CD34+ Cell Dose, Measurable Residual Disease, and Outcome After Myeloablative HLA-Matched Peripheral Blood Hematopoietic Cell Transplantation for Adults with Acute Myeloid Leukemia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Graft Composition
2.4. Conditioning Regimens, GVHD Prophylaxis, and Supportive Care
2.5. Statistical Methods
3. Results
3.1. Study Cohort and Transplant Characteristics
3.2. Association Between CD34+ Cell Dose and Post-HCT Outcomes
3.3. Effect of Lower CD34+ Doses on Post-HCT Outcomes Is Independent of MRD Status
3.4. Association of Higher CD3+ Cell Doses with Increased Risk of Chronic but Not Acute GVHD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loke, J.; Vyas, H.; Craddock, C. Optimizing transplant approaches and post-transplant strategies for patients with acute myeloid leukemia. Front. Oncol. 2021, 11, 666091. [Google Scholar] [CrossRef] [PubMed]
- Loke, J.; Buka, R.; Craddock, C. Allogeneic stem cell transplantation for acute myeloid leukemia: Who, when, and how? Front. Immunol. 2021, 12, 659595. [Google Scholar] [CrossRef]
- Magee, G.; Ragon, B.K. Allogeneic hematopoietic cell transplantation in acute myeloid leukemia. Best Pract. Res. Clin. Haematol. 2023, 36, 101466. [Google Scholar] [CrossRef]
- DeWolf, S.; Tallman, M.S.; Rowe, J.M.; Salman, M.Y. What influences the decision to proceed to transplant for patients with AML in first remission? J. Clin. Oncol. 2023, 41, 4693–4703. [Google Scholar] [CrossRef]
- Montoro, J.; Balaguer-Roselló, A.; Sanz, J. Recent advances in allogeneic transplantation for acute myeloid leukemia. Curr. Opin. Oncol. 2023, 35, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Wong, Z.C.; Dillon, L.W.; Hourigan, C.S. Measurable residual disease in patients undergoing allogeneic transplant for acute myeloid leukemia. Best Pract. Res. Clin. Haematol. 2023, 36, 101468. [Google Scholar] [CrossRef]
- Aitken, M.J.; Ravandi, F.; Patel, K.P.; Short, N.J. Prognostic and therapeutic implications of measurable residual disease in acute myeloid leukemia. J. Hematol. Oncol. 2021, 14, 137. [Google Scholar] [CrossRef] [PubMed]
- Mavroudis, D.; Read, E.; Cottler-Fox, M.; Couriel, D.; Molldrem, J.; Carter, C.; Yu, M.; Dunbar, C.; Barrett, J. CD34+ cell dose predicts survival, posttransplant morbidity, and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies. Blood 1996, 88, 3223–3229. [Google Scholar] [CrossRef]
- Bahçeci, E.; Read, E.J.; Leitman, S.; Childs, R.; Dunbar, C.; Young, N.S.; Barrett, A.J. CD34+ cell dose predicts relapse and survival after T-cell-depleted HLA-identical haematopoietic stem cell transplantation (HSCT) for haematological malignancies. Br. J. Haematol. 2000, 108, 408–414. [Google Scholar] [CrossRef]
- Nakamura, R.; Auayporn, N.; Smith, D.D.; Palmer, J.; Sun, J.Y.; Schriber, J.; Pullarkat, V.; Parker, P.; Rodriguez, R.; Stein, A.; et al. Impact of graft cell dose on transplant outcomes following unrelated donor allogeneic peripheral blood stem cell transplantation: Higher CD34+ cell doses are associated with decreased relapse rates. Biol. Blood Marrow Transplant. 2008, 14, 449–457. [Google Scholar] [CrossRef]
