Paperclip-Type Flexible Inductive Sensor Based on Liquid Metal Coils for Simple Fabrication and Multifunctional Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Sensor
2.3. Performance Testing
3. Results and Discussion
3.1. Theoretical Analysis
3.2. Parameter Optimization
3.3. Performance of Strain Sensing
3.4. Pressure and Position Sensor
3.5. Process Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, E.; Cai, Z.; Ye, Y.; Zhou, M.; Liao, H.; Yi, Y. An Overview of Flexible Sensors: Development, Application, and Challenges. Sensors 2023, 23, 817. [Google Scholar] [CrossRef]
- Baumgartner, M.; Hartmann, F.; Drack, M.; Preninger, D.; Wirthl, D.; Gerstmayr, R.; Lehner, L.; Mao, G.; Pruckner, R.; Demchyshyn, S.; et al. Resilient yet Entirely Degradable Gelatin-Based Biogels for Soft Robots and Electronics. Nat. Mater. 2020, 19, 1102–1109. [Google Scholar] [CrossRef]
- Ohm, Y.; Pan, C.; Ford, M.J.; Huang, X.; Liao, J.; Majidi, C. An Electrically Conductive Silver–Polyacrylamide–Alginate Hydrogel Composite for Soft Electronics. Nat. Electron. 2021, 4, 185–192. [Google Scholar] [CrossRef]
- Araromi, O.A.; Graule, M.A.; Dorsey, K.L.; Castellanos, S.; Foster, J.R.; Hsu, W.-H.; Passy, A.E.; Vlassak, J.J.; Weaver, J.C.; Walsh, C.J.; et al. Ultra-Sensitive and Resilient Compliant Strain Gauges for Soft Machines. Nature 2020, 587, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, J.; Xiao, X.; Wang, J.; Li, Y.; Li, K.; Li, Z.; Yang, H.; Wang, Q.; Yang, J.; et al. Topographic Design in Wearable MXene Sensors with In-Sensor Machine Learning for Full-Body Avatar Reconstruction. Nat. Commun. 2022, 13, 5311. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.; Wang, X.; Kang, T.; Zhang, J.; Dong, L.; Dong, J.; Xia, P.; Wei, D. Review of Flexible Wearable Sensor Devices for Biomedical Application. Micromachines 2022, 13, 1395. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Tonini, D.; Liang, S.; Saha, R.; Chugh, V.K.; Wang, J.-P. Giant Magnetoresistance Biosensors in Biomedical Applications. ACS Appl. Mater. Interfaces 2022, 14, 9945–9969. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, X.; Xu, J.; Fang, Y.; Chen, G.; Song, Y.; Li, S.; Chen, J. Giant Magnetoelastic Effect in Soft Systems for Bioelectronics. Nat. Mater. 2021, 20, 1670–1676. [Google Scholar] [CrossRef]
- Su, Q.; Zou, Q.; Li, Y.; Chen, Y.; Teng, S.-Y.; Kelleher, J.T.; Nith, R.; Cheng, P.; Li, N.; Liu, W.; et al. A Stretchable and Strain-Unperturbed Pressure Sensor for Motion Interference–Free Tactile Monitoring on Skins. Sci. Adv. 2021, 7, eabi4563. [Google Scholar] [CrossRef]
- Wang, M.; Yan, Z.; Wang, T.; Cai, P.; Gao, S.; Zeng, Y.; Wan, C.; Wang, H.; Pan, L.; Yu, J.; et al. Gesture Recognition Using a Bioinspired Learning Architecture That Integrates Visual Data with Somatosensory Data from Stretchable Sensors. Nat. Electron. 2020, 3, 563–570. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, J.; Yang, J.; Huang, Y.; Zhang, Y.; Wang, Y.; Zhang, J.; Wang, Y.; Yuan, L.; Cai, M.; et al. Highly Sensitive Flexible Iontronic Pressure Sensor for Fingertip Pulse Monitoring. Adv. Healthc. Mater. 2020, 9, e2001023. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Yuan, W.; Li, Y.; Gao, P.; Tiwari, N.; Chen, X.; Wang, Z.; Niu, G.; Cheng, H. Wearable Pressure Sensors Based on MXene/Tissue Papers for Wireless Human Health Monitoring. ACS Appl. Mater. Interfaces 2021, 13, 60531–60543. [Google Scholar] [CrossRef]
- Wan, C.; Cai, P.; Guo, X.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z.; Luo, Y.; Loh, X.J.; Chen, X. An Artificial Sensory Neuron with Visual-Haptic Fusion. Nat. Commun. 2020, 11, 4602. [Google Scholar] [CrossRef]
