Immersive, Secure, and Collaborative Air Quality Monitoring
Abstract
1. Introduction
2. Related Work
2.1. Air Quality Monitoring
2.2. Communication Technologies for IoT Sensors
2.3. Blockchain Technology
2.4. Augmented Reality Applied to Air Quality Monitoring
2.5. Combining Blockchain, IoT, and AR for Air Quality Monitoring
3. Conceptual Collaborative Air Quality Monitoring System
3.1. Architecture
- Sensing layer (data collection):
- ▪
- Crowdsourced IoT sensors carried or deployed by individuals;
- ▪
- Mobile units attached to vehicles or personal devices to collect data;
- ▪
- Stationary monitoring stations;
- ▪
- Image-based methods through satellite imagery or street-level cameras can complement sensor data by providing spatial and temporal insight into air quality variations, increasing data granularity and filling gaps in areas where physical sensors may be sparse.
- Communication layer (data transmission):
- ▪
- The data collected can be transmitted in real time if it comes from a secure and validated source or stored for later transmission and processing if the data source has not yet been validated;
- ▪
- Wireless transmission via technologies such as Wi-Fi for short-range coverage, LoRaWAN for long-range, low-power coverage, or cellular networks for long-range coverage.
- Processing and storage layer:
- ▪
- Secure storage on local servers or cloud platforms;
- ▪
- Blockchain-based, cloud-based, and hybrid solutions to ensure data integrity and transparency, building trust.
- Application layer (data visualization and interaction):
- ▪
- User-friendly AR interfaces for immersive and geolocated insights, and as a fundamental means for committed engagement of individuals and communities in air quality awareness;
- ▪
- Interactive data with intelligent analytical tools.
3.2. System Components
3.3. Implementation Considerations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
CID | Content Identifier |
GIS | Geographic Information System |
GPS | Global Positioning System |
HTTP | Hypertext Transfer Protocol |
IoT | Internet of Things |
IPFS | InterPlanetary File System |
LiDAR | Light Detection and Ranging |
LoRa | Long Range |
LoRaWAN | Long Range, Wide-Area Network |
LPWAN | Low-Power, Wide-Area Network |
MQTT | Message Queuing Telemetry Transport |
NB-IoT | Narrowband IoT |
P2P | Peer-to-Peer |
SLAM | Simultaneous Localization and Mapping |
TTN | The Things Network |
References
- Academy of Science of South Africa; Brazilian Academy of Sciences; German National Academy of Sciences Leopoldina; U.S. National Academy of Medicine; U.S. National Academy of Sciences. Air Pollution and Health—A Science-Policy Initiative. Ann. Glob. Health 2019, 85, 140. [Google Scholar] [CrossRef] [PubMed]
- Lücking, M.; Kannengießer, N.; Kilgus, M.; Riedel, T.; Beigl, M.; Sunyaev, A.; Stork, W. The Merits of a Decentralized Pollution-Monitoring System Based on Distributed Ledger Technology. IEEE Access 2020, 8, 189365–189381. [Google Scholar] [CrossRef]
- Sofia, D.; Lotrecchiano, N.; Trucillo, P.; Giuliano, A.; Terrone, L. Novel Air Pollution Measurement System Based on Ethereum Blockchain. J. Sens. Actuator Netw. 2020, 9, 49. [Google Scholar] [CrossRef]
- M. Bublitz, F.; Oetomo, A.; Sahu, K.S.; Kuang, A.; Fadrique, L.X.; Velmovitsky, P.E.; Nobrega, R.M.; Morita, P.P. Disruptive Technologies for Environment and Health Research: An Overview of Artificial Intelligence, Blockchain, and Internet of Things. Int. J. Environ. Res. Public Health 2019, 16, 3847. [Google Scholar] [CrossRef]
- Elbestar, M.; Aly, S.G.; Ghannam, R. Advances in Air Quality Monitoring: A Comprehensive Review of Algorithms for Imaging and Sensing Technologies. Adv. Sens. Res. 2024, 3, 2300207. [Google Scholar] [CrossRef]
