rujijanagul, G.; Bangrak, P.; Randorn, C. Synthesis of Hydroxyapatite with Antibacterial Properties Using a Microwave-Assisted Combustion Method. Sci. Rep. 2019, 9, 4015. [Google Scholar] [CrossRef] [Green Version]
- Nosenko, V.; Strutynska, N.; Vorona, I.; Zatovsky, I.; Volodymyr Dzhagan, V.; Lemishko, S.; Epple, M.; Prymak, O.; Baran, N.; Ishchenko, S.; et al. Structure of biocompatible coatings produced from hydroxyapatite nanoparticles by detonation spraying. Nanoscale Res. Lett. 2015, 10, 464. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; An, D.; Zhang, Q.; Wang, Y. Copper-Catalyzed Selective Oxidation of Methane by Oxygen: Studies on Catalytic Behavior and Functioning Mechanism of CuOx/SBA-15. J. Phys. Chem. C 2008, 112, 13700–13708. [Google Scholar] [CrossRef]
- Liu, L.; Wu, X.; Ma, Y.; Zhang, X.; Ran, R.; Si, Z.; Weng, D. Potassium deactivation of Cu-SSZ-13 catalyst for NH3-SCR: Evolution of salts, zeolite and copper species. Chem. Eng. J. 2020, 383, 123080. [Google Scholar] [CrossRef]
- Weckhuysen, B.M.; Verberckmoes, A.A.; Uytterhoeven, M.G.; Mabbs, F.E.; Collison, D.; de Boer, E.; Schoonheydt, R.A. Electron Spin Resonance of High-Spin Cobalt in Microporous Crystalline Cobalt-Containing Aluminophosphates. J. Phys. Chem. B 2000, 104, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Natte, K.; Jagadeesh, R.V.; Sharif, M.; Neumann, H.; Beller, M. Synthesis of nitriles from amines using nanoscale Co3O4-based catalysts via sustainable aerobic oxidation. Org. Biomol. Chem. 2016, 14, 3356–3359. [Google Scholar] [CrossRef]
- Hashem, M.; Saion, E.; Al-Hada, N.M.; Kamari, H.M.; Shaari, A.H.; Tali, Z.A.; Paiman, S.B.; Kamarudeen, M.A. Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results Phys. 2016, 6, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Gupta, L.K. EPR and electronic spectral studies on Co(II), Ni(II) and Cu(II) complexes with a new tetradentate [N4] macrocyclic ligand and their biological activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1563–1571. [Google Scholar] [CrossRef]
- Maachou, H.; Genet, M.J.; Aliouche, D.; Dupont-Gillain, C.C.; Rouxhet, P.G. XPS analysis of chitosan–hydroxyapatite biomaterials: From elements to compounds. Surf. Inter. Anal. 2013, 45, 1088–1097. [Google Scholar] [CrossRef]
- Lu, H.B.; Campbell, C.T.; Graham, D.J.; Ratner, B.D. Surface Characterization of Hydroxyapatite and Related Calcium Phosphates by XPS and TOF-SIMS. Anal. Chem. 2000, 72, 2886–2894. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhang, L.; Zuo, Y. Composition of calcium deficient Na-containing carbonate hydroxyapatite modified with Cu (II) and Zn (II) ions. Appl. Surf. Sci. 2008, 254, 2844–2850. [Google Scholar] [CrossRef]
- Elkabouss, K.; Kacimi, M.; Mahfou, M.; Ziyad, M.; Souad, A.; Bozon-Verduraz, F. Cobalt-exchanged hydroxyapatite catalysts: Magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J. Catal. 2004, 226, 16–24. [Google Scholar] [CrossRef]
- Pang, Y.; Konga, L.; Chen, D.; Yuvarajaa, G.; Mehmood, S. Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine B. J. Hazard. Mater. 2020, 384, 121447. [Google Scholar] [CrossRef] [PubMed]
- Boukh, Z.; Kacimi, M.; Pereira, M.F.R.; Faria, J.L.; Figueiredo, J.L.; Ziyada, M. Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite. Appl. Catal. A Gen. 2007, 317, 299–309. [Google Scholar] [CrossRef]
- Akri, M.; Zhao, S.; Li, X.; Zang, K.; Lee, A.F.; Isaacs, M.A.; Xi, W.; Gangarajula, Y.; Luo, J.; Ren, Y.; et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 5181. [Google Scholar] [CrossRef] [Green Version]
