# Overview of Power Electronic Switches: A Summary of the Past, State-of-the-Art and Illumination of the Future

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Brief History

^{+}type surface and shallow impurity P

^{+}regions with high impurity [56]. It overcame the disadvantages of insulated gate rectifier (IGR), of slow switching speed, short circuit safe operating area (SOA) and reverse biased SOA. To improve the switching characteristics of IGBT, Goodmann introduced n

^{+}buffer layer in 1983 [57], with the trade-off of forward voltage drop. Since IGBT has power MOSFET structure, to improve forward drop voltage, trench-gate technology was implemented with ultra large scale integration (ULSI) techniques [58]. Close arrangement of trench cells causes the big channel width problems of short circuit, which only can be solved using current limitation circuits. The combination of injection enhancement (IE) and IGBT formed a new structure called as IEGT with characteristics of low forward voltage drop, improved surface gate structure, and carrier enhancement. Takahashi further introduced improvement in IEGT which is known as CSTBT (carrier store trench gate bipolar transistor) by adding n-doped layer below p-type trench cell [37].

_{DS(ON)}could be as low as 20 times that of silicon devices) of the devices made from wide band gap semiconductors makes this technology very promising and hence the potential future of power electronics [69]. In addition to these advantages, wide band gap (WBG) devices are capable of operating at high frequencies thus having the potential to require much lower filter sizes when they are utilized in converter circuits [70,71,72,73,74,75,76,77,78,79,80]. The efficiency and power density of the converter circuits is also positively impacted when WBG switches are used. For now WBG technology is used mainly in diodes, MOSFETs and IGBTs [81,82,83,84,85,86,87]. There is, however, no reasonable doubt that WBG technology is the key to the future of power electronic switches [88,89,90].

## 3. Classification of Power Electronic Switches

#### 3.1. Diodes

#### 3.2. Transistors

_{2}) material, labelled as the deflection layer in Figure 6 [109,110]. There are two kinds of MOSFETs, as shown in Figure 6, enhancement (E) mode and depletion (D) mode, enhanced MOSFETs (EMOSFETs) also known as insulated-gate field effect transistors (IGFETs) are widely used, because of polycrystalline silicon gate materials [111].

_{2}layer. With the increase in applied voltage; more electrons are attracted into the channel, increasing conductivity and below the threshold voltage, no channel is formed into the substrate [94]. Due to high drain to source resistance as a result of long thin lateral channel alongside insulation layer, EMOSFETs are suitable for low power applications. There are four types of EMOSFETs, the laterally diffused MOSFET (LDMOSFET), the V-groove MOSFET, the T-groove MOSFET, and the dual-gate MOSFET. The LDMOSFET structure has a shorter channel between the lightly doped source and drain [116]. It gives higher current and voltage than conventional EMOSFET and thus is suitable for high power applications. The VMOSFET structure has two source gates on top with a gate in between them and a drain at the bottom. The wide and short channel is induced between drain and source with less resistance, thus resulting in high current and power dissipation and better frequency response. The channel is formed along the V-groove between two sources and the drain, with thickness dependent upon the doping and diffusion time. In the TMOSFET structure, the source is all over top surface and drain is at the bottom, giving short vertical channel with more packing density than VMOSFET. Dual-gate MOSFETs have two gates giving low input capacitance and high-frequency applications with automatic gain control. To maintain the long-channel behavior of MOSFET, many parameters were altered during previous researches. In Brews et al., an empirical equation was proposed to find a relation between required parameters to be altered by observing long channel subthreshold behavior. The parameters considered were bias, doping level, junction depth and oxide thickness range [112,113].

_{p}and parasitic resistor is formed within the IGBT device because of its NPNP-like structure [117]. These parasitic elements do not affect normal operation of IGBT unless under certain conditions, like if the collector current exceeds a certain level, then the parasitic transistor Q

_{p}may turn on. When Q

_{p}is turned on, combination of Q

_{p}and Q

_{1}output transistor creates parasitic element. This parasitic element will keep the device in always ON mode, which is known as latch up condition. It can be avoided by controlling the device operation within specified limit values [118].

^{+}diffusion and short circuit of P-base region using emitter [117]. There are two types of IGBT structures, the symmetric and asymmetric blocking structures [119]. Symmetric blocking IGBT structure is known as non-punch-through (NPT) IGBT device since because of lightly doped N-drift region, electric field does not spread across its entire width [120]. In asymmetric IGBT also known as punch through (PT) structure as shown in Figure 7, an N-buffer layer, also called as field stop layer is introduced in the N-drift region. Unlike NPT IGBT, electric field spreads across the entire width of the N-drift region. In PT IGBT, lower forward voltage drop can be achieved by reducing thickness of N-drift region. PT IGBT operates in the first quadrant of the v-i characteristics and thus is useful in DC applications [121].

#### 3.3. Thyristor Families

## 4. Summary

## 5. Reliability of Power Electronic Switches

## 6. Future Trends

_{2}-O

_{3}is one of the newest entries in the ultrawide-bandgap class of semiconductors, its properties and availability makes it particularly attractive. Its main disadvantage is its poor thermal conductivity and a lack of success in p-type doping [202].