- Zhu, J.; Song, Y.; Xue, X.; Liu, Z.; Mao, Q.; Jia, Z. An Eco-Friendly and Highly Sensitive loofah@CF/CNT 3D Piezoresistive Sensor for Human Activity Monitoring and Mechanical Cotrol. Sci. China Technol. Sci. 2022, 65, 2667–2674. [Google Scholar] [CrossRef]
- Wakimoto, S.; Kogawa, S.; Matsuda, H.; Nagaoka, K.; Kanda, T. Comparison of Smart Artificial Muscles with Different Functional Fibers. In Proceedings of the ACTUATOR; International Conference and Exhibition on New Actuator Systems and Applications 2021, Online, 17–19 February 2021; pp. 1–3. [Google Scholar]
- Felt, W.; Chin, K.Y.; Remy, C.D. Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems. Soft Robot. 2017, 4, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Hong, I.; Kim, M.; Im, S.; Roh, Y.; Kim, C.; Lim, J.; Kim, D.; Park, J.; Lee, S.; et al. Ultra-Stable and Tough Bioinspired Crack-Based Tactile Sensor for Small Legged Robots. npj Flex. Electron. 2023, 7, 22. [Google Scholar] [CrossRef]
- Lee, J.; Llerena Zambrano, B.; Woo, J.; Yoon, K.; Lee, T. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. Adv. Mater. 2020, 32, 1902532. [Google Scholar] [CrossRef]
- Felt, W.; Lu, S.; Remy, C.D. Modeling and Design of “Smart Braid” Inductance Sensors for Fiber-Reinforced Elastomeric Enclosures. IEEE Sens. J. 2018, 18, 2827–2835. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, W.; Kalantar-zadeh, K. Electronic Skins Based on Liquid Metals. Proc. IEEE 2019, 107, 2168–2184. [Google Scholar] [CrossRef]
- Wang, L.; Gui, Z.; Li, S.; Hu, Z. Impedance Variation of the Gap Sensing Coil-Type Conductive Polymer Composite in the Compressive Loading and Stress Relaxation Phases. Sens. Actuators A Phys. 2023, 364, 114831. [Google Scholar] [CrossRef]
- Li, Z.; Feng, D.; Li, B.; Zhao, W.; Xie, D.; Mei, Y.; Liu, P. Ultra-Wide Range, High Sensitivity Piezoresistive Sensor Based on Triple Periodic Minimum Surface Construction. Small 2023, 19, 2301378. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.; Chun, B.; Lim, J.; Han, Y.; So, H. Ultra-Broad Linear Range and Sensitive Flexible Piezoresistive Sensor Using Reversed Lattice Structure for Wearable Electronics. ACS Appl. Mater. Interfaces 2023, 15, 34120–34131. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Yin, L.-J.; Hao, Y.-N.; Zhong, S.-L.; Zhang, D.-L.; Bi, K.; Zhang, Y.-X.; Zhao, Y.; Dang, Z.-M. Flexible and Stretchable Capacitive Sensors with Different Microstructures. Adv. Mater. 2021, 33, e2008267. [Google Scholar] [CrossRef] [PubMed]
- Fassler, A.; Majidi, C. Soft-Matter Capacitors and Inductors for Hyperelastic Strain Sensing and Stretchable Electronics. Smart Mater. Struct. 2013, 22, 055023. [Google Scholar] [CrossRef]
- Felt, W.; Telleria, M.J.; Allen, T.F.; Hein, G.; Pompa, J.B.; Albert, K.; Remy, C.D. An Inductance-Based Sensing System for Bellows-Driven Continuum Joints in Soft Robots. Auton. Robot. 2019, 43, 435–448. [Google Scholar] [CrossRef]
- Choi, K.; Park, S.J.; Won, M.; Park, C.H. Soft Inductive Coil Spring Strain Sensor Integrated with SMA Spring Bundle Actuator. Sensors 2021, 21, 2304. [Google Scholar] [CrossRef]
- Zhao, H.; O’Brien, K.; Li, S.; Shepherd, R.F. Optoelectronically Innervated Soft Prosthetic Hand via Stretchable Optical Waveguides. Sci. Robot. 2016, 1, eaai7529. [Google Scholar] [CrossRef]
- Prituja, A.V.; Banerjee, H.; Ren, H. Electromagnetically Enhanced Soft and Flexible Bend Sensor: A Quantitative Analysis with Different Cores. IEEE Sens. J. 2018, 18, 3580–3589. [Google Scholar] [CrossRef]
- Dong, T.; Gu, Y.; Liu, T.; Pecht, M. Resistive and Capacitive Strain Sensors Based on Customized Compliant Electrode: Comparison and Their Wearable Applications. Sens. Actuators A Phys. 2021, 326, 112720. [Google Scholar] [CrossRef]
