Dose–Response Relationship Between BRAF V600E Abundance and Cervical Lymph Node Metastasis in Papillary Thyroid Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Clinical Characteristics and Data Processing
2.3. NGS
2.4. Surgical Procedures
2.5. Model Development and Validation
2.6. Statistical Analysis
3. Results
3.1. Baseline Clinical Information
3.2. Independent Risk Factors
3.3. Dose–Response Relationship
3.4. Model Development and Performance Comparison
3.5. Model Interpretation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AUC | Area under the receiver operating characteristic curve |
| CDFI | Color Doppler flow imaging |
| CI | Confidence interval |
| CLNM | Cervical lymph node metastasis |
| DCA | Decision curve analysis |
| F1 | F1 score |
| FNA | Fine-needle aspiration |
| KNN | k-nearest neighbors |
| LightGBM | Light Gradient Boosting Machine |
| LR | Logistic regression |
| MAPK | Mitogen-activated protein kinase |
| ML | Machine learning |
| NN | Neural network |
| OR | Odds ratio |
| PTC | Papillary thyroid carcinoma |
| RAS | RAS proto-oncogene family |
| RET/PTC | RET proto-oncogene/Papillary Thyroid Carcinoma fusion |
| RCS | Restricted cubic splines |
| ROC | Receiver operating characteristic |
| SHAP | SHapley Additive exPlanations |
| SVM | Support vector machine |
| TI-RADS | Thyroid Imaging Reporting and Data System |
| XGB | Extreme Gradient Boosting (XGBoost) |
References
- Xu, B.; Ghossein, R. Genomic Landscape of Poorly Differentiated and Anaplastic Thyroid Carcinoma. Endocr. Pathol. 2016, 27, 205–212. [Google Scholar] [CrossRef]
- Boucai, L.; Zafereo, M.; Cabanillas, M.E. Thyroid Cancer: A Review. JAMA 2024, 331, 425–435. [Google Scholar] [CrossRef]
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The Epidemiological Landscape of Thyroid Cancer Worldwide: GLOBOCAN Estimates for Incidence and Mortality Rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef]
- Lundgren, C.I.; Hall, P.; Dickman, P.W.; Zedenius, J. Clinically Significant Prognostic Factors for Differentiated Thyroid Carcinoma: A Population-Based, Nested Case—Control Study. Cancer 2006, 106, 524–531. [Google Scholar] [CrossRef]
- Pastorello, R.; Valerio, E.; Lobo, A.; Maia, A.; Saieg, M. Do Thyroid Nodules That Arise in the Isthmus Have a Higher Risk of Malignancy? Cancer Cytopathol. 2020, 128, 520–522. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Ruan, J.; Chen, Z.; Chen, S.; Zhang, J.; Wang, S.; Qi, M.; Fu, Y.; Zhou, J.; Zhang, Y.; Pang, M.; et al. Lateral Lymph Node Metastasis in Papillary Thyroid Microcarcinoma: A Study of 5241 Follow-Up Patients. Endocrine 2024, 83, 414–421. [Google Scholar] [CrossRef]
- Ito, Y.; Tomoda, C.; Uruno, T.; Takamura, Y.; Miya, A.; Kobayashi, K.; Matsuzuka, F.; Kuma, K.; Miyauchi, A. Preoperative Ultrasonographic Examination for Lymph Node Metastasis: Usefulness When Designing Lymph Node Dissection for Papillary Microcarcinoma of the Thyroid. World J. Surg. 2004, 28, 498–501. [Google Scholar] [CrossRef]
- Adam, M.A.; Pura, J.; Goffredo, P.; Dinan, M.A.; Reed, S.D.; Scheri, R.P.; Hyslop, T.; Roman, S.A.; Sosa, J.A. Presence and Number of Lymph Node Metastases Are Associated with Compromised Survival for Patients Younger Than Age 45 Years with Papillary Thyroid Cancer. J. Clin. Oncol. 2015, 33, 2370–2375. [Google Scholar] [CrossRef]