- Waller, E.K.; Logan, B.R.; Harris, W.A.; Devine, S.M.; Porter, D.L.; Mineishi, S.; McCarty, J.M.; Gonzalez, C.E.; Spitzer, T.R.; Krijanovski, O.I.; et al. Improved survival after transplantation of more donor plasmacytoid dendritic or naive T cells from unrelated-donor marrow grafts: Results from BMTCTN 0201. J. Clin. Oncol. 2014, 32, 2365–2372. [Google Scholar] [CrossRef]
- Martelli, M.F.; Di Ianni, M.; Ruggeri, L.; Pierini, A.; Falzetti, F.; Carotti, A.; Terenzi, A.; Reisner, Y.; Aversa, F.; Falini, B.; et al. “Designed” grafts for HLA-haploidentical stem cell transplantation. Blood 2014, 123, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Reshef, R.; Huffman, A.P.; Gao, A.; Luskin, M.R.; Frey, N.V.; Gill, S.I.; Hexner, E.O.; Kambayashi, T.; Loren, A.W.; Luger, S.M.; et al. High graft CD8 cell dose predicts improved survival and enables better donor selection in allogeneic stem-cell transplantation with reduced-intensity conditioning. J. Clin. Oncol. 2015, 33, 2392–2398. [Google Scholar] [CrossRef] [PubMed]
- Saraceni, F.; Shem-Tov, N.; Olivieri, A.; Nagler, A. Mobilized peripheral blood grafts include more than hematopoietic stem cells: The immunological perspective. Bone Marrow Transplant. 2015, 50, 886–891. [Google Scholar] [CrossRef]
- Remberger, M.; Törlén, J.; Ringdén, O.; Engström, M.; Watz, E.; Uhlin, M.; Mattsson, J. Effect of total nucleated and CD34(+) cell dose on outcome after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2015, 21, 889–893. [Google Scholar] [CrossRef]
- Maggs, L.; Kinsella, F.; Chan, Y.L.T.; Eldershaw, S.; Murray, D.; Nunnick, J.; Bird, J.; Craddock, C.; Zuo, J.; Malladi, R.; et al. The number of CD56(dim) NK cells in the graft has a major impact on risk of disease relapse following allo-HSCT. Blood Adv. 2017, 1, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Remberger, M.; Grønvold, B.; Ali, M.; Mattsson, J.; Egeland, T.; Lundin, K.U.; Myhre, A.; Abrahamsen, I.; Heldal, D.; Dybedal, I.; et al. The CD34(+) cell dose matters in hematopoietic stem cell transplantation with peripheral blood stem cells from sibling donors. Clin. Hematol. Int. 2020, 2, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Minculescu, L.; Fischer-Nielsen, A.; Haastrup, E.; Ryder, L.P.; Andersen, N.S.; Schjoedt, I.; Friis, L.S.; Kornblit, B.T.; Petersen, S.L.; Sengelov, H.; et al. Improved relapse-free survival in patients with high natural killer cell doses in grafts and during early immune reconstitution after allogeneic stem cell transplantation. Front. Immunol. 2020, 11, 1068. [Google Scholar] [CrossRef]
- Maffini, E.; Labopin, M.; Blaise, D.; Ciceri, F.; Gülbas, Z.; Deconinck, E.; Leblond, V.; Chevallier, P.; Sociè, G.; Araujo, M.C.; et al. CD34+ cell dose effects on clinical outcomes after T-cell replete haploidentical allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia using peripheral blood stem cells. A study from the acute leukemia working Party of the European Society for blood and marrow transplantation (EBMT). Am. J. Hematol. 2020, 95, 892–899. [Google Scholar]
- Gauntner, T.D.; Brunstein, C.G.; Cao, Q.; Weisdorf, D.; Warlick, E.D.; Jurdi, N.E.; Maakaron, J.E.; Arora, M.; Betts, B.C.; Bachanova, V.; et al. Association of CD34 cell dose with 5-year overall survival after peripheral blood allogeneic hematopoietic cell transplantation in adults with hematologic malignancies. Transplant. Cell. Ther. 2022, 28, 88–95. [Google Scholar] [CrossRef]
