A Single-Layer Multimode Metasurface Antenna with a CPW-Fed Aperture for UWB Communication Applications
Abstract
:1. Introduction
2. Design of Metasurface Antenna
2.1. Antenna Geometry
2.2. Theory of Characteristic Mode
2.3. CMA of Uniform 4 × 4-Patch-Based Metasurface (MTS1)
2.4. CMA of Modified Metasurface with Parasitic Patches (MTS2)
2.5. CMA of Proposed Metasurface with Split Slots (MTS3)
2.6. Design of the CPW-Fed Slot
3. Simulations and Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huynh, T.; Lee, K.F. Single-layer single-patch wideband microstrip antenna. Electron. Lett. 1995, 31, 1310–1312. [Google Scholar] [CrossRef]
- Wong, K.L. Compact and Broadband Microstrip Antennas; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Federal Communications Commission. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wide-Band Transmission Systems. FCC ET Docket. 2002, 02-48, 1–118. [Google Scholar]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
- Jeyapoornima, B.; Sheela, J.J.J.; Malarvizhi, C.; Vanaja, S.; Krishnan, R.; Atla, R. Multi-band narrow strip antenna for 5G/WLAN/WiMAX Wireless Communication. In Proceedings of the International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021. [Google Scholar]
- Garg, R.; Bahl, I.J.; Ittipiboon, A.; Bhartia, P. Microstrip Antenna Design Handbook; Artech House Boston: Boston, MA, USA, 2001. [Google Scholar]
- Hu, J.; Hao, Z.-C.; Hong, W. Design of a wideband quad-polarization reconfigurable patch antenna array using a stacked structure. IEEE Trans. Antenna Propag. 2017, 65, 3014–3023. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, Z. Compact and high gain UHF/UWB RFID reader antenna. IEEE Trans. Antennas Propag. 2017, 65, 5002–5010. [Google Scholar] [CrossRef]
- Yang, S.-L.S.; Luk, K.-M. A wideband l-probes fed circularly polarized reconfigurable microstrip patch antenna. IEEE Trans. Antennas Propag. 2008, 56, 581–584. [Google Scholar] [CrossRef]
- Sun, D.; You, L. A broadband impedance matching method for proximity-coupled microstrip antenna. IEEE Trans. Antennas Propag. 2010, 58, 1392–1397. [Google Scholar] [CrossRef]
- Wi, S.-H.; Lee, Y.-S.; Yook, J.-G. Wideband microstrip patch antenna with U-shaped parasitic elements. IEEE Trans. Antennas Propag. 2007, 55, 1196–1199. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, Z.; Liu, J.; Zhang, J.; Zhang, Z.; Hao, Z.C.; Wang, X. Broadband high-efficiency multiple vortex beams generated by an interleaved geometric-phase multifunctional metasurface. Opt. Mat. Express 2020, 10, 1531–1544. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Eleftheriade, G.V.; Balmain, K.G. Negative-Refraction Metamaterials: Fundamental Principles and Applications; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Liu, W.E.; Chen, Z.N.; Qing, X.; Shi, J.; Lin, F.H. Miniaturized wideband metasurface antennas. IEEE Trans. Antennas Propag. 2017, 65, 7345–7349. [Google Scholar] [CrossRef]
- Sun, W.; Li, Y.; Zhang, Z.; Chen, P.Y. Low-profile and wideband microstrip antenna using quasi-periodic aperture and slot-to-CPW Transition. IEEE Trans. Antennas Propag. 2019, 67, 632–637. [Google Scholar] [CrossRef]
- Nie, N.-S.; Yang, X.-S.; Chen, Z.N.; Wang, B.-Z. A low-profile wideband hybrid metasurface antenna array for 5G and WiFi systems. IEEE Trans. Antennas Propag. 2020, 68, 665–671. [Google Scholar] [CrossRef]
- de Dieu Ntawangaheza, J.; Sun, L.; Li, Y.; Biao, D.; Xie, Z.; Rushingabigwi, G. A single-layer planar low-profile wideband microstrip line-fed metasurface antenna. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1641–1645. [Google Scholar] [CrossRef]
- Wang, J.; Wong, H.; Ji, Z.; Wu, Y. Broadband CPW-fed aperture coupled metasurface antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 517–520. [Google Scholar] [CrossRef]
- Ntawangaheza, J.D.D.; Sun, L.; Xie, Z.; Pang, Y.; Zheng, Z.; Rushingabigwi, G. A single-layer low-profile broadband metasurface antenna array for sub-6 GHz 5G communication systems. IEEE Trans. Antennas Propag. 2021, 69, 2061–2071. [Google Scholar] [CrossRef]
- Nkimbeng, C.H.S.; Wang, H.; Park, I. Low-profile wideband unidirectional circularly polarized metasurface-based bowtie slot antenna. IEEE Access 2021, 9, 134743–134752. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.J.; Abbas, A.; Kim, N. Metasurface-based single-layer wideband circularly polarized MIMO antenna for 5G millimeter-wave systems. IEEE Access 2020, 8, 130293–130304. [Google Scholar] [CrossRef]
- Hussain, N.; Tran, H.H.; Le, T.T. Single-layer wideband high-gain circularly polarized patch antenna with parasitic elements. Int. J. Electron. Commun. 2019, 113, 152992. [Google Scholar] [CrossRef]