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- United Nations. “World: Total Population”, World Population Prospects 2019: Highlights. Available online: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html (accessed on 13 August 2020).
- United Nations Population Fund. “World Population Dashboard”. Total Population in Millions. 2020. Available online: https://www.unfpa.org/data/world-population-dashboard (accessed on 29 October 2020).
- The World Bank. “Population growth (annual %)”. World Bank Open Data. Available online: https://data.worldbank.org/indicator/SP.POP.GROW (accessed on 29 October 2020).
- IEA-International Energy Agency. World Energy Outlook 2018; IEA: Paris, France, 2018. [Google Scholar]
- Vilathgamuwa, M.; Nayanasiri, D.; Gamini, S. Power Electronics for Photovoltaic Power Systems. Synth. Lect. Power Electron.
**2015**, 5, 1–131. [Google Scholar] [CrossRef] - Bose, B.K. Global Warming: Energy, Environmental Pollution, and the Impact of Power Electronics. IEEE Ind. Electron. Mag.
**2010**, 4, 6–17. [Google Scholar] [CrossRef] - Bose, B.K. Power Electronics, Smart Grid, and Renewable Energy Systems. Proc. IEEE
**2017**, 105, 2011–2018. [Google Scholar] [CrossRef] - Mazumder, S.K. An Overview of Photonic Power Electronic Devices. IEEE Trans. Power Electron.
**2016**, 31, 6562–6574. [Google Scholar] [CrossRef] - Bindra, A. Uncovering the State of Adoption of Wide-Bandgap Power Devices. IEEE Power Electron. Mag.
**2018**, 5, 4–6. [Google Scholar] [CrossRef] - Tzou, A.-J.; Hsieh, D.-H.; Chen, S.-H.; Liao, Y.-K.; Li, Z.-Y.; Chang, C.-Y.; Kuo, H.-C. An Investigation of Carbon-Doping-Induced Current Collapse in GaN-on-Si High Electron Mobility Transistors. Electronics
**2016**, 5, 28. [Google Scholar] [CrossRef] [Green Version] - Dong, Y.; Son, D.-H.; Dai, Q.; Lee, J.-H.; Won, C.-H.; Kim, J.-G.; Chen, D.; Lee, J.-H.; Lu, H.; Zhang, R. High Sensitive pH Sensor Based on AlInN/GaN Heterostructure Transistor. Sensors
**2018**, 18, 1314. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Gu, W.; Xu, X.; Zhang, L.; Gao, Z.; Hu, X.; Zhang, Z. Study on Neutron Irradiation-Induced Structural Defects of GaN-Based Heterostructures. Crystals
**2018**, 8, 198. [Google Scholar] [CrossRef] [Green Version] - Yuan, S.-H.; Chang, F.-Y.; Wuu, D.-S.; Horng, R.-H. AlGaN/GaN MOS-HEMTs with Corona-Discharge Plasma Treatment. Crystals
**2017**, 7, 146. [Google Scholar] [CrossRef] [Green Version] - Dogmus, E.; Kabouche, R.; Lepilliet, S.; Linge, A.; Zegaoui, M.; Ben-Ammar, H.; Chauvat, M.-P.; Ruterana, P.; Gamarra, P.; Lacam, C. InAlGaN/GaN HEMTs at Cryogenic Temperatures. Electronics
**2016**, 5, 31. [Google Scholar] [CrossRef] [Green Version] - Caddemi, A.; Cardillo, E.; Patanè, S.; Triolo, C. Light Exposure Effects on the DC Kink of AlGaN/GaN HEMTs. Electronics
**2019**, 8, 698. [Google Scholar] [CrossRef] [Green Version] - Meneghini, M.; Hilt, O.; Wuerfl, J.; Meneghesso, G. Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate. Energies
**2017**, 10, 153. [Google Scholar] [CrossRef] [Green Version] - Zeng, F.; An, J.; Zhou, G.; Li, W.; Wang, H.; Duan, T.; Jiang, L.; Yu, H. A Comprehensive Review of Recent Progress on GaN High Electron Mobility Transistors: Devices, Fabrication and Reliability. Electronics
**2018**, 7, 377. [Google Scholar] [CrossRef] [Green Version] - Chou, P.-C.; Chen, S.-H.; Hsieh, T.-E.; Cheng, S.; del Alamo, J.; Chang, E. Evaluation and Reliability Assessment of GaN-on-Si MIS-HEMT for Power Switching Applications. Energies
**2017**, 10, 233. [Google Scholar] [CrossRef] [Green Version] - Roccaforte, F.; Greco, G.; Fiorenza, P.; Iucolano, F. An Overview of Normally-Off GaN-Based High Electron Mobility Transistors. Materials
**2019**, 12, 1599. [Google Scholar] [CrossRef] [Green Version] - Millaán, J. Wide band-gap power semiconductor devices. Iet Circuits Devices Syst.
**2007**, 1, 372. [Google Scholar] [CrossRef] - Chen, R.; Li, R.; Zhou, S.; Chen, S.; Huang, J.; Wang, Z. An X-Band 40 W Power Amplifier GaN MMIC Design by Using Equivalent Output Impedance Model. Electronics
**2019**, 8, 99. [Google Scholar] [CrossRef] [Green Version] - Han, T.; Liu, H.; Wang, S.; Chen, S.; Li, W.; Yang, X.; Cai, M.; Yang, K. Design and Investigation of the Junction-Less TFET with Ge/Si0.3Ge0.7/Si Heterojunction and Heterogeneous Gate Dielectric. Electronics
**2019**, 8, 476. [Google Scholar] [CrossRef] [Green Version] - Guan, H.; Wang, S.; Chen, L.; Gao, B.; Wang, Y.; Jiang, C. Channel Characteristics of InAs/AlSb Heterojunction Epitaxy: Comparative Study on Epitaxies with Different Thickness of InAs Channel and AlSb Upper Barrier. Coatings
**2019**, 9, 318. [Google Scholar] [CrossRef] [Green Version] - Zhang, Z.; Guo, B.; Wang, F. Evaluation of Switching Loss Contributed by Parasitic Ringing for Fast Switching Wide Band-Gap Devices. IEEE Trans. Power Electron.