- Tian, H.; Yu, Z.; Dong, T.; Xie, Q.; Mu, Y.; Liao, W.; Ma, N. Risk Factors of Cervical Central Lymph Node Metastasis in Stage T1a Unifocal Papillary Thyroid Carcinoma. Sci. Rep. 2024, 14, 25577. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, S.; Zhou, K. Lobectomy vs. Total Thyroidectomy for Papillary Thyroid Carcinoma with Lymph Node Metastasis. Radiother. Oncol. 2024, 192 (Suppl. S1), 46. [Google Scholar] [CrossRef]
- Li, M.; Liu, L.; Feng, L.; Li, Z.; Xu, Q.; Zhang, Y.; Zhang, F.; Feng, L.N. Prediction of Cervical Lymph Node Metastasis in Solitary Papillary Thyroid Carcinoma Based on Ultrasound Radiomics Analysis. Front. Oncol. 2024, 14, 1291767. [Google Scholar] [CrossRef]
- Yao, F.; Yang, Z.; Li, Y.; Chen, W.; Wu, T.; Peng, J.; Jiao, Z.; Yang, A. Real-World Evidence on the Sensitivity of Preoperative Ultrasound in Evaluating Central Lymph Node Metastasis of Papillary Thyroid Carcinoma. Front. Endocrinol. 2022, 13, 865911. [Google Scholar] [CrossRef]
- He, L.; Chen, X.; Hu, J.; Meng, Y.; Zhang, Y.; Chen, W.; Fan, Y.; Li, T.; Fang, J. Score Based on Contrast-Enhanced Ultrasound Predicts Central Lymph Node Metastasis in Papillary Thyroid Cancer. Front. Endocrinol. 2024, 15, 1336787. [Google Scholar] [CrossRef]
- Yu, J.; Deng, Y.; Liu, T.; Zhou, J.; Jia, X.; Xiao, T.; Zhou, S.; Li, J.; Guo, Y.; Wang, Y.; et al. Lymph Node Metastasis Prediction of Papillary Thyroid Carcinoma Based on Transfer Learning Radiomics. Nat. Commun. 2020, 11, 4807. [Google Scholar] [CrossRef]
- Foersch, S.; Glasner, C.; Woerl, A.-C.; Eckstein, M.; Wagner, D.-C.; Schulz, S.; Kellers, F.; Fernandez, A.; Tserea, K.; Kloth, M.; et al. Multistain Deep Learning for Prediction of Prognosis and Therapy Response in Colorectal Cancer. Nat. Med. 2023, 29, 430–439. [Google Scholar] [CrossRef]
- Moon, I.; LoPiccolo, J.; Baca, S.C.; Sholl, L.M.; Kehl, K.L.; Hassett, M.J.; Liu, D.; Schrag, D.; Gusev, A. Machine Learning for Genetics-Based Classification and Treatment Response Prediction in Cancer of Unknown Primary. Nat. Med. 2023, 29, 2057–2067. [Google Scholar] [CrossRef]
- Shen, P.; Yang, Z.; Sun, J.; Wang, Y.; Qiu, C.; Wang, Y.; Ren, Y.; Liu, S.; Cai, W.; Lu, H.; et al. Explainable Multimodal Deep Learning for Predicting Thyroid Cancer Lateral Lymph Node Metastasis Using Ultrasound Imaging. Nat. Commun. 2025, 16, 7052. [Google Scholar] [CrossRef]
- Saygili, E.S.; Elhassan, Y.S.; Prete, A.; Lippert, J.; Altieri, B.; Ronchi, C.L. Machine Learning–Based Survival Prediction Tool for Adrenocortical Carcinoma. J. Clin. Endocrinol. Metab. 2025, 110, e3185–e3192. [Google Scholar] [CrossRef]
- Yao, S.; Shen, P.; Dai, F.; Deng, L.; Qiu, X.; Zhao, Y.; Gao, M.; Zhang, H.; Zheng, X.; Yu, X.; et al. Thyroid Cancer Central Lymph Node Metastasis Risk Stratification Based on Homogeneous Positioning Deep Learning. Research 2024, 7, 0432. [Google Scholar] [CrossRef]
- Chen, B.D.; Zhang, Z.; Wang, K.K.; Shang, M.Y.; Zhao, S.S.; Ding, W.B.; Du, R.; Yu, Z.; Xu, X.M. A Multivariable Model of BRAF V600E and Ultrasonographic Features for Predicting the Risk of Central Lymph Node Metastasis in cN0 Papillary Thyroid Microcarcinoma. Cancer Manag. Res. 2019, 11, 7211–7217. [Google Scholar] [CrossRef]