- Zhu, Z.; Estevez, D.; Feng, T.; Chen, Y.; Li, Y.; Wei, H.; Wang, Y.; Wang, Y.; Zhao, L.; Jawed, S.A.; et al. A Novel Induction-Type Pressure Sensor Based on Magneto-Stress Impedance and Magnetoelastic Coupling Effect for Monitoring Hand Rehabilitation. Small 2024, 20, 2400797. [Google Scholar] [CrossRef]
- Wang, T.; Chen, L.; Liu, H.; Zhu, H.; Zeng, Z.; Lu, Y.; Zhang, P.; Chen, Y.; Huang, Y.; Liu, G.-S.; et al. Ultrasensitive Bionic Photonic-Electronic Skin with Wide Red-Shift Mechanochromic Response. Light: Adv. Manuf. 2025, 6, 206–218. [Google Scholar] [CrossRef]
- Nur, R.; Matsuhisa, N.; Jiang, Z.; Nayeem, M.O.G.; Yokota, T.; Someya, T. A Highly Sensitive Capacitive-Type Strain Sensor Using Wrinkled Ultrathin Gold Films. Nano Lett. 2018, 18, 5610–5617. [Google Scholar] [CrossRef]
- Shi, Y.; Lü, X.; Zhao, J.; Wang, W.; Meng, X.; Wang, P.; Li, F. Flexible Capacitive Pressure Sensor Based on Microstructured Composite Dielectric Layer for Broad Linear Range Pressure Sensing Applications. Micromachines 2022, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Moheimani, R.; Hosseini, P.; Mohammadi, S.; Dalir, H. Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications. C 2022, 8, 26. [Google Scholar] [CrossRef]
- Grimes, C.A.; Mungle, C.S.; Zeng, K.; Jain, M.K.; Dreschel, W.R.; Paulose, M.; Ong, K.G. Wireless Magnetoelastic Resonance Sensors: A Critical Review. Sensors 2002, 2, 294–313. [Google Scholar] [CrossRef]
- Xing, Z.; Lin, J.; McCoul, D.; Zhang, D.; Zhao, J. Inductive Strain Sensor with High Repeatability and Ultra-Low Hysteresis Based on Mechanical Spring. IEEE Sens. J. 2020, 20, 14670–14675. [Google Scholar] [CrossRef]
- Lazarus, N.; Meyer, C.D.; Bedair, S.S.; Nochetto, H.; Kierzewski, I.M. Multilayer Liquid Metal Stretchable Inductors. Smart Mater. Struct. 2014, 23, 085036. [Google Scholar] [CrossRef]
- Hamaguchi, S.; Kawasetsu, T.; Horii, T.; Ishihara, H.; Niiyama, R.; Hosoda, K.; Asada, M. Soft Inductive Tactile Sensor Using Flow-Channel Enclosing Liquid Metal. IEEE Robot. Autom. Lett. 2020, 5, 4028–4034. [Google Scholar] [CrossRef]
- Mao, J.; He, Z.; Wu, Y.; Cao, J.; Zhao, S.; Chen, B.; Shang, J.; Liu, Y.; Li, R.-W. Ultra-High Resolution, Multi-Scenario, Super-Elastic Inductive Strain Sensors Based on Liquid Metal for the Wireless Monitoring of Human Movement. Mater. Adv. 2024, 5, 5813–5822. [Google Scholar] [CrossRef]
- Li, N.; Zhou, Y.; Li, Y.; Li, C.; Xiang, W.; Chen, X.; Zhang, P.; Zhang, Q.; Su, J.; Jin, B.; et al. Transformable 3D Curved High-Density Liquid Metal Coils—An Integrated Unit for General Soft Actuation, Sensing and Communication. Nat. Commun. 2024, 15, 7679. [Google Scholar] [CrossRef]
- Li, N.; Zhan, F.; Guo, M.; Yuan, X.; Chen, X.; Li, Y.; Zhang, G.; Wang, L.; Liu, J. Fingertip-Inspired Spatially Anisotropic Inductive Liquid Metal Sensors with Ultra-Wide Range, High Linearity and Exceptional Stability. Adv. Mater. 2025, 37, 2419524. [Google Scholar] [CrossRef]
- Ye, J.; Xing, Z.-R.; Gao, J.-Y.; Liu, J. Liquid Metal Coil. Mater. Today Commun. 2022, 32, 104120. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, J.; Chung, S.K.; Lee, J.B. (Jb) Magnetic Liquid Metals: A Review. Adv. Funct. Mater. 2024, 34, 2311153. [Google Scholar] [CrossRef]
- Jamalzadegan, S.; Kim, S.; Mohammad, N.; Koduri, H.; Hetzler, Z.; Lee, G.; Dickey, M.D.; Wei, Q. Liquid Metal-Based Biosensors: Fundamentals and Applications. Adv. Funct. Mater. 2024, 34, 2308173. [Google Scholar] [CrossRef]
- Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; de Castro, I.A.; Esrafilzadeh, D.; Barrow, S.J.; Dickey, M.D.; Kalantar-zadeh, K. Liquid Metals: Fundamentals and Applications in Chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111. [Google Scholar] [CrossRef]
