Upgraded User-Friendly Image-Activated Microfluidic Cell Sorter Using an Optimized and Fast Deep Learning Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Microfluidic Device
2.2. Bead Sample Preparation and Loading
2.3. Image Processing Pipeline for the Real-Time Sorting
2.4. Data Preparation for Training a CNN
2.5. Upgrade of Cell Sorting System
3. Results and Discussion
3.1. Processing Time and Classification Accuracy of the Upgraded Cell Sorting System
3.2. High-Resolution Linear Piezo-Stage and LED Strobe Light to Acquire In-Focus Blur-Free Images of the Fast-Flowing Cells
3.3. Vertical Syringe Pump Setup to Prevent Particle Sedimentation
3.4. Real-Time Sorting of Fluorescent Polystyrene Beads
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, Y.; Zhang, A.C.; Han, Y.; Li, J.; Chen, C.; Lo, Y.H. Machine learning based real-time image-guided cell sorting and classification. Cytom. Part A 2019, 95, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.A.; Urbanska, M.; Herbig, M.; Nötzel, M.; Kräter, M.; Rosendahl, P.; Herold, C.; Toepfner, N.; Kubánková, M.; Goswami, R.; et al. Intelligent image-based deformation-assisted cell sorting with molecular specificity. Nat. Methods 2020, 17, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Waller, L.; Chen, J.; Tang, R.; Zhang, Z.; Gagne, I.; Gutierrez, B.; Cho, S.H.; Tseng, C.Y.; Lian, I.Y.; et al. Label-free image-encoded microfluidic cell sorter with a scanning Bessel beam. APL Photonics 2021, 6, 076101. [Google Scholar] [CrossRef]
- Nitta, N.; Iino, T.; Isozaki, A.; Yamagishi, M.; Kitahama, Y.; Sakuma, S.; Suzuki, Y.; Tezuka, H.; Oikawa, M.; Arai, F.; et al. Raman image-activated cell sorting. Nat. Commun. 2020, 11, 3452. [Google Scholar] [CrossRef] [PubMed]
- Nitta, N.; Sugimura, T.; Isozaki, A.; Mikami, H.; Hiraki, K.; Sakuma, S.; Iino, T.; Arai, F.; Endo, T.; Fujiwaki, Y.; et al. Intelligent image-activated cell sorting. Cell 2018, 175, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Isozaki, A.; Mikami, H.; Tezuka, H.; Matsumura, H.; Huang, K.; Akamine, M.; Hiramatsu, K.; Iino, T.; Ito, T.; Karakawa, H.; et al. Intelligent image-activated cell sorting 2.0. Lab Chip 2020, 20, 2263–2273. [Google Scholar] [CrossRef] [PubMed]
- Ota, S.; Horisaki, R.; Kawamura, Y.; Ugawa, M.; Sato, I.; Hashimoto, K.; Kamesawa, R.; Setoyama, K.; Yamaguchi, S.; Fujiu, K.; et al. Ghost cytometry. Science 2018, 360, 1246–1251. [Google Scholar] [CrossRef] [PubMed]
- Mutafopulos, K.; Spink, P.; Lofstrom, C.; Lu, P.; Lu, H.; Sharpe, J.; Franke, T.; Weitz, D. Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated cell sorter (μFACS). Lab Chip 2019, 19, 2435–2443. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Yuan, X.; Glidle, A.; Fu, Y.; Furusho, H.; Yang, T.; Yin, H. Automated Raman based cell sorting with 3D microfluidics. Lab Chip 2020, 20, 4235–4245. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Mankar, S.; Maslova, A.; Ajiri, T.; Yotoriyama, T. Amplified piezoelectrically actuated on-chip flow switching for a rapid and stable microfluidic fluorescence activated cell sorter. RSC Adv. 2020, 10, 40395–40405. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mahjoubfar, A.; Chen, C.L.; Niazi, K.R.; Pei, L.; Jalali, B. Deep cytometry: Deep learning with real-time inference in cell sorting and flow cytometry. Sci. Rep. 2019, 9, 11088. [Google Scholar] [CrossRef]
- LaBelle, C.A.; Massaro, A.; Cortés-Llanos, B.; Sims, C.E.; Allbritton, N.L. Image-based live cell sorting. Trends Biotechnol. 2021, 39, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Chen, A.; Zhang, X.; Fan, C.; Li, K.; Shen, J. Deep learning based cell classification in imaging flow cytometer. ASP Trans. Pattern Recognit. Intell. Syst. 2021, 1, 18–27. [Google Scholar] [CrossRef]
- Mikami, H.; Kawaguchi, M.; Huang, C.J.; Matsumura, H.; Sugimura, T.; Huang, K.; Lei, C.; Ueno, S.; Miura, T.; Ito, T.; et al. Virtual-freezing fluorescence imaging flow cytometry. Nat. Commun. 2020, 11, 1162. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, S.E.; Doh, J.; Kim, K.; Chung, W.K. User-friendly image-activated microfluidic cell sorting technique using an optimized, fast deep learning algorithm. Lab Chip 2021, 21, 1798–1810. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Moon, B.U.; Hidrovo, C.H. Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices. J. Micromech. Microeng. 2013, 23, 095024. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lane, S.I.; Butement, J.; Harrington, J.; Underwood, T.; Shrimpton, J.; West, J. Perpetual sedimentation for the continuous delivery of particulate suspensions. Lab Chip 2019, 19, 3771–3775. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, F. A remote syringe for cells, beads and particle injection in microfluidic channels. Chips Tips (Lab Chip) 2009. [Google Scholar]
- Liu, H.; Li, M.; Wang, Y.; Piper, J.; Jiang, L. Improving single-cell encapsulation efficiency and reliability through neutral buoyancy of suspension. Micromachines 2020, 11, 94. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Kim, S.-E.; Nam, S.; Doh, J.; Chung, W.K. Upgraded User-Friendly Image-Activated Microfluidic Cell Sorter Using an Optimized and Fast Deep Learning Algorithm. Micromachines 2022, 13, 2105. https://doi.org/10.3390/mi13122105
Lee K, Kim S-E, Nam S, Doh J, Chung WK. Upgraded User-Friendly Image-Activated Microfluidic Cell Sorter Using an Optimized and Fast Deep Learning Algorithm. Micromachines. 2022; 13(12):2105. https://doi.org/10.3390/mi13122105
Chicago/Turabian StyleLee, Keondo, Seong-Eun Kim, Seokho Nam, Junsang Doh, and Wan Kyun Chung. 2022. "Upgraded User-Friendly Image-Activated Microfluidic Cell Sorter Using an Optimized and Fast Deep Learning Algorithm" Micromachines 13, no. 12: 2105. https://doi.org/10.3390/mi13122105
APA StyleLee, K., Kim, S.-E., Nam, S., Doh, J., & Chung, W. K. (2022). Upgraded User-Friendly Image-Activated Microfluidic Cell Sorter Using an Optimized and Fast Deep Learning Algorithm. Micromachines, 13(12), 2105. https://doi.org/10.3390/mi13122105