- Whitehill, A.R.; Lunden, M.; LaFranchi, B.; Kaushik, S.; Solomon, P.A. Mobile Air Quality Monitoring and Comparison to Fixed Monitoring Sites for Instrument Performance Assessment. Atmos. Meas. Tech. 2024, 17, 2991–3009. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Marques, G.; Saini, J.; Dutta, M.; Singh, P.K.; Hong, W.-C. Indoor Air Quality Monitoring Systems for Enhanced Living Environments: A Review toward Sustainable Smart Cities. Sustainability 2020, 12, 4024. [Google Scholar] [CrossRef]
- Balasubramaniyan, C.; Manivannan, D. IoT enabled air quality monitoring system (AQMS) using raspberry Pi. Indian J. Sci. Technol. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Penza, M. Chapter 12 - Low-Cost Sensors for Outdoor Air Quality Monitoring. In Advanced Nanomaterials for Inexpensive Gas Microsensors; Llobet, E., Ed.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 235–288. [Google Scholar] [CrossRef]
- Andrei, N.; Ioanid, A. Potential use of artificial intelligence and geospatial analysis in environmental monitoring: Air quality in a large city. In Proceedings of the International Conference of Management and Industrial Engineering, Singapore, 18–21 December 2023; Volume 11, pp. 369–376. [Google Scholar] [CrossRef]
- Asha, P.; Natrayan, L.; Geetha, B.T.; Beulah, J.; Sumathy, R.; Varalakshmi, G.; Neelakandan, S. IoT enabled environmental toxicology for air pollution monitoring using AI techniques. Environ. Res. 2022, 205, 112574. [Google Scholar] [CrossRef] [PubMed]
- Wardencki, W.; Katulski, R.J.; Stefański, J.; Namieśnik, J. The State of the Art in the Field of Non-Stationary Instruments for the Determination and Monitoring of Atmospheric Pollutants. Crit. Rev. Anal. Chem. 2008, 38, 259–268. [Google Scholar] [CrossRef]
- Pummakarnchana, O.; Tripathi, N.; Dutta, J. Air pollution monitoring and GIS modeling: A new use of nanotechnology based solid state gas sensors. Sci. Technol. Adv. Mater. 2005, 6, 251. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Gerboles, M.; Spinelle, L.; Signorini, M. AirSensEUR: An open data/software/hardware multi-sensor platform for air quality monitoring. Part A: Sensor shield. In JRC Technical Report 2015; EUR 27469 EN; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Benabbas, A.; Geißelbrecht, M.; Nikol, G.M.; Mahr, L.; Nähr, D.; Steuer, S.; Wiesemann, G.; Müller, T.; Nicklas, D.; Wieland, T. Measure particulate matter by yourself: Data-quality monitoring in a citizen science project. J. Sens. Sens. Syst. 2019, 8, 317–328. [Google Scholar] [CrossRef]
- Nikzad, N.; Verma, N.; Ziftci, C.; Bales, E.; Quick, N.; Zappi, P.; Patrick, K.; Dasgupta, S.; Krueger, I.; Rosing, T.S.; et al. Citisense: Improving geospatial environmental assessment of air quality using a wireless personal exposure monitoring system. In Proceedings of the Conference on Wireless Health, San Diego, CA, USA, 23–25 October 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef]
- Ashokkumar, S.; Elango, T.; Karthick, M.; Sowbharnika, P.; Bhaarathi SA, S.B. IoT and Blockchain Integration for Industrial Zone Monitoring. In Proceedings of the 2024 International Conference on Science Technology Engineering and Management (ICSTEM), Coimbatore, India, 26–27 April 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Hassan, A.K.; Saraya, M.S.; Ali-Eldin, A.M.; Abdelsalam, M.M. Low-Cost IoT Air Quality Monitoring Station Using Cloud Platform and Blockchain Technology. Appl. Sci. 2024, 14, 5774. [Google Scholar] [CrossRef]
- Shelke, P.; Suryawanshi, T.; Siddiqui, E. Blockchain-Backed Air Quality Monitoring. In Proceedings of the 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 28–29 January 2024; IEEE: New York, NY, USA, 2024; pp. 565–571. [Google Scholar] [CrossRef]