- Pulsipher, M.A.; Chitphakdithai, P.; Logan, B.R.; Leitman, S.F.; Anderlini, P.; Klein, J.P.; Horowitz, M.M.; Miller, J.P.; King, R.J.; Confer, D.L. Donor, recipient, and transplant characteristics as risk factors after unrelated donor PBSC transplantation: Beneficial effects of higher CD34+ cell dose. Blood 2009, 114, 2606–2616. [Google Scholar] [CrossRef] [PubMed]
- Urbano-Ispizua, A.; Carreras, E.; Marín, P.; Rovira, M.; Martínez, C.; Fernández-Avilés, F.; Xicoy, B.; Hernández-Boluda, J.C.; Montserrat, E. Allogeneic transplantation of CD34(+) selected cells from peripheral blood from human leukocyte antigen-identical siblings: Detrimental effect of a high number of donor CD34(+) cells? Blood 2001, 98, 2352–2357. [Google Scholar] [CrossRef] [PubMed]
- Mohty, M.; Bilger, K.; Jourdan, E.; Kuentz, M.; Michallet, M.; Bourhis, J.H.; Milpied, N.; Sutton, L.; Jouet, J.P.; Attal, M.; et al. Higher doses of CD34+ peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation. Leukemia 2003, 17, 869–875. [Google Scholar] [CrossRef]
- Cao, T.M.; Wong, R.M.; Sheehan, K.; Laport, G.G.; Stockerl-Goldstein, K.E.; Johnston, L.J.; Shizuru, J.A.; Negrin, R.S.; Lowsky, R. CD34, CD4, and CD8 cell doses do not influence engraftment, graft-versus-host disease, or survival following myeloablative human leukocyte antigen-identical peripheral blood allografting for hematologic malignancies. Exp. Hematol. 2005, 33, 279–285. [Google Scholar] [CrossRef]
- Bühlmann, L.; Buser, A.S.; Cantoni, N.; Gerull, S.; Tichelli, A.; Gratwohl, A.; Stern, M. Lymphocyte subset recovery and outcome after T-cell replete allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011, 46, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.S.; Li, S.; Nikiforow, S.; Alyrea, E.P.; Antin, J.H.; Armand, P.; Cutler, C.S.; Ho, V.T.; Kekre, N.; Koreth, J.; et al. Infused total nucleated cell dose is a better predictor of transplant outcomes than CD34+ cell number in reduced-intensity mobilized peripheral blood allogeneic hematopoietic cell transplantation. Haematologica 2016, 101, 499–505. [Google Scholar] [CrossRef]
- Czerw, T.; Labopin, M.; Schmid, C.; Cornelissen, J.J.; Chevallier, P.; Blaise, D.; Kuball, J.; Vigouroux, S.; Garban, F.; Lioure, B.; et al. High CD3+ and CD34+ peripheral blood stem cell grafts content is associated with increased risk of graft-versus-host disease without beneficial effect on disease control after reduced-intensity conditioning allogeneic transplantation from matched unrelated donors for acute myeloid leukemia—An analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Oncotarget 2016, 7, 27255–27266. [Google Scholar]
- Urbano-Ispizua, A.; Rozman, C.; Pimentel, P.; Solano, C.; de la Rubia, J.; Brunet, S.; Pérez-Oteyza, J.; Ferrá, C.; Zuazu, J.; Caballero, D.; et al. Risk factors for acute graft-versus-host disease in patients undergoing transplantation with CD34+ selected blood cells from HLA-identical siblings. Blood 2002, 100, 724–727. [Google Scholar] [CrossRef]