- Shi, C.; Cao, J.; Shi, T.; Liang, M.; Ding, C.; Lv, Y.; Zhang, W.; Li, C.; Gao, W.; Wu, G.; et al. BRAF V600E Mutation, BRAF-Activated Long Non-Coding RNA and miR-9 Expression in Papillary Thyroid Carcinoma, and Their Association with Clinicopathological Features. World J. Surg. Oncol. 2020, 18, 194. [Google Scholar] [CrossRef]
- Xing, M. Genetic-Guided Risk Assessment and Management of Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 109–124. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, Y.J.; Lim, J.A.; Ahn, H.Y.; Lee, E.K.; Lee, Y.J.; Kim, K.W.; Hahn, S.K.; Youn, Y.K.; Kim, K.H.; et al. The Association of the BRAF(V600E) Mutation with Prognostic Factors and Poor Clinical Outcome in Papillary Thyroid Cancer: A Meta-Analysis. Cancer 2012, 118, 1764–1773. [Google Scholar] [CrossRef]
- Xing, M. BRAF Mutation in Papillary Thyroid Cancer: Pathogenic Role, Molecular Bases, and Clinical Implications. Endocr. Rev. 2007, 28, 742–762. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, S. High Aggressiveness of Papillary Thyroid Cancer: From Clinical Evidence to Regulatory Cellular Networks. Cell Death Discov. 2024, 10, 378. [Google Scholar] [CrossRef]
- Ciarrocchi, A.; Cavuto, S.; Piana, S. BRAF V600E Mutation and Papillary Thyroid Cancer. JAMA 2013, 310, 534. [Google Scholar] [CrossRef]
- Gouveia, C.; Can, N.T.; Bostrom, A.; Grenert, J.P.; van Zante, A.; Orloff, L.A. Lack of Association of BRAF Mutation with Negative Prognostic Indicators in Papillary Thyroid Carcinoma: The University of California, San Francisco, Experience. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 1164–1170. [Google Scholar] [CrossRef]
- Guerra, A.; Fugazzola, L.; Marotta, V.; Cirillo, M.; Rossi, S.; Cirello, V.; Forno, I.; Moccia, T.; Budillon, A.; Vitale, M. A High Percentage of BRAFV600E Alleles in Papillary Thyroid Carcinoma Predicts a Poorer Outcome. J. Clin. Endocrinol. Metab. 2012, 97, 2333–2340. [Google Scholar] [CrossRef]
- Vijg, J.; Dong, X. Pathogenic Mechanisms of Somatic Mutation and Genome Mosaicism in Aging. Cell 2020, 182, 12–23. [Google Scholar] [CrossRef]
- Liu, L.; Chang, J.W.; Jung, S.-N.; Park, H.S.; Oh, T.; Lim, Y.-C. Clinical Implications of the Extent of BRAFV600E Alleles in Patients with Papillary Thyroid Carcinoma. Oral Oncol. 2016, 62, 72–77. [Google Scholar] [CrossRef]
- Schumm, M.A.; Nikiforov, Y.E.; Nikiforova, M.N.; Wald, A.I.; Tseng, C.-H.; Smooke-Praw, S.; Wu, J.X.; Yeh, M.W.; Livhits, M.J. Association of BRAF V600E Allele Frequency with Clinicopathologic Outcomes in Papillary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2025, 110, 2164–2171. [Google Scholar] [CrossRef]
- Lake, D.; Corrêa, S.A.L.; Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 2016, 73, 4397–4413. [Google Scholar] [CrossRef]
- McGranahan, N.; Swanton, C. Biological and Therapeutic Impact of Intratumor Heterogeneity in Cancer Evolution. Cancer Cell 2015, 27, 15–26. [Google Scholar] [CrossRef]
- Ying, H.; Ling, H.; Zhang, B.; Li, G.; Li, S. Risk Factors for Neck Nodal Metastasis in Papillary Thyroid Cancer with BRAF V600E Mutation. Front. Endocrinol. 2022, 13, 884428. [Google Scholar] [CrossRef]
- Henke, L.E.; Pfeifer, J.D.; Ma, C.; Perkins, S.M.; DeWees, T.; El-Mofty, S.; Moley, J.F.; Nussenbaum, B.; Haughey, B.H.; Baranski, T.J.; et al. BRAF Mutation Is Not Predictive of Long-Term Outcome in Papillary Thyroid Carcinoma. Cancer Med. 2015, 4, 791–799. [Google Scholar] [CrossRef]