- Zhou, L.-Y.; Gao, Q.; Zhan, J.-F.; Xie, C.-Q.; Fu, J.-Z.; He, Y. Three-Dimensional Printed Wearable Sensors with Liquid Metals for Detecting the Pose of Snakelike Soft Robots. ACS Appl. Mater. Interfaces 2018, 10, 23208–23217. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, X.; Xu, Y.; Gao, Y.; Peng, Y.; Wang, Y.; Feng, Z.; Wang, H. Programming Stretchable Planar Coils as Strain-Invariant Inductors and Ultrasensitive Wearable Sensors. Mater. Today Phys. 2025, 55, 101755. [Google Scholar] [CrossRef]
- Cho, E.; Chiu, L.L.Y.; Lee, M.; Naila, D.; Sadanand, S.; Waldman, S.D.; Sussman, D. Characterization of Mechanical and Dielectric Properties of Silicone Rubber. Polymers 2021, 13, 1831. [Google Scholar] [CrossRef]
- Rubino, E.; Ioppolo, T. Young’s Modulus and Loss Tangent Measurement of Polydimethylsiloxane Using an Optical Lever. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 747–751. [Google Scholar] [CrossRef]
- Mirzaei, M. Calculations of Self- and Mutual Inductances for Racetrack Coils Using Equivalent Models. IEEE Trans. Transp. Electrif. 2023, 9, 2177–2184. [Google Scholar] [CrossRef]
- Phillips, J.A.; Sanny, J. Experimental Evidence for the Biot–Savart Law. Phys. Teach. 2023, 61, 548. [Google Scholar] [CrossRef]
- Dalal, A.; Reena Joy, T.P.E.; Kumar, P. Mutual Inductance Computation Method for Coils of Different Geometries and Misalignments. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Grover, E.W.; Grover, F.C. Inductance Calculations: Working Formulas and Tables. Math. Comput. 1964, 18, 85. [Google Scholar] [CrossRef]
- Li, N.; Zhan, F.; Su, J.; Li, Y.; Chen, X.; Guo, M.; Wang, L.; Liu, J. Antagonistic Effect Between Deformation and Magnetism in Liquid Metal Coils Smart Architecture for Multi-Mode Sensing. Adv. Funct. Materials 2025, 2025, 2507514. [Google Scholar] [CrossRef]
- Wheeler, H.A. Formulas for the Skin Effect. Proc. IRE 1942, 30, 412–424. [Google Scholar] [CrossRef]
Layers | Turns | Function | Workmanship | Materials | Sensitivity | Reference |
---|---|---|---|---|---|---|
1 | 11 | Strain | Print coil patterns on flexible substrates by scraping | Ecoflex 0030 | 0.371 | [40] |
3 | 5 | Pressure | Sacrifice low-melting-point alloys to form microchannels | Ecoflex 0030 PDMS | 0.369 kPa−1 0.0657 kPa−1 | [42] |
1 | 15 | Strain | 3D printed microchannels | Ecoflex 0030 | 0.64 | [48] |
2 | 5 | Pressure | Sacrifice low-melting-point alloys to form microchannels | PDMS@Fe (Fe:PDMS = 1:1) | 0.0545 kPa−1 | [55] |
1 | 5 | Pressure and strain | Commercial silicone tubes are used as microchannels | PDMS and Silicone tube | 0.0113 kPa−1 0.183 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Li, K.; Zhang, Z.; Xiang, L.; Zhou, Y.; Sheng, B. Paperclip-Type Flexible Inductive Sensor Based on Liquid Metal Coils for Simple Fabrication and Multifunctional Applications. Micromachines 2025, 16, 965. https://doi.org/10.3390/mi16080965
Sun X, Li K, Zhang Z, Xiang L, Zhou Y, Sheng B. Paperclip-Type Flexible Inductive Sensor Based on Liquid Metal Coils for Simple Fabrication and Multifunctional Applications. Micromachines. 2025; 16(8):965. https://doi.org/10.3390/mi16080965
Chicago/Turabian StyleSun, Xun, Kaixin Li, Zifeng Zhang, Linling Xiang, Yihao Zhou, and Bin Sheng. 2025. "Paperclip-Type Flexible Inductive Sensor Based on Liquid Metal Coils for Simple Fabrication and Multifunctional Applications" Micromachines 16, no. 8: 965. https://doi.org/10.3390/mi16080965
APA StyleSun, X., Li, K., Zhang, Z., Xiang, L., Zhou, Y., & Sheng, B. (2025). Paperclip-Type Flexible Inductive Sensor Based on Liquid Metal Coils for Simple Fabrication and Multifunctional Applications. Micromachines, 16(8), 965. https://doi.org/10.3390/mi16080965