Catalysts | Monoacetin (%) | Diacetin (%) | Triacetin (%) | Others (%) |
---|---|---|---|---|
CuCa1H | 6.9 | 7.6 | 10.8 | 74.6 |
CuCa08H | 5.8 | 7.9 | 5.0 | 81.1 |
CuCa06H | 13.9 | 7.6 | 14.5 | 63.8 |
CuCa04H | 8.7 | 14.2 | 16.1 | 60.9 |
CoCa1H | 9.1 | 13.4 | 13.8 | 63.6 |
CoCa06H | 37.5 | 8.8 | 12.0 | 41.6 |
CoCa04H | 10.9 | 2.9 | 21.6 | 64.5 |
NiCa1H | 1.7 | 2.1 | 3.5 | 92.6 |
Catalyst | Ca (%) | P (%) | C (%) | O (%) | Co (%) | Cu (%) | Ni (%) |
---|---|---|---|---|---|---|---|
CuCa1H | 23.8 | 14.0 | 0.08 | 52.0 | - | 6.8 | - |
CuCa08H | 7.4 | 4.9 | 46.6 | 34.3 | - | 9.8 | - |
CuCa06H | 15.1 | 9.8 | 22.3 | 43.0 | - | 7.6 | - |
CuCa04H | 42.8 | 18.8 | 21.0 | 33.9 | - | 5.3 | - |
CoCa1H | 16.6 | 8.4 | 30.7 | 43.5 | 0.8 | - | - |
CoCa06H | 27.1 | 16.9 | 13.8 | 35.3 | 6.9 | - | - |
CoCa04H | 24.6 | 11.8 | 36.8 | 23.3 | 3.1 | - | - |
NiCa1H | 57.1 | 23.1 | - | - | - | - | 1.0 |
Catalysts | C 1s | O 1s | Ca 2p3/2 | P 2p | Co 2p3/2 | Ni 2p3/2 | Cu 2p |
---|---|---|---|---|---|---|---|
CoCa1H | 284.6 286.2 | 531.1 533.0 | 347.1 353.6 | 133.3 | 781.5 796.3 | ||
NiCa1H | 288.0 282.5 285.1 288.9 | 531.2 | 347.3 353.5 | 133.3 | 856.6 873.4 | ||
CuCa1H | 284.6 286.2 288.1 | 530.8 532.7 | 346.8 353.8 | 133.0 | 932.7 935.4 940.2 943.4 |
Catalyst | Cu/Ca Atomic Ratios | Co/Ca Atomic Ratios | Ni/Ca Atomic Ratios | Cu wt.% | Co wt.% | Ni wt.% | XRD Phase [18] |
---|---|---|---|---|---|---|---|
CaH | - | - | - | - | - | - | HAP |
CuCa08H | 0.08 | - | - | 2.3 | - | - | HAP |
CuCa04H | 0.40 | - | - | 9.0 | - | - | HAP |
CuCa06H | 0.67 | - | - | 13.3 | - | - | HAP |
CuCa1H | 1.01 | - | - | 17.5 | - | - | HAP |
CaHPO4 | |||||||
Cu2(OH)(PO4) | |||||||
CoCa08H | - | 0.08 | - | - | 2.5 | - | HAP |
CoCa04H | - | 0.38 | - | - | 8.7 | - | HAP |
CoCa06H | - | 0.62 | - | - | 12.5 | - | HAP |
CoCa1H | - | 1.07 | - | 16.2 | - | HAP | |
NiCa1H | - | - | 1.02 | - | - | 15.7 | HAP |
CuNB | - | - | - | 17.0 | - | - | Copper nanobelts |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota, G.; Carmo, J.V.C.d.; Paz, C.B.; Saraiva, G.D.; Campos, A.; Duarte, G.; Filho, E.C.d.S.; Oliveira, A.C.; Soares, J.M.; Rodríguez-Castellón, E.; et al. Influence of the Metal Incorporation into Hydroxyapatites on the Deactivation Behavior of the Solids in the Esterification of Glycerol. Catalysts 2022, 12, 10. https://doi.org/10.3390/catal12010010
Mota G, Carmo JVCd, Paz CB, Saraiva GD, Campos A, Duarte G, Filho ECdS, Oliveira AC, Soares JM, Rodríguez-Castellón E, et al. Influence of the Metal Incorporation into Hydroxyapatites on the Deactivation Behavior of the Solids in the Esterification of Glycerol. Catalysts. 2022; 12(1):10. https://doi.org/10.3390/catal12010010
Chicago/Turabian StyleMota, Gabriela, José Vitor C. do Carmo, Camila B. Paz, Gilberto D. Saraiva, Adriana Campos, Gian Duarte, Edson C. da Silva Filho, Alcineia C. Oliveira, João M. Soares, Enrique Rodríguez-Castellón, and et al. 2022. "Influence of the Metal Incorporation into Hydroxyapatites on the Deactivation Behavior of the Solids in the Esterification of Glycerol" Catalysts 12, no. 1: 10. https://doi.org/10.3390/catal12010010
APA StyleMota, G., Carmo, J. V. C. d., Paz, C. B., Saraiva, G. D., Campos, A., Duarte, G., Filho, E. C. d. S., Oliveira, A. C., Soares, J. M., Rodríguez-Castellón, E., & Rodríguez-Aguado, E. (2022). Influence of the Metal Incorporation into Hydroxyapatites on the Deactivation Behavior of the Solids in the Esterification of Glycerol. Catalysts, 12(1), 10. https://doi.org/10.3390/catal12010010