**2019**, 34, 9082–9094. [Google Scholar] [CrossRef] - Zhang, Z.; Guo, B.; Wang, F.F.; Jones, E.A.; Tolbert, L.M.; Blalock, B.J. Methodology for Wide Band-Gap Device Dynamic Characterization. IEEE Trans. Power Electron.
**2017**, 32, 9307–9318. [Google Scholar] [CrossRef] - Ma, J.; Matioli, E. Slanted Tri-Gates for High-Voltage GaN Power Devices. IEEE Electron Device Lett.
**2017**, 38, 1305–1308. [Google Scholar] [CrossRef] - Ned, M.; Tore, M.U.; William, P.R. Power Electronics: Converters, Applications and Design, 2nd ed.; John Wiley and Sons Ltd.: New York, NY, USA, 1995. [Google Scholar]
- Shenai, K. The Figure of Merit of a Semiconductor Power Electronics Switch. IEEE Trans. Electron Devices
**2018**, 65, 4216–4224. [Google Scholar] [CrossRef] - Mohammed, S.A.; Abdel-Moamen, A.M.; Hasanin, B. A Review of the State-Of-The-Art of Power Electronics For Power System Applications. JECER
**2013**, 1, 43–52. [Google Scholar] - Owen, E.L. Fiftieth anniversary of modern power electronics: The Silicon Controlled Rectifier. In Proceedings of the 2007 IEEE Conference on the History of Electric Power, Newark, NJ, USA, 3–5 August 2007; pp. 201–211. [Google Scholar] [CrossRef]
- Holonyak, N. The silicon p-n-p-n switch and controlled rectifier (thyristor). IEEE Trans. Power Electron.
**2001**, 16, 8–16. [Google Scholar] [CrossRef] - Arns, R.G. The other transistor: Early history of the metal-oxide semiconductor field-effect transistor. Eng. Sci. Educ. J.
**1998**, 7, 233–240. [Google Scholar] [CrossRef] - Bardeen, J.; Brattain, W.H. The Transistor, A Semiconductor Triode. Proc. IEEE
**1998**, 86, 29–30. [Google Scholar] [CrossRef] - Holonyak, N. John Bardeen and the Point-Contact Transistor. Phys. Today
**1992**, 45, 36–43. [Google Scholar] [CrossRef] - Deffree, S. “Transistor Caps Off ‘Miracle Month’, 23 December 1947”. EDN Network. Available online: https://www.edn.com/electronics-blogs/edn-moments/4403872/Transistor-caps-off--Miracle-Month--December-23--1947 (accessed on 27 August 2019).
- Deffree, S. “Bell Labs Announces Junction Transistor, 5 July 1951”. EDN Network. Available online: https://www.edn.com/electronics-blogs/edn-moments/4376734/Bell-Labs-announces-junction-transistor--July-5-1951 (accessed on 27 August 2019).
- Iwamuro, N.; Laska, T. IGBT history, state-of-the-art, and future prospects. IEEE Trans. Electron Devices
**2017**, 64, 741–752. [Google Scholar] [CrossRef] - MacNeil, J. Lilienfeld Patents Field Effect Transistor, 8 October 1926. EDN Network. Available online: https://www.edn.com/electronics-blogs/edn-moments/4422371/Lilienfeld-patents-field-effect-transistor--October-8--1926 (accessed on 27 August 2019).
- Riordan, M.; Hoddeson, L. Origins of the pn junction. IEEE Spectr.
**1997**, 34, 46–51. [Google Scholar] [CrossRef] - Riordan, M. The lost history of the transistor. IEEE Spectr.
**2004**, 41, 44–49. [Google Scholar] [CrossRef] - Scaff, J.H.; Ohl, R.S. Development of Silicon Crystal Rectifiers for Microwave Radar Receivers. Bell Syst. Tech. J.
**1947**, 26, 1–30. [Google Scholar] [CrossRef] - Goldstein, H. The irresistible transistor. IEEE Spectr.
**2003**, 40, 42–47. [Google Scholar] [CrossRef] - Shockley, W.; Pearson, G.L. Modulation of Conductance of Thin Films of Semi-Conductors by Surface Charges. Phys. Rev.
**1948**, 74, 232–233. [Google Scholar] [CrossRef] - Shockley, W. A Unipolar ‘Field-Effect’ Transistor. Proc. Ire
**1952**, 40, 1365–1376. [Google Scholar] [CrossRef] - Meindl, J.D. A history of low power electronics: How it began and where it’s headed. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation—ISSAC ’97, Monterey, CA, USA, 18–20 August 1997; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 1997. [Google Scholar] [CrossRef]
- Brinkman, W.F.W.F.; Haggan, D.E.D.E.; Troutman, W.W.W.W. A history of the invention of the transistor and where it will lead us. IEEE J. Solid-State Circuits