- Chakraborty, A.; Narkar, A.A.; Mukhopadhyaya, R.; Kane, S.; D’Cruz, A.K.; Rajan, M.G.R. BRAF V600E Mutation in Papillary Thyroid Carcinoma: Significant Association with Node Metastases and Extrathyroidal Invasion. Endocr. Pathol. 2012, 23, 83–93. [Google Scholar] [CrossRef]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef]
- Itan, Y.; Shang, L.; Boisson, B.; Ciancanelli, M.J.; Markle, J.G.; Martinez-Barricarte, R.; Scott, E.; Shah, I.; Stenson, P.D.; Gleeson, J.; et al. The Mutation Significance Cutoff: Gene-Level Thresholds for Variant Predictions. Nat. Methods 2016, 13, 109–110. [Google Scholar] [CrossRef]
- Tatar, L.; Bandargal, S.; Pusztaszeri, M.P.; Forest, V.-I.; Hier, M.P.; Kouz, J.; Chowdhury, R.; Payne, R.J. Association Between BRAF V600E Allele Frequency and Aggressive Behavior in Papillary Thyroid Microcarcinoma. Cancers 2025, 17, 2553. [Google Scholar] [CrossRef]
- Abdulhaleem, M.; Bandargal, S.; Pusztaszeri, M.P.; Rajab, M.; Greenspoon, H.; Krasner, J.R.; Da Silva, S.D.; Forest, V.-I.; Payne, R.J. The Impact of BRAF V600E Mutation Allele Frequency on the Histopathological Characteristics of Thyroid Cancer. Cancers 2023, 16, 113. [Google Scholar] [CrossRef]
- Xing, M.; Clark, D.; Guan, H.; Ji, M.; Dackiw, A.; Carson, K.A.; Kim, M.; Tufaro, A.; Ladenson, P.; Zeiger, M.; et al. BRAF Mutation Testing of Thyroid Fine-Needle Aspiration Biopsy Specimens for Preoperative Risk Stratification in Papillary Thyroid Cancer. J. Clin. Oncol. 2009, 27, 2977–2982. [Google Scholar] [CrossRef]
- Fu, G.; Chazen, R.S.; MacMillan, C.; Witterick, I.J. Development of a Molecular Assay for Detection and Quantification of the BRAF Variation in Residual Tissue from Thyroid Nodule FNA Biopsy Specimens. JAMA Netw. Open 2021, 4, e2127243. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, E.; Koo, J.S.; Yoon, J.-H.; Nam, K.-H.; Lee, J.; Jo, Y.S.; Moon, H.J.; Park, V.Y.; Kwak, J.Y. Artificial Intelligence to Predict the BRAFV600E Mutation in Patients with Thyroid Cancer. PLoS ONE 2020, 15, e0242806. [Google Scholar] [CrossRef]
- Lin, C.; Wang, D.; He, L.; Li, D.; Fu, Z.; Xue, S.; Su, X.; Zhou, J. Explainable Machine Learning Model for Predicting Paratracheal Lymph Node Metastasis in cN0 Papillary Thyroid Cancer. Sci. Rep. 2024, 14, 22361. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Xv, J.; Wang, J.; Wang, G.; Zhao, Y. Genetic Alterations and Allele Frequency of BRAF V600E and TERT Mutation in Papillary Thyroid Carcinoma with Intermediate-to-High Recurrence Risk: A Retrospective Study. Clin. Exp. Med. 2024, 24, 76. [Google Scholar] [CrossRef]
- Liu, J.; Jia, X.; Gu, Y.; Zhang, Y.; Huang, P.; Liu, X.; Wang, Z.; Liu, P.; Yang, W.; Peng, X.; et al. Thyroid Parenchyma Microcalcifications on Ultrasound for Predicting Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Prospective Multicenter Study in China. Front. Oncol. 2021, 11, 609075. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Zhong, Q.; Fang, J.; Chen, X.; Zhang, Y.; Huang, Z. Developing and Validating a Multivariable Machine Learning Model for the Preoperative Prediction of Lateral Lymph Node Metastasis of Papillary Thyroid Cancer. Gland Surg. 2023, 12, 101–109. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Zheng, K.; Zhang, H.; Guo, H.; Zhang, L.; Wu, K.; Kong, L.; Ruan, W.; Hu, J.; et al. The Presence of Cancerous Nodules in Lymph Nodes Is a Novel Indicator of Distant Metastasis and Poor Survival in Patients with Papillary Thyroid Carcinoma. J. Cancer Res. Clin. Oncol. 2017, 143, 1035–1042. [Google Scholar] [CrossRef]