- Kałwak, K.; Porwolik, J.; Mielcarek, M.; Gorczyńska, E.; Owoc-Lempach, J.; Ussowicz, M.; Dyla, A.; Musiał, J.; Paździor, D.; Turkiewicz, D.; et al. Higher CD34(+) and CD3(+) cell doses in the graft promote long-term survival, and have no impact on the incidence of severe acute or chronic graft-versus-host disease after in vivo T cell-depleted unrelated donor hematopoietic stem cell transplantation in children. Biol. Blood Marrow Transplant. 2010, 16, 1388–1401. [Google Scholar]
- Pastore, D.; Delia, M.; Mestice, A.; Carluccio, P.; Perrone, T.; Gaudio, F.; Curci, P.; Rossi, A.R.; Ricco, A.; Specchia, G. CD3+/Tregs ratio in donor grafts is linked to acute graft-versus-host disease and immunologic recovery after allogeneic peripheral blood stem cell transplantation. Biol. Blood Marrow Transplant. 2012, 18, 887–893. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Genaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Sorror, M.L.; Maris, M.B.; Storb, R.; Baron, F.; Sandmaier, B.M.; Maloney, D.G.; Storer, B. Hematopoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT. Blood 2005, 106, 2912–2919. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.B.; Othus, M.; Borthakur, G.; Ravandi, F.; Cortes, J.E.; Pierce, S.A.; Appelbaum, F.R.; Kantarjian, H.A.; Estey, E.H. Prediction of early death after induction therapy for newly diagnosed acute myeloid leukemia with pretreatment risk scores: A novel paradigm for treatment assignment. J. Clin. Oncol. 2011, 29, 4417–4423. [Google Scholar] [CrossRef]
- Zarling, L.C.; Othus, M.; Sandmaier, B.M.; Milano, F.; Schoch, G.; Davis, C.; Bleakley, M.; Deeg, H.J.; Appelbaum, F.R.; Storb, R.; et al. Utility of the Treatment-Related Mortality (TRM) score to predict outcomes of adults with acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation. Leukemia 2022, 36, 1563–1574. [Google Scholar] [CrossRef] [PubMed]
- Paras, G.; Morsink, L.M.; Othus, M.; Milano, F.; Sandmaier, B.M.; Zarlin, L.C.; Palmieri, R.; Schoch, G.; Davis, C.; Bleakley, M.; et al. Conditioning intensity and peritransplant flow cytometric MRD dynamics in adult AML. Blood 2022, 139, 1694–1706. [Google Scholar] [CrossRef]
- Walter, R.B.; Gooley, T.A.; Wood, B.L.; Milano, F.; Fang, M.; Sorror, M.L.; Estey, E.H.; Salter, A.I.; Lansverk, E.; Chien, J.W.; et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J. Clin. Oncol. 2011, 29, 1190–1197. [Google Scholar] [CrossRef]
- Zhou, Y.; Othus, M.; Araki, D.; Wood, B.L.; Radich, J.P.; Halpern, A.B.; Mielcarek, M.; Estey, E.H.; Appelbaum, F.R.; Walter, R.B. Pre- and post-transplant quantification of measurable (‘minimal’) residual disease via multiparameter flow cytometry in adult acute myeloid leukemia. Leukemia 2016, 30, 1456–1464. [Google Scholar] [CrossRef]
- Wood, B.L. Acute myeloid leukemia minimal residual disease detection: The difference from normal approach. Curr. Protoc. Cytom. 2020, 93, e73. [Google Scholar] [CrossRef]
- Orvain, C.; Wilson, J.A.; Fang, M.; Sandmaier, B.M.; Rodríguez-Arbolí, E.; Wood, B.L.; Othus, M.; Appelbaum, F.R.; Walter, R.B. Relative impact of residual cytogenetic abnormalities and flow cytometric measurable residual disease on outcome after allogeneic hematopoietic cell transplantation in adult acute myeloid leukemia. Haematologica 2023, 108, 420–432. [Google Scholar] [CrossRef]
- Leisenring, W.M.; Martin, P.J.; Petersdorf, E.W.; Regan, A.E.; Aboulhosn, N.; Stern, J.M.; Aker, S.N.; Salazar, R.C.; McDonald, G.B. An acute graft-versus-host disease activity index to predict survival after hematopoietic cell transplantation with myeloablative conditioning regimens. Blood 2006, 108, 749–755. [Google Scholar] [CrossRef]