**1997**, 32, 1858–1865. [Google Scholar] [CrossRef] [Green Version] - Early, J.M. Out to Murray Hill to play: An early history of transistors. IEEE Trans. Electron Devices
**2001**, 48, 2468–2472. [Google Scholar] [CrossRef] - Atalla, M.M.; Tannenbaum, E.; Scheibner, E.J. Stabilization of Silicon Surfaces by Thermally Grown Oxides. Bell Syst. Tech. J.
**1959**, 38, 749–783. [Google Scholar] [CrossRef] - Bassett, R. New Technology, New People, New Organizations: The Rise of the MOS Transistor, 1945–1975. Bus. Econ. Hist.
**1998**, 27, 1–7. [Google Scholar] - Ross, I.M. The invention of the transistor. Proc. IEEE
**1998**, 86, 7–28. [Google Scholar] [CrossRef] - Ross, I. The Transistor Anniversary. In Proceedings of the Technical Papers. International Symposium on VLSI Technology, Systems, and Applications, Taipei, Taiwan, 3–5 June 1997; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 1997; pp. 1–8. [Google Scholar] [CrossRef]
- Somos, I. Switching characteristic of silicon power-controlled rectifiers: II—Turn-off action and dv/dt self-switching. IEEE Trans. Commun. Electron.
**2013**, 83, 861–871. [Google Scholar] [CrossRef] - Becke, H.W.; Neilson, J.M. A new approach to the design of a gate turn-off thyristor. In Proceedings of the 1975 IEEE Power Electronics Specialists Conference, Culver City, CA, USA, 9–11 June 1975; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 1975; pp. 292–299. [Google Scholar]
- Kurata, M. A new cad-model of a gate turn-off thyristor. In Proceedings of the 1974 IEEE Power Electronics Specialists Conference, Murray Hill, NJ, USA, 10–12 June 1974; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 1974; pp. 125–133. [Google Scholar] [CrossRef]
- Gutzwiller, F.W. Thyristor Semiconductor Components Today. IEEE Trans. Ind. Gen. Appl.
**1965**, 1, 03–409. [Google Scholar] [CrossRef] - Nakagawa, A.; Yamaguchi, Y.; Watanabe, K.; Ohashi, H.; Kurata, M. Experimental and numerical study of non-latch-up bipolar-mode MOSFET characteristics. In Proceedings of the 1985 International Electron Devices Meeting, Washington, DC, USA, 1–4 December 1985; pp. 150–153. [Google Scholar] [CrossRef]
- Chii, L.Y.; Samudra, S.G.; Chih-fang, H. Power Microelectronics: Device And Process Technologies, 2nd ed.; World Scientific Publishing Company: Singapore, 2017. [Google Scholar]
- Johnson, C.M. Current state-of-the-art and future prospects for power semiconductor devices in power transmission and distribution applications. Int. J. Electron.
**2003**, 90, 667–693. [Google Scholar] [CrossRef] - Jain, H.; Rajawat, S.; Agrawal, P. Comparision of wide band gap semiconductors for power electronics applications. In Proceedings of the 2008 International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, India, 21–24 November 2008; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2008; pp. 878–881. [Google Scholar] [CrossRef]
- Yang, L.; Mi, M.; Hou, B.; Zhang, H.; Zhu, J.; Zhu, Q.; Lu, Y.; Zhang, M.; He, Y.; Chen, L. Enhanced g m and f T With High Johnson’s Figure-of-Merit in Thin Barrier AlGaN/GaN HEMTs by TiN-Based Source Contact Ledge. IEEE Electron Device Lett.
**2017**, 38, 1563–1566. [Google Scholar] [CrossRef] - Wu, S.; Ma, X.; Yang, L.; Mi, M.; Zhang, M.; Wu, M.; Lu, Y.; Zhang, H.; Yi, C.; Hao, Y. A Millimeter-Wave AlGaN/GaN HEMT Fabricated with Transitional-Recessed-Gate Technology for High-Gain and High- Linearity Applications. IEEE Electron Device Lett.
**2019**, 40, 846–849. [Google Scholar] [CrossRef] - Bi, Z.; Bacon-Brown, D.; Du, F.; Zhang, J.; Xu, S.; Li, P.; Zhang, J.; Zhan, Y.; Hao, Y. An InGaN/GaN MQWs Solar Cell Improved By a Surficial GaN Nanostructure as Light Traps. IEEE Photonics Technol. Lett.
**2018**, 30, 83–86. [Google Scholar] [CrossRef] - Zhang, W.; Zhang, J.; Xiao, M.; Zhang, L.; Hao, Y. Al0.3Ga0.7N/GaN (10 nm)/Al0.1Ga0.9N HEMTs With Low Leakage Current and High Three-Terminal Breakdown Voltage. IEEE Electron Device Lett.
**2018**, 39, 1370–1372. [Google Scholar] [CrossRef] - Hammig, M.D.; Chen, X.J.; Campbell, J.C.; Kang, T.; Sun, W.; Johnson, E.B.; Lee, K.; Christian, J. Development of Al0.8Ga0.2As Photodiodes for Use in Wide Band-Gap Solid-State Photomultipliers. IEEE Trans. Nucl. Sci.
**2013**, 60, 1175–1181. [Google Scholar] [CrossRef] - Hao, Y.; Yang, L.; Ma, X.; Ma, J.; Cao, M.; Pan, C.; Wang, C.; Zhang, J. High-Performance Microwave Gate-Recessed AlGaN/AlN/GaN MOS-HEMT With 73% Power-Added Efficiency. IEEE Electron Device Lett.