| Characteristic | CLNM | p-Value | ||
|---|---|---|---|---|
| Overall N = 667 | No N = 276 | Yes N = 391 | ||
| Age, Mean ± SD | 41 ± 11 | 43 ± 11 | 40 ± 11 | <0.001 1 |
| Maximum tumor diameter | ||||
| Mean ± SD | 1.08 ± 0.73 | 0.85 ± 0.50 | 1.25 ± 0.82 | <0.001 1 |
| BRAF V600E mutation abundance | ||||
| Mean ± SD | 21 ± 12 | 18 ± 12 | 23 ± 11 | <0.001 1 |
| sex, n (%) | 0.027 2 | |||
| Male | 162 (24.3%) | 55 (19.9%) | 107 (27.4%) | |
| Female | 505 (75.7%) | 221 (80.1%) | 284 (72.6%) | |
| Irregular margins, n (%) | 0.944 2 | |||
| No | 330 (49.5%) | 137 (49.6%) | 193 (49.4%) | |
| Yes | 337 (50.5%) | 139 (50.4%) | 198 (50.6%) | |
| Hypoechoic, n (%) | 0.907 2 | |||
| No | 93 (13.9%) | 39 (14.1%) | 54 (13.8%) | |
| Yes | 574 (86.1%) | 237 (85.9%) | 337 (86.2%) | |
| Microcalcifications, n (%) | <0.001 2 | |||
| No | 441 (66.1%) | 212 (76.8%) | 229 (58.6%) | |
| Yes | 226 (33.9%) | 64 (23.2%) | 162 (41.4%) | |
| Tumor aspect ratio, n (%) | 0.125 2 | |||
| <1 | 345 (51.7%) | 133 (48.2%) | 212 (54.2%) | |
| >1 | 322 (48.3%) | 143 (51.8%) | 179 (45.8%) | |
| CDFI, n (%) | 0.015 2 | |||
| Poor blood supply | 604 (90.6%) | 259 (93.8%) | 345 (88.2%) | |
| Rich blood supply | 63 (9.4%) | 17 (6.2%) | 46 (11.8%) | |
| Lymph node enlargement, n (%) | 0.001 2 | |||
| No | 420 (63.0%) | 194 (70.3%) | 226 (57.8%) | |
| Yes | 247 (37.0%) | 82 (29.7%) | 165 (42.2%) | |
| Ultrasound classification, n (%) | 0.021 3 | |||
| 2 | 1 (0.1%) | 1 (0.4%) | 0 (0.0%) | |
| 3 | 15 (2.2%) | 7 (2.5%) | 8 (2.0%) | |
| 4 | 146 (21.9%) | 74 (26.8%) | 72 (18.4%) | |
| 5 | 505 (75.7%) | 194 (70.3%) | 311 (79.5%) | |
| Lesion Group, n (%) | <0.001 2 | |||
| Unifocal | 450 (67.5%) | 209 (75.7%) | 241 (61.6%) | |
| Multifocal | 217 (32.5%) | 67 (24.3%) | 150 (38.4%) | |
| Capsule invasion, n (%) | 0.009 2 | |||
| No | 148 (22.2%) | 75 (27.2%) | 73 (18.7%) | |
| Yes | 519 (77.8%) | 201 (72.8%) | 318 (81.3%) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalikun, Y.; Shen, Y.; Mao, A.; Zhou, Q.; Wei, J.; Zhu, Y.; Long, M. Dose–Response Relationship Between BRAF V600E Abundance and Cervical Lymph Node Metastasis in Papillary Thyroid Cancer. Cancers 2025, 17, 3562. https://doi.org/10.3390/cancers17213562
Yalikun Y, Shen Y, Mao A, Zhou Q, Wei J, Zhu Y, Long M. Dose–Response Relationship Between BRAF V600E Abundance and Cervical Lymph Node Metastasis in Papillary Thyroid Cancer. Cancers. 2025; 17(21):3562. https://doi.org/10.3390/cancers17213562
Chicago/Turabian StyleYalikun, Yisikandaer, Yuxin Shen, Anyun Mao, Qianlei Zhou, Jinchen Wei, Yue Zhu, and Miaoyun Long. 2025. "Dose–Response Relationship Between BRAF V600E Abundance and Cervical Lymph Node Metastasis in Papillary Thyroid Cancer" Cancers 17, no. 21: 3562. https://doi.org/10.3390/cancers17213562
APA StyleYalikun, Y., Shen, Y., Mao, A., Zhou, Q., Wei, J., Zhu, Y., & Long, M. (2025). Dose–Response Relationship Between BRAF V600E Abundance and Cervical Lymph Node Metastasis in Papillary Thyroid Cancer. Cancers, 17(21), 3562. https://doi.org/10.3390/cancers17213562