- Jagasia, M.H.; Greinix, H.T.; Arora, M.; Williams, K.M.; Wolff, D.; Cowen, E.W.; Palmer, J.; Weisdorf, D.; Treister, N.S.; Cheng, G.S.; et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. the 2014 Diagnosis and Staging Working Group report. Biol. Blood Marrow Transplant. 2015, 21, 389–401.e381. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; He, X.; Gao, Y.; Mahara, G.; Lin, Z.; Zhang, J. A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: Simulation and application. BMC Med. Res. Methodol. 2019, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- Connelly-Smith, L.; Gooley, T.; Roberts, L.; Mielcarek, M.; Linenberger, M.; Petersdorf, E.; Sandmaier, B.M.; Milano, F. Cryopreservation of growth factor-mobilized peripheral blood stem cells does not compromise major outcomes after allogeneic hematopoietic cell transplantation: A single-center experience. Transplant. Cell. Ther. 2023, 29, 700.e1–700.e8. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, M.C.; Devine, S.; Mendizabal, A.; Baden, L.R.; Wingard, J.R.; Lazarus, H.M.; Appelbaum, F.R.; Keever-Taylor, C.A.; Horowitz, M.M.; Carter, S.; et al. Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transplantation. J. Clin. Oncol. 2012, 30, 3194–3201. [Google Scholar] [PubMed]
- Ringdén, O.; Barrett, A.J.; Zhang, M.J.; Loberiza, F.R.; Bolwell, B.J.; Cairo, M.S.; Gale, R.P.; Hale, G.A.; Litzow, M.R.; Martino, R.; et al. Decreased treatment failure in recipients of HLA-identical bone marrow or peripheral blood stem cell transplants with high CD34 cell doses. Br. J. Haematol. 2003, 121, 874–885. [Google Scholar] [CrossRef]
- Mussetti, A.; De Philippis, C.; Carniti, C.; Bastos-Oreiro, M.; Gayoso, J.; Cieri, N.; Pennisi, M.; Ciceri, F.; Greco, R.; Peccatori, J.; et al. CD3+ graft cell count influence on chronic GVHD in haploidentical allogeneic transplantation using post-transplant cyclophosphamide. Bone Marrow Transplant. 2018, 53, 1522–1531. [Google Scholar] [CrossRef]
All Patients (n = 384) | MRDpos Patients (n = 76) | MRDneg Patients (n = 308) | p-Value | |
---|---|---|---|---|
Patient characteristics | ||||
Age, median (range) | 51 (18–74) | 54 (18–72) | 50 (19–74) | 0.005 |
Body weight, in kg (range) | 79.7 (47.3–187.5) | 79.0 (47.8–135.0) | 79.8 (47.3–187.5) | 0.70 |
Male sex, n (%) | 194 (50.5%) | 41 (53.9%) | 153 (49.7%) | 0.50 |
HCT-CI, n (%) | 0.70 | |||
Low (0–1) | 175 (45.6%) | 37 (48.7%) | 138 (44.8%) | |
Intermediate (2–3) | 125 (32.6%) | 25 (32.9%) | 100 (32.5%) | |
High (≥4) | 77 (20.1%) | 12 (15.8%) | 65 (21.1%) | |
Unknown | 7 (1.8%) | 2 (2.6%) | 5 (1.6%) | |
ECOG PS, n (%) | 0.55 | |||
0 | 125 (32.5%) | 27 (35.5%) | 98 (31.8%) | |
1–2 | 258 (67.2%) | 49 (64.5%) | 209 (67.9%) | |
Unknown | 1 (0.3%) | 0 (0%) | 1 (0.3%) | |
TRM score, median (range) | 1.2 (0.04–17.4) | 2.1 (0.04–17.4) | 1.1 (0.04–12.2) | <0.001 |
Disease characteristics | ||||
Disease type | <0.001 | |||
AML | 316 (82.3%) | 50 (65.8%) | 266 (86.4%) | |
MDS/AML | 68 (17.7%) | 26 (34.2%) | 42 (13.6%) | |
Cytogenetic risk, n (%) | <0.001 | |||
Favorable | 12 (3.1%) | 0 (0%) | 12 (3.9%) | |
Intermediate | 245 (63.8%) | 36 (47.40%) | 209 (67.9%) | |