**2011**, 32, 626–628. [Google Scholar] [CrossRef] - Zhang, L.; Zhou, H.; Zhang, W.; Dang, K.; Zhang, T.; Ma, P.; Ma, X.; Zhang, J.; Hao, Y. AlGaN-Channel Gate Injection Transistor on Silicon Substrate With Adjustable 4–7-V Threshold Voltage and 1.3-kV Breakdown Voltage. IEEE Electron Device Lett.
**2018**, 39, 1026–1029. [Google Scholar] [CrossRef] - Yuan, H.; Song, Q.; Tang, X.; Yuan, L.; Yang, S.; Tang, G.; Zhang, Y.; Zhang, Y. Trench Multiple Floating Limiting Rings Termination for 4H-SiC High-Voltage Devices. IEEE Electron Device Lett.
**2016**. [Google Scholar] [CrossRef] - Sui, Y.; Tsuji, T.; Cooper, J.A. On-state characteristics of SiC power UMOSFETs on 115-μm drift layers. IEEE Electron Device Lett.
**2005**, 26, 255–257. [Google Scholar] [CrossRef] - Zhang, Y.; Zhang, B.; Li, Z.; Liu, X.; Deng, X. Novel structure of 4H-SiC bipolar junction transistor. In Proceedings of the 2009 International Conference on Communications, Circuits and Systems, Milpitas, CA, USA, 23–25 July 2009; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2009; pp. 641–644. [Google Scholar] [CrossRef]
- Maqueda, E.; Rodas, J.; Toledo, S.; Gregor, R.; Caballero, D.; Gavilan, F.; Rivera, M. Design and Implementation of a Modular Bidirectional Switch Using SiC-MOSFET for Power Converter Applications. Act. Passiv. Electron. Components
**2018**, 2018, 4198594. [Google Scholar] [CrossRef] [Green Version] - Zhao, L.; Ge, Q.; Zhou, Z.; Yang, B.; Li, Y. Research of high-power converter based on the wide band gap power semiconductor devices for rail transit electrical drive. In Proceedings of the 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Xi’an, China, 16–18 May 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Vechalapu, K.; Bhattacharya, S.; Van Brunt, E.; Ryu, S.-H.; Grider, D.; Palmour, J.W. Comparative Evaluation of 15-kV SiC MOSFET and 15-kV SiC IGBT for Medium-Voltage Converter Under the Same dv/dt Conditions. IEEE J. Emerg. Sel. Top. Power Electron.
**2017**, 5, 469–489. [Google Scholar] [CrossRef] - Kamruzzaman, M.; Barzegaran, M.R.; Mohammed, O.A. EMI Reduction of PMSM Drive Through Matrix Converter Controlled with Wide-Bandgap Switches. IEEE Trans. Magn.
**2017**, 53, 1. [Google Scholar] [CrossRef] - Wang, M.; Guo, S.; Huang, Q.; Yu, W.; Huang, A.Q. An Isolated Bidirectional Single-Stage DC-AC Converter Using Wide-Band-Gap Devices With a Novel Carrier-Based Unipolar Modulation Technique Under Synchronous Rectification. IEEE Trans. Power Electron.
**2017**, 32, 1832–1843. [Google Scholar] [CrossRef] - Ramachandran, R.; Nymand, M. Evaluation of an un-regulated input isolated DC–DC converter using WBG devices. J. Eng.
**2019**, 3559–3562. [Google Scholar] [CrossRef] - Cougo, B.; Schneider, H.; Meynard, T. High Current Ripple for Power Density and Efficiency Improvement in Wide Bandgap Transistor-Based Buck Converters. IEEE Trans. Power Electron.
**2015**, 30, 4489–4504. [Google Scholar] [CrossRef] - Orr, M.; Finney, S.; Holliday, D. Non-isolated resonant link DC–DC converter for use with GaN devices. J. Eng.
**2019**, 4200–4204. [Google Scholar] [CrossRef] - Velander, E.; Bohlin, G.; Sandberg, A.; Wiik, T.; Botling, F.; Lindahl, M.; Zanuso, G.; Nee, H.P. An Ultralow Loss Inductorless dv/dt Filter Concept for Medium-Power Voltage Source Motor Drive Converters with SiC Devices. IEEE Trans. Power Electron.
**2018**, 33, 6072–6081. [Google Scholar] [CrossRef] - Gamand, F.; Li, M.D.; Gaquiere, C. A 10-MHz GaN HEMT DC/DC boost converter for power amplifier applications. IEEE Trans. Circuits Syst. II Express Briefs
**2012**, 59, 776–779. [Google Scholar] [CrossRef] - Balda, J.C.; Mantooth, A. Power-Semiconductor Devices and Components for New Power Converter Developments: A key enabler for ultrahigh efficiency power electronics. IEEE Power Electron. Mag.
**2016**, 3, 53–56. [Google Scholar] [CrossRef] - Ma, J.; Zanuz, D.C.; Matioli, E. Field Plate Design for Low Leakage Current in Lateral GaN Power Schottky Diodes: Role of the Pinch-off Voltage. IEEE Electron Device Lett.
**2017**, 38, 1298–1301. [Google Scholar] [CrossRef] [Green Version] - Zhang, T.; Zhang, J.; Zhou, H.; Chen, T.; Zhang, K.; Hu, Z.; Bian, Z.; Dang, K.; Wang, Y.; Zhang, L. A 1.9 kV/2.61 mΩ·cm
^{2}Lateral GaN Schottky Barrier Diode on Silicon Substrate with Tungsten Anode and Low Turn-On Voltage of 0.35 V. IEEE Electron Device Lett.**2018**. [Google Scholar] [CrossRef] - Zhu, M.; Ma, J.; Nela, L.; Erine, C.; Matioli, E. High-Voltage Normally-off Recessed Tri-Gate GaN Power MOSFETs With Low on-Resistance. IEEE Electron Device Lett.