- Heo, G.; Doh, I. Blockchain and Differential Privacy-Based Data Processing System for Data Security and Privacy in Urban Computing. Comput. Commun. 2024, 222, 161–176. [Google Scholar] [CrossRef]
- Al-jarakh, T.E.; Hussein, O.A.; Al-azzawi, A.K.; Mosleh, M.F. Design and Implementation of IoT Based Environment Pollution Monitoring System: A Case Study of Iraq. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Baghdad, Iraq, 21–22 December 2020; IOP Publishing: Bristol, UK, 2021; Volume 1105, p. 012037. [Google Scholar] [CrossRef]
- Jha, R.K. Air Quality Sensing and Reporting System Using IoT. In Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020; IEEE: New York, NY, USA, 2020; pp. 790–793. [Google Scholar] [CrossRef]
- Jánó, R.; Ilieş, A.I.; Şteţco, E.M.; Corches, C. IoT Devices for Monitoring and Analysing Air Quality in Urban Environments. In Proceedings of the 2024 IEEE 30th International Symposium for Design and Technology in Electronic Packaging (SIITME), Sibiu, Romania, 16–18 October 2024; IEEE: New York, NY, USA, 2024; pp. 45–49. [Google Scholar] [CrossRef]
- Ertürk, M.A.; Aydın, M.A.; Büyükakkaşlar, M.T.; Evirgen, H. A Survey on LoRaWAN Architecture, Protocol and Technologies. Future Internet 2019, 11, 216. [Google Scholar] [CrossRef]
- Hassan, M.B.; Ali, E.S.; Mokhtar, R.A.; Saeed, R.A.; Chaudhari, B.S. NB-IoT: Concepts, Applications, and Deployment Challenges. In LPWAN Technologies for IoT and M2M Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 119–144. [Google Scholar] [CrossRef]
- Fourtet, C.; Ponsard, B. An Introduction to Sigfox Radio System. In LPWAN Technologies for IoT and M2M Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 103–118. [Google Scholar] [CrossRef]
- McGrath, S.; Flanagan, C.; Zeng, L.; O’leary, C. IoT Personal Air Quality Monitor. In Proceedings of the 2020 31st Irish Signals and Systems Conference (ISSC), Letterkenny, Ireland, 11–12 June 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Iqbal, M.; Abdullah, A.Y.M.; Shabnam, F. An Application Based Comparative Study of LPWAN Technologies for IoT Environment. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; IEEE: New York, NY, USA, 2020; pp. 1857–1860. [Google Scholar] [CrossRef]
- Jabbar, W.A.; Subramaniam, T.; Ong, A.E.; Shu’Ib, M.I.; Wu, W.; De Oliveira, M.A. LoRaWAN-Based IoT System Implementation for Long-Range Outdoor Air Quality Monitoring. Internet Things 2022, 19, 100540. [Google Scholar] [CrossRef]
- Muppalla, A.R.; Pathakoti, M.; Bothale, V.M.; Biswadip, G.; Sai, M.S.; Subramanian, V.; Rajan, K. Design and Implementation of IoT Solution for Air Pollution Monitoring. In Proceedings of the 2019 IEEE Recent Advances in Geoscience and Remote Sensing: Technologies, Standards and Applications (TENGARSS), Kochi, India, 17–20 October 2019; IEEE: New York, NY, USA, 2019; pp. 45–48. [Google Scholar] [CrossRef]
- Yesindan, R.; Sangiya, S.; Valluvan, R.; Mukunthan, T.; Ahilan, K.; Pravina, M. NB-AirStream: Advancing Air Quality Monitoring with LoRa and NB-IoT Integration. In Proceedings of the 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 12–14 July 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Duangsuwan, S.; Takarn, A.; Jamjareegulgarn, P. A Development on Air Pollution Detection Sensors Based on NB-IoT Network for Smart Cities. In Proceedings of the 2018 18th International Symposium on Communications and Information Technologies (ISCIT), Bangkok, Thailand, 26–29 September 2018; IEEE: New York, NY, USA, 2018; pp. 313–317. [Google Scholar] [CrossRef]