Adverse | 115 (29.9%) | 38 (50.0%) | 77 (25.0%) | |
Unknown | 12 (3.1%) | 2 (2.6%) | 10 (3.2%) | |
Secondary AML | 75 (19.5%) | 27 (35.5%) | 48 (15.6%) | <0.001 |
Blood counts before HCT, n (%) | 0.91 | |||
CR | 292 (76.0%) | 57 (75.0%) | 235 (76.3%) | |
CRh/CRi | 80 (20.8%) | 17 (22.4%) | 63 (20.5%) | |
MLFS | 12 (3.1%) | 2 (2.6%) | 10 (3.2%) | |
Karyotype before HCT, n (%) | <0.001 | |||
Normalized | 147 (38.3%) | 13 (15.6%) | 134 (43.5%) | |
Abnormal | 76 (19.8%) | 42 (51.2%) | 35 (11.4%) | |
Non-informative * | 161 (41.9%) | 27 (32.9%) | 139 (45.1%) | |
Transplantation characteristics | ||||
Transplant year, n (%) | 0.12 | |||
2006–2017 | 254 (66.1%) | 56 (73.7%) | 198 (64.3%) | |
2017–2023 | 130 (33.9%) | 20 (26.3%) | 110 (35.7%) | |
Donor age, median (range) | 35 (17–70) | 36 (18–69) | 35 (17–70) | 0.24 |
Donor type, n (%) | 0.049 | |||
HLA-identical sibling donor | 149 (38.8%) | 22 (28.9%) | 127 (41.2%) | |
10/10 matched unrelated donor | 235 (61.2%) | 54 (71.1%) | 181 (58.8%) | |
Donor CMV status | 0.56 | |||
Positive | 165 (43.0%) | 28 (36.8%) | 137 (44.5%) | |
Negative | 217 (56.5%) | 48 (63.2%) | 169 (54.9%) | |
Unknown | 2 (0.6%) | 0 (0%) | 2 (0.6%) | |
Graft status | 0.80 | |||
Fresh | 322 (83.9%) | 63 (82.9%) | 259 (84.1%) | |
Cryopreserved | 62 (16.1%) | 13 (17.1%) | 49 (15.9%) | |
GVHD prophylaxis, n (%) | 0.046 | |||
CNI + MMF ± Sirolimus | 64 (16.7%) | 20 (26.3%) | 44 (14.3%) | |
CNI + MTX ± Other(s) | 272 (70.8%) | 46 (60.5%) | 226 (73.4%) | |
PTCy | 37 (9.6%) | 9 (11.8%) | 28 (9.1%) | |
Others | 11 (2.9%) | 1 (1.3%) | 10 (3.2%) | |
Maintenance therapy, n (%) | <0.001 | |||
None | 276 (71.9%) | 40 (52.6%) | 236 (76.6%) | |
FLT3 inhibitor | 24 (6.3%) | 0 (0%) | 24 (7.98%) | |
HMA ± VEN | 5 (1.3%) | 3 (3.9%) | 2 (0.6%) | |
HMA + FLT3 inhibitor | 2 (0.5%) | 2 (2.6%) | 0 (0%) | |
Unknown | 77 (20%) | 31 (40.8%) | 46 (14.9%) |
All Patients (n = 384) | MRDpos Patients (n = 76) | MRDneg Patients (n = 308) | p-Value | |
---|---|---|---|---|
CD34+ cell dose, ×106/kg, median (range), n = 358 | 7.9 (1.0–38.6) | 7.7 (2.1–20.9) | 8.0 (1.0–38.6) | 0.45 |
CD3+ T cell dose, ×106/kg, median (range), n = 358 | 261.5 (4.9–955.1) | 252.3 (32.5–573.8) | 262.7 (4.9–955.1) | 0.50 |
CD4+ T cell dose, ×106/kg, median (range), n = 357 | 164.2 (0.08–678.0) | 158.4 (7.5–415.4) | 166.9 (0.08–678.0) | 0.97 |
CD8+ T cell dose, ×106/kg, median (range), n = 357 | 91.1 (0.5–299.3) | 81.9 (2.7–264.5) | 92.9 (0.5–299.3) | 0.34 |
Treg cell dose, ×105/kg, median (range), n = 298 | 6.1 (0.05–56.4) | 8.0 (0.05–53.6) | 6.0 (0.05–56.4) | 0.67 |
B cell dose, ×106/kg, median (range), n = 341 | 61.1 (0.003–289.9) | 57.4 (7.9–186.8) | 62.4 (0.003–289.9) | 0.49 |
NK cell dose, ×106/kg, median (range), n = 341 | 25.5 (0.01–108.5) | 28.1 (0.07–104.3) | 25.0 (0.01–108.5) | 0.57 |
Monocyte cell dose, ×106/kg, median (range), n = 352 | 228.9 (5.7–577.9) | 228.4 (61.9–564.9) | 230.3 (5.7–577.9) | 0.91 |
Relapse Risk | NRM | Risk of Relapse/Death | Risk of Death | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Patient weight (by 10 kg change) | Not included in model | 1.12 (1.00–1.26) | 0.059 | Not included in model | Not included in model | |||
TRM score (by 5 point change) | 1.14 (0.73–1.78) | 0.56 | 1.41 (0.84–2.37) | 0.19 | 1.36 (0.99–1.89) | 0.059 | 1.58 (1.14–2.19) | 0.0059 |