**2019**, 40, 289–1292. [Google Scholar] [CrossRef] - Malmros, A.; Gamarra, P.; Di Forte-Poisson, M.-A.; Hjelmgren, H.; Lacam, C.; Thorsell, M.; Tordjman, M.; Aubry, R.; Rorsman, N. Evaluation of Thermal Versus Plasma-Assisted ALD Al2O3 as Passivation for InAlN/AlN/GaN HEMTs. IEEE Electron Device Lett.
**2015**, 36, 235–237. [Google Scholar] [CrossRef] - Wang, Y.; Yang, L.-A.; Mao, W.; Long, S.; Hao, Y. Modulation of Multidomain in AlGaN/GaN HEMT-Like Planar Gunn Diode. IEEE Trans. Electron Devices
**2013**, 60, 1600–1606. [Google Scholar] [CrossRef] - Khadar, R.M.A.; Liu, C.; Soleimanzadeh, R.; Matioli, E. Fully Vertical GaN-on-Si power MOSFETs. IEEE Electron Device Lett.
**2019**, 40, 443–446. [Google Scholar] [CrossRef] - Ma, J.; Matioli, E. High-Voltage and Low-Leakage AlGaN/GaN Tri-Anode Schottky Diodes With Integrated Tri-Gate Transistors. IEEE Electron Device Lett.
**2017**, 38, 83–86. [Google Scholar] [CrossRef] [Green Version] - Lu, X.; Huang, S.; Diaz, M.B.; Kotulak, N.; Hao, R.; Opila, R.; Barnett, A. Wide Band Gap Gallium Phosphide Solar Cells. IEEE J. Photovolt.
**2012**, 2, 214–220. [Google Scholar] [CrossRef] - Shenai, K. Future Prospects of Widebandgap (WBG) Semiconductor Power Switching Devices. IEEE Trans. Electron Devices
**2015**, 62, 248–257. [Google Scholar] [CrossRef] - Matsunami, H. State-of-the-art wide band-gap semiconductors for power electronic devices. In Proceedings of the International Meeting for Future of Electron Devices, Kyoto, Japan, 26–28 July 2004; pp. 21–22. [Google Scholar] [CrossRef]
- Redhead, P.A. The birth of electronics: Thermionic emission and vacuum. J. Vac. Sci. Technol. A Vac. Surf. Film.
**1998**, 16, 1394–1401. [Google Scholar] [CrossRef] - Lowe, D. Electronics All-in-One For Dummies, 2nd ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- The Wikipedians. An Introduction to Electronics; PediaPress GmbH: Mainz, Germany, 2011. [Google Scholar]
- Horowitz, P.; Hill, W. The Art of Electronics, 3rd ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Mazda, F.F. (Ed.) Electronics Engineer’s Reference Book; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Welker, H. Walter Schottky. Phys. Today
**1976**, 29, 63–64. [Google Scholar] [CrossRef] - Laughton, M.A.; Warne, D.F. Electrical Engineer’s Reference Book, 16th ed.; Newnes: Sydney, Australia, 2003.
- Millman, J. Microelectronics: Digital and Analog Circuits and Systems; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Omura, Y. Concept of an Ideal pn Junction. In Soi Lubistors; Solaris South Tower; John Wiley & Sons Singapore Pte. Ltd.: Singapore, 2013; pp. 1–5. [Google Scholar]
- Gray, T.S. Applied Electronics: A First Course in Electronics, Electron Tubes and Associated Circuits, 2nd ed.; The MIT Press: Cambridge, MA, USA, 1954. [Google Scholar]
- Forester, T. The Microelectronics Revolution: The Complete Guide to the New Technology and Its Impact on Society; The MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Crandall, B.C.; Lewis, J. Nanotechnology: Research and Perspectives: Papers from the First Foresight Conference on Nanotechnology; The MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Belke, R.E.; Clearly, J.F.; Davidsohn, U.S.; Giorgis, J.; Gottlieb, E.; Haas, E.L.; Hubbard, D.J.; Jones, D.V.; Kvamme, E.F.; Phelps, J.H. GE Transistor Manual; Syracruse, General Electric Company: New York, NY, USA, 1964. [Google Scholar]
- Lucky, R.W. The Incredible Shrinking Transistor. In Lucky Strikes Again; Wiley-IEEE Press: Piscataway, NJ, USA, 2015; pp. 96–98. [Google Scholar]
- Circuitglobe.com. Difference between NPN & PNP Transistor. Circuit Globe. Available online: https://circuitglobe.com/difference-between-npn-and-pnp-transistor.html (accessed on 15 September 2018).
- Lebow, I. Information Highways and Byways: From the Telegraph to the 21st Century; IEEE Press: Piscataway, NJ, USA, 1995. [Google Scholar]
- Deen, M.J.; Rumyantsev, S.; Bashir, R.; Taylor, R. Measurements and comparison of low frequency noise in NPN and PNP polysilicon emitter bipolar junction transistors. J. Appl. Phys.