- Brotzu, R.; Aru, P.; Fadda, M.; Giusto, D. Urban SigFox-Based Mobility System. In Proceedings of the 2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Chengdu, China, 4–6 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; United States Sentencing Commission: Washington, DC, USA, 2008. [Google Scholar]
- Islam, S.; Islam, M.J.; Hossain, M.; Noor, S.; Kwak, K.-S.; Islam, S.R. A Survey on Consensus Algorithms in Blockchain-Based Applications: Architecture, Taxonomy, and Operational Issues. IEEE Access 2023, 11, 39066–39082. [Google Scholar] [CrossRef]
- Vaccargiu, M.; Tonelli, R. An Analysis of Decentralised Systems in Environment-Related Projects: Theoretical and Practical Perspective. Comput. Sci. 2024, 5, 354–370. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, Y.; Wang, X.; Li, J.; Qin, R.; Wang, F.-Y. An Overview of Smart Contract: Architecture, Applications, and Future Trends. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: New York, NY, USA, 2018; pp. 108–113. [Google Scholar] [CrossRef]
- Chen, Z. Design, Development, and Deployment of Decentralized Applications. Appl. Comput. Eng. 2024, 48, 46–52. [Google Scholar] [CrossRef]
- Santos, A.F.; Marinho, J.; Bernardino, J. Blockchain-Based Loyalty Management System. Future Internet 2023, 15, 161. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Saraswat, D.; Dave, A.; Acharya, M.; Tanwar, S.; Sharma, G.; Davidson, I.E. Coalition of 6G and Blockchain in AR/VR Space: Challenges and Future Directions. IEEE Access 2021, 9, 168455–168484. [Google Scholar] [CrossRef]
- Doan, T.V.; Psaras, Y.; Ott, J.; Bajpai, V. Toward Decentralized Cloud Storage with IPFS: Opportunities, Challenges, and Future Considerations. IEEE Internet Comput. 2022, 26, 7–15. [Google Scholar] [CrossRef]
- Pokrić, B.; Krčo, S.; Pokrić, M.; Knežević, P.; Jovanović, D. Engaging Citizen Communities in Smart Cities Using IoT, Serious Gaming and Fast Markerless Augmented Reality. In Proceedings of the 2015 International Conference on Recent Advances in Internet of Things (RIoT), Singapore, 7–9 April 2015; IEEE: New York, NY, USA, 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Renault, S.; Feldmann, I.; Raes, L.; Silence, J.; Schreer, O. Dynamic Exposure Visualization of Air Quality Data with Augmented Reality. In Proceedings of the 10th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM), Angers, France, 2–4 May 2024; SciTePress: Setúbal, Portugal, 2024; pp. 120–127. [Google Scholar] [CrossRef]
- Sanità, M.; Fratini, J.; Muralikrishna, N.; Pierdicca, R.; Malinverni, E.S. Augmented Reality for Air Quality Monitoring: Case Study in the Marche Region (Italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 389–395. [Google Scholar] [CrossRef]
- Fiore, M.; Gattullo, M.; Mongiello, M.; Uva, A. Merging Blockchain and Augmented Reality for an Immersive Traceability Platform. In Proceedings of the 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Orlando, FL, USA, 16–21 March 2024; IEEE: New York, NY, USA, 2024; pp. 933–934. [Google Scholar] [CrossRef]
- Syed, T.A.; Jan, S.; Siddiqui, M.S.; Alzahrani, A.; Nadeem, A.; Ali, A.; Ullah, A. CAR-Tourist: An Integrity-Preserved Collaborative Augmented Reality Framework-Tourism as a Use-Case. Appl. Sci. 2022, 12, 12022. [Google Scholar] [CrossRef]
- Borges, H.; Andrade, D.; Silva, J.N.; Correia, M. TrustGlass: Human-Computer Trusted Paths with Augmented Reality Smart Glasses. In Proceedings of the 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Exeter, UK, 1–3 November 2023; IEEE: New York, NY, USA, 2023; pp. 712–721. [Google Scholar] [CrossRef]
- Martins, N.C.; Araújo, T.; Marques, B.; Rafael, S.; Dias, P.; Santos, B.S. Navigating A(i)R Quality with Situated Visualization. In Proceedings of the 2024 28th International Conference Information Visualisation (IV), Coimbra, Portugal, 22–26 July 2024; IEEE: New York, NY, USA, 2024; pp. 31–38. [Google Scholar] [CrossRef]