- Liang, Z.; Ouyang, J.; Yang, F. Low-profile wideband circularly polarized single-layer metasurface antenna. Electron. Lett. 2018, 54, 1362–1364. [Google Scholar] [CrossRef]
- Harrington, R.; Mautz, J. Theory of characteristic modes for conducting bodies. IEEE Trans. Antennas Propag. 1971, AP-19, 622–628. [Google Scholar] [CrossRef]
- Harrington, R.; Mautz, J. Computation of characteristic modes for conducting bodies. IEEE Trans. Antennas Propag. 1971, AP-19, 629–639. [Google Scholar] [CrossRef]
- Cabedo-Fabres, M.; Antonino-Daviu, E.; Valero-Nogueira, A.; Bataller, M.F. The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications. IEEE Antennas Propag. Mag. 2007, 49, 52–68. [Google Scholar] [CrossRef]
- Lin, F.H.; Chen, Z.N. Low-profile wideband metasurface antennas using characteristic mode analysis. IEEE Trans. Antennas Propag. 2017, 65, 1706–1713. [Google Scholar] [CrossRef]
- Xue, M.; Wan, W.; Wang, Q.; Cao, L. Low-profile millimeter-wave broadband metasurface antenna with four resonances. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 463–467. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.N. A dual-band metasurface antenna using characteristic mode analysis. IEEE Trans. Antennas Propag. 2018, 66, 5620–5624. [Google Scholar] [CrossRef]
- Liu, S.; Yang, D.; Chen, Y.; Sun, K.; Zhang, X.; Xiang, Y. Low-profile broadband metasurface antenna under multimode resonance. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1696–1700. [Google Scholar] [CrossRef]
- Lin, F.H.; Chen, Z.N. Resonant metasurface antennas with resonant apertures: Characteristic mode analysis and dual-polarized broadband low-profile design. IEEE Trans. Antennas Propag. 2021, 69, 3512–3516. [Google Scholar] [CrossRef]
- Liu, S.; Yang, D.; Chen, Y.; Zhang, X.; Xiang, Y. High isolation and low cross-polarization of low-profile dual-polarized antennas via metasurface mode optimization. IEEE Trans. Antennas Propag. 2021, 69, 2999–3004. [Google Scholar] [CrossRef]
- Garbacz, R.J. Modal expansions for resonance scattering phenomena. Proc. IEEE 1965, 53, 856–864. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.N. Wideband sidelobe-level reduced Ka-band metasurface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis. IEEE Trans. Antennas Propag. 2020, 68, 1356–1365. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Z.N.; Qing, X. Metamaterial-based low-profile broadband aperture coupled grid-slotted patch antenna. IEEE Trans. Antennas Propag. 2015, 63, 3325–3329. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S.; Xue, Q.; Che, W.; Shen, G. Novel filtering method based on metasurface antenna and its application for wideband high-gain filtering antenna with low profile. IEEE Trans. Antennas Propag. 2018, 67, 1535–1544. [Google Scholar] [CrossRef]
- An, W.; Li, S.; Sun, W.; Li, Y. Low-profile wideband microstrip antenna based on multiple modes with partial apertures. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1372–1376. [Google Scholar] [CrossRef]
- Liu, N.-W.; Zhu, L.; Choi, W.-W.; Zhang, X. A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance. IEEE Trans. Antennas Propag. 2017, 65, 1055–1062. [Google Scholar] [CrossRef]
Ref | Total Size (λ0 × λ0 × λ0) | IBW | Peak Gain (dBi) | XP (dB) | NO. of Substrate Layer |
---|---|---|---|---|---|
[16] | 1.10 × 1.10 × 0.052 | 36.5% (3.96–5.73 GHz) | 10.45 | −15 | 1 |
[17] | 1.63 × 1.63 × 0.070 | 28% (4.41–5.85 GHz) | 12.1 | <−30 | 2 |
[18] | 1.00 × 1.10 × 0.058 | 26.5% (5.0–6.6 GHz) | 8.68 | −20 | 1 |
[19] | 1.28 × 1.28 × 0.090 | 67.3% (4.81–9.69 GHz) | 9.18 | −15 | 1 |
[20] | 1.40 × 1.22 × 0.054 | 41.13% (4.48–6.80 GHz) | 10.14 | −17 | 1 |
[28] | 1.78 × 1.78 × 0.070 | 31% (4.75–6.50 GHz) | 14.5 | −30 | 2 |
[38] | 1.29 × 1.01 × 0.044 | 57.3% (2.94–5.30 GHz) | >5.26 | −18 | 2 + air gap |
This work | 1.40 × 1.40 × 0.075 | 79% (3.9–9.0 GHz) | 8.2 | −20 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Liu, Z.; Yang, H.; Sun, D. A Single-Layer Multimode Metasurface Antenna with a CPW-Fed Aperture for UWB Communication Applications. Micromachines 2023, 14, 249. https://doi.org/10.3390/mi14020249
Jiang S, Liu Z, Yang H, Sun D. A Single-Layer Multimode Metasurface Antenna with a CPW-Fed Aperture for UWB Communication Applications. Micromachines. 2023; 14(2):249. https://doi.org/10.3390/mi14020249
Chicago/Turabian StyleJiang, Shu, Zhiqiang Liu, Huijun Yang, and Dongquan Sun. 2023. "A Single-Layer Multimode Metasurface Antenna with a CPW-Fed Aperture for UWB Communication Applications" Micromachines 14, no. 2: 249. https://doi.org/10.3390/mi14020249
APA StyleJiang, S., Liu, Z., Yang, H., & Sun, D. (2023). A Single-Layer Multimode Metasurface Antenna with a CPW-Fed Aperture for UWB Communication Applications. Micromachines, 14(2), 249. https://doi.org/10.3390/mi14020249