**1998**, 84, 625–633. [Google Scholar] [CrossRef] [Green Version] - Segura, J.; Hawkins, C.F. CMOS Electronics: How It Works, How It Fails; IEEE Press: Piscataway, NJ, USA, 2004. [Google Scholar]
- Gimenez, S.P. Layout Techniques for MOSFETS; Morgan & Claypool: San Rafael, CA, USA, 2016. [Google Scholar]
- Bhattacharyya, A.B. Compact MOSFET Models for VLSI Design; John Wiley & Sons (Asia): Singapore, 2009. [Google Scholar]
- Liu, S.-C.; Kramer, J.; Indiveri, G.; Delbrück, T.; Douglas, R.; Mead, C.A. Analog VLSI: Circuits and Principles; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Brews, J.R.; Fichtner, W.; Nicollian, E.H.; Sze, S.M. Generalized guide for MOSFET miniaturization. In Proceedings of the 1979 International Electron Devices Meeting, Washington, DC, USA, 3–5 December 1979; pp. 10–13. [Google Scholar] [CrossRef]
- Brews, J.R.; Fichtner, W.; Nicollian, E.H.; Sze, S.M. Generalized guide for MOSFET miniaturization. IEEE Electron Device Lett.
**1980**, 1, 2–4. [Google Scholar] [CrossRef] - Lundstrom, M. Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett.
**1997**, 18, 361–363. [Google Scholar] [CrossRef] - Kassakian, J.G.; Schlecht, M.F.; Verghese, G.C. Principles of Power Electronics; Addison-Wesley: Reading, MA, USA, 1991. [Google Scholar]
- Floyd, T.L. Electronic Devices (Electron Flow Version) Value Package (includes Laboratory Exercises for Electronic Devices), 9th ed.; Prentice Hall: New Jersey, NJ, USA, 2011. [Google Scholar]
- Khanna, V.K. Insulated Gate Bipolar Transistor (IGBT): Theory and Design; IEEE Press: Piscataway, NJ, USA, 2003. [Google Scholar]
- Dodge, J.; Hess, J. IGBT tutorial: Part 1 Selection. EETimes. Available online: https://www.eetimes.com/document.asp?doc_id=1273173 (accessed on 3 September 2018).
- Wilamowski, B.M.; Jaeger, R.C. The Lateral Punch-Through Transistor. IEEE Electron Device Lett.
**1982**, 3, 277–280. [Google Scholar] [CrossRef] - Keser, B.; Kroehnert, S. Advances in Embedded and Fan-Out Wafer Level Packaging Technologies; Wiley-IEEE Press: Piscataway, NJ, USA, 2019. [Google Scholar]
- Jayant, B.B. Fundamentals of Power Semiconductor Devices, 1st ed.; Springer US: Manhattan, NY, USA, 2008. [Google Scholar]
- Krein, P.T.; Busarello, T.D.C.; Simões, M.G.; Pomilio, J.A.; Gachovska, T.; Wilamowski, B.M.; Hudgins, J.; Santi, E.; Eskandari, S.; Tian, B. Power Electronics Handbook, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Dodge, J.; Hess, J. Application Note APT0201: IGBT Tutorial; Microsemi: Bend, OR, USA, 2002. [Google Scholar]
- Wu, B.; Narimani, M. High-Power Converters and AC Drives: Second Edition, 2nd ed.; Wiley-IEEE Press: Piscataway, NJ, USA, 2016. [Google Scholar]
- Mochida, Y.; Nishizawa, J.I.; Ohmi, T.; Gupta, R.K. Characteristics of Static Induction Transistors: Effects of Series Resistance. IEEE Trans. Electron Devices
**1978**, 25, 761–767. [Google Scholar] [CrossRef] - McCluskey, F.P.; Podlesak, T.; Grzybowski, R. High Temperature Electronics, 1st ed.; Taylor & Francis: London, UK, 1996. [Google Scholar]
- Terasaki, T.; Shibata, J. Field-Effect Transistor Versus Analog Transistor (Static Induction Transistor). IEEE Trans. Electron Devices
**1975**, 22, 185–197. [Google Scholar] [CrossRef] - Arsov, G.L. Parametric SPICE Model for Static Induction Transistor (SIT) in triode mode of operation. In Proceedings of the X International Symposium on Industrial Electronics INDEL 2014, Banja Luka, Bosnia and Herzegovina, 6–8 November 2014; pp. 32–37. [Google Scholar]
- Nishizawa, J.; Yamamoto, K. High-frequency high-power static induction transistor. IEEE Trans. Electron Devices
**1978**, 25, 314–322. [Google Scholar] [CrossRef] - Bencuya, I.; Cogan, A.I.; Butler, S.J.; Regan, R.J. Static induction transistors optimized for high-voltage operation and high microwave power output. IEEE Trans. Electron Devices
**1985**, 32, 1321–1327. [Google Scholar] [CrossRef] - Ng, K.K. Complete Guide to Semiconductor Devices; Wiley-IEEE Press: Piscataway, NJ, USA, 2002. [Google Scholar]
- Mathur, R.M.; Varma, R.K. Thyristor-Based Facts Controllers for Electrical Transmission Systems; Wiley-IEEE Press: Piscataway, NJ, USA, 2002. [Google Scholar]
- Sugandhi, R.K.; Sugandhi, K.K. Thyristors, Theory and Applications; Wiley: Hoboken, NJ, USA, 1981. [Google Scholar]
- Banerjee, S.; Verghese, G.C. Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control; Wiley-IEEE Press: Piscataway, NJ, USA, 2001. [Google Scholar]