- Fernandes, J.; Brandão, T.; Almeida, S.M.; Santana, P. An Educational Game to Teach Children about Air Quality Using Augmented Reality and Tangible Interaction with Sensors. Int. J. Environ. Res. Public Health 2023, 20, 3814. [Google Scholar] [CrossRef]
- Katsiokalis, M.; Tsekeri, E.; Lilli, A.; Gobakis, K.; Kolokotsa, D.; Mania, K. GoNature AR: Air Quality & Noise Visualization Through a Multimodal and Interactive Augmented Reality Experience. In Proceedings of the 2023 ACM International Conference on Interactive Media Experiences (IMX), Nantes, France, 12–15 June 2023; pp. 366–369. [Google Scholar] [CrossRef]
- Mathews, N.S.; Chimalakonda, S.; Jain, S. Air: An Augmented Reality Application for Visualizing Air Pollution. In Proceedings of the 2021 IEEE Visualization Conference (VIS), Orleans, LA, USA, 24–29 October 2021; IEEE: New York, NY, USA, 2021; pp. 146–150. [Google Scholar] [CrossRef]
- Rambach, J.; Lilligreen, G.; Schäfer, A.; Bankanal, R.; Wiebel, A.; Stricker, D. A Survey on Applications of Augmented, Mixed and Virtual Reality for Nature and Environment. In Virtual, Augmented and Mixed Reality; Chen, J.Y.C., Fragomeni, G., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 653–675. [Google Scholar] [CrossRef]
- Torres, N.G.; Campbell, P.E. Aire: Visualize Air Quality. In Proceedings of the ACM SIGGRAPH 2019 Appy Hour, Los Angeles, CA, USA, 28 July 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Hiran, K.K.; Doshi, R.; Patel, M. Modern Technology in Healthcare and Medical Education: Blockchain, IoT, AR, and VR: Blockchain, IoT, AR, and VR; IGI Global: Hershey, PA, USA, 2024. [Google Scholar]
- Rane, N.; Choudhary, S.; Rane, J. Enhanced Product Design and Development Using Artificial Intelligence (AI), Virtual Reality (VR), Augmented Reality (AR), 4D/5d/6d Printing, Internet of Things (IOT), and Blockchain: A Review. SSRN Electron. J. 2023, 4644059. [Google Scholar] [CrossRef]
- Rane, N.; Choudhary, S.; Rane, J. Sustainable Tourism Development Using Leading-Edge Artificial Intelligence (AI), Blockchain, Internet of Things (IoT), Augmented Reality (AR) and Virtual Reality (VR) Technologies. SSRN Electron. J. 2023, 4642605. [Google Scholar] [CrossRef]
- Mokrani, H.; Lounas, R.; Bennai, M.T.; Salhi, D.E.; Djerbi, R. Air Quality Monitoring Using Iot: A Survey. In Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11 August 2019; IEEE: New York, NY, USA, 2019; pp. 127–134. [Google Scholar] [CrossRef]
- Nandanwar, H.; Chauhan, A. Iot Based Smart Environment Monitoring Systems: A Key to Smart and Clean Urban Living Spaces. In Proceedings of the 2021 Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 27–29 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Nielsen, J. Enhancing the Explanatory Power of Usability Heuristics. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Boston, MA, USA, 24–28 April 1994; pp. 152–158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinho, J.; Cid Martins, N. Immersive, Secure, and Collaborative Air Quality Monitoring. Computers 2025, 14, 231. https://doi.org/10.3390/computers14060231
Marinho J, Cid Martins N. Immersive, Secure, and Collaborative Air Quality Monitoring. Computers. 2025; 14(6):231. https://doi.org/10.3390/computers14060231
Chicago/Turabian StyleMarinho, José, and Nuno Cid Martins. 2025. "Immersive, Secure, and Collaborative Air Quality Monitoring" Computers 14, no. 6: 231. https://doi.org/10.3390/computers14060231
APA StyleMarinho, J., & Cid Martins, N. (2025). Immersive, Secure, and Collaborative Air Quality Monitoring. Computers, 14(6), 231. https://doi.org/10.3390/computers14060231