Adverse cytogenetic risk (ref: intermediate) | 1.72 (1.06–2.88) | 0.030 | 0.51 (0.26–0.97) | 0.039 | 1.14 (0.77–1.71) | 0.50 | 0.99 (0.65–1.51) | 0.96 |
Pre-HCT MRDpos (ref: MRDneg) | 3.14 (1.96–5.02) | <0.001 | Not included in model | 2.52 (1.72–3.70) | <0.001 | 1.76 (1.17–2.65) | 0.0064 | |
Pre-HCT karyotype (ref: normalized) Not normalized | 1.51 (0.85–2.68) | 0.16 | Not included in model | 1.31 (0.84–2.06) | 0.22 | 1.40 (0.88–2.24) | 0.16 | |
MLFS before HCT (ref: CR) | Not included in model | 2.76 (0.77–9.89) | 0.12 | Not included in model | Not included in model | |||
Year of transplantation—before 2017 (ref: after 2017) | Not included in model | Not included in model | Not included in model | 1.39 (0.93–2.06) | 0.11 | |||
Low (≤5.61 × 106) CD34+ dose group (ref: >5.61 × 106) | 1.70 (1.13–2.56) | 0.011 | Not included in model | 1.72 (1.23–2.40) | 0.0014 | 1.64 (1.15–2.33) | 0.0067 |
Univariate | Multivariate | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age (by decade) | 1.12 (0.98–1.28) | 0.094 | Not included in model | |
ECOG performance status | 0.82 (0.57–1.17) | 0.27 | Not included in model | |
HCT before 2017 (ref: after 2017) | 0.82 (0.58–1.16) | 0.26 | Not included in model | |
10/10 HLA-matched unrelated donor (ref: sibling donor) | 1.22 (0.86–1.75) | 0.27 | Not included in model | |
Donor CMV positive (ref: donor CMV neg) | 0.77 (0.54–1.10) | 0.15 | Not included in model | |
PTCy (ref: CNI + MMF ± Sirolimus) | 0.23 (0.07–0.78) | 0.019 | 0.17 (0.04–0.71) | 0.015 |
CD3+ T cell dose, (per 1.0 × 108/kg increase) | 1.15 (1.04–1.28) | 0.009 | 1.16 (1.04–1.29) | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gang, M.; Othus, M.; Olix, A.-C.; Markey, K.A.; Stirewalt, D.L.; Connelly-Smith, L.S.; Lee, S.J.; Milano, F.; Walter, R.B. CD34+ Cell Dose, Measurable Residual Disease, and Outcome After Myeloablative HLA-Matched Peripheral Blood Hematopoietic Cell Transplantation for Adults with Acute Myeloid Leukemia. Cancers 2025, 17, 2323. https://doi.org/10.3390/cancers17142323
Gang M, Othus M, Olix A-C, Markey KA, Stirewalt DL, Connelly-Smith LS, Lee SJ, Milano F, Walter RB. CD34+ Cell Dose, Measurable Residual Disease, and Outcome After Myeloablative HLA-Matched Peripheral Blood Hematopoietic Cell Transplantation for Adults with Acute Myeloid Leukemia. Cancers. 2025; 17(14):2323. https://doi.org/10.3390/cancers17142323
Chicago/Turabian StyleGang, Margery, Megan Othus, Anne-Chloe Olix, Kate A. Markey, Derek L. Stirewalt, Laura S. Connelly-Smith, Stephanie J. Lee, Filippo Milano, and Roland B. Walter. 2025. "CD34+ Cell Dose, Measurable Residual Disease, and Outcome After Myeloablative HLA-Matched Peripheral Blood Hematopoietic Cell Transplantation for Adults with Acute Myeloid Leukemia" Cancers 17, no. 14: 2323. https://doi.org/10.3390/cancers17142323
APA StyleGang, M., Othus, M., Olix, A.-C., Markey, K. A., Stirewalt, D. L., Connelly-Smith, L. S., Lee, S. J., Milano, F., & Walter, R. B. (2025). CD34+ Cell Dose, Measurable Residual Disease, and Outcome After Myeloablative HLA-Matched Peripheral Blood Hematopoietic Cell Transplantation for Adults with Acute Myeloid Leukemia. Cancers, 17(14), 2323. https://doi.org/10.3390/cancers17142323