- De, N.K.; Ray, G.D.; Bhattacharya, T.K. Basic Electrical Technology, 2nd ed.; EE IIT: Kharagpur, India, 2008. [Google Scholar]
- Ramamoorty, M. An Introduction to Thyristors and Their Applications; Macmillan Education: London, UK, 1977. [Google Scholar]
- Kirschman, R. High-Temperature Electronics; Wiley-IEEE Press: Piscataway, NJ, USA, 1999. [Google Scholar]
- Blicher, A. Thyristor Physics, 1st ed.; Springer: New York, NY, USA, 1976; Volume 12. [Google Scholar]
- Ramshaw, R. Power Electronics: Thyristor Controlled Power for Electric Motors, 1st ed.; Springer: Dordrecht, The Netherlands, 1973. [Google Scholar]
- Ceraolo, M.; Poli, D. Fundamentals of Electric Power Engineering: From Electromagnetics to Power Systems; Wiley-IEEE Press: Piscataway, NJ, USA, 2014. [Google Scholar]
- Fisher, C.A.; Paxman, D.H.; Slattep, J.A.G. Design and Performance of a New Static Induction Thyristor-The Gated V-Groove p-i-n Diode. IEEE Trans. Electron Devices
**1984**, 31, 1299–1308. [Google Scholar] [CrossRef] - Luryi, S.; Xu, J.; Zaslavsky, A. Future Trends in Microelectronics: Frontiers and Innovations; Wiley-IEEE Press: Piscataway, NJ, USA, 2013. [Google Scholar]
- Burghartz, J.N. Guide to State-of-the-Art Electron Devices; Wiley-IEEE Press: Piscataway, NJ, USA, 2013. [Google Scholar]
- Erickson, R.W.; Maksimović, D. Fundamentals of Power Electronics, 2nd ed.; Springer: Boston, MA, USA, 2001. [Google Scholar]
- Neacsu, D.O. Switching Power Converters: Medium and High Power, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Mohan, N.; Undeland, T.M.; Robbins, W.P. Power Electronics: Converters, Applications and Design, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Klumpner, C.; Blaabjerg, F. Using reverse-blocking IGBTs in power converters for adjustable-speed drives. IEEE Trans. Ind. Appl.
**2006**, 42, 807–816. [Google Scholar] [CrossRef] - Guacci, M.; Zhang, D.; Tatic, M.; Bortis, D.W.; Kolar, J.; Kinoshita, Y.; Ishida, H. Three-Phase Two-Third-PWM Buck-Boost Current Source Inverter System Employing Dual-Gate Monolithic Bidirectional GaN e-FETs. Cpss Trans. Power Electron. Appl.
**2019**, 4, 39–354. [Google Scholar] [CrossRef] - Medjdoub, F.; Kabouche, R.; Dogmus, E.; Linge, A.; Zegaoui, M. High Electron Confinement under High Electric Field in RF GaN-on-Silicon HEMTs. Electronics
**2016**, 5, 12. [Google Scholar] [CrossRef] [Green Version] - Shuxiang, S.; Peng, D.; Zhi, J.; Yinghui, Z.; Yuxiao, L.; Zhichao, W. Effect of Electron Irradiation Fluence on InP-Based High Electron Mobility Transistors. Nanomaterials
**2019**, 9, 967. [Google Scholar] [CrossRef] [Green Version] - Cai, Y.; Zhu, C.; Jiu, L.; Gong, Y.; Yu, X.; Bai, J.; Esendag, V.; Wang, T. Strain Analysis of GaN HEMTs on (111) Silicon with Two Transitional AlxGa1−xN Layers. Materials
**2018**, 11, 1968. [Google Scholar] [CrossRef] [Green Version] - Li, J.; Mao, S.; Xu, Y.; Zhao, X.; Wang, W.; Guo, F.; Zhang, Q.; Wu, Y.; Zhang, B.; Chen, T. An Improved Large Signal Model for 0.1 μm AlGaN/GaN High Electron Mobility Transistors (HEMTs) Process and Its Applications in Practical Monolithic Microwave Integrated Circuit (MMIC) Design in W band. Micromachines
**2018**, 9, 396. [Google Scholar] [CrossRef] [Green Version] - Chen, P.-G.; Chen, K.-T.; Tang, M.; Wang, Z.-Y.; Chou, Y.-C.; Lee, M.-H. Steep Switching of In0.18Al0.82N/AlN/GaN MIS-HEMT (Metal Insulator Semiconductor High Electron Mobility Transistors) on Si for Sensor Applications. Sensors
**2018**, 18, 2795. [Google Scholar] [CrossRef] [Green Version] - Yu, X.; Ni, J.; Li, Z.; Zhou, J.; Kong, C. Reduction in leakage current in AlGaN/GaN HEMT with three Al-containing step-graded AlGaN buffer layers on silicon. Jpn. J. Appl. Phys.
**2014**, 53, 051001. [Google Scholar] [CrossRef] - Zhang, W.; Zhang, J.; Xiao, M.; Zhang, L.; Hao, Y. High Breakdown-Voltage (>2200 V) AlGaN-Channel HEMTs With Ohmic/Schottky Hybrid Drains. IEEE J. Electron Devices Soc.
**2018**, 6, 931–935. [Google Scholar] [CrossRef] - Huang, H.; Li, F.; Sun, Z.; Cao, Y. Model Development for Threshold Voltage Stability Dependent on High Temperature Operations in Wide-Bandgap GaN-Based HEMT Power Devices. Micromachines
**2018**, 9, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Do, T.N.T.; Malmros, A.; Gamarra, P.; Lacam, C.; Di Forte-Poisson, M.-A.; Tordjman, M.; Horberg, M.; Aubry, R.; Rorsman, N.; Kuylenstierna, D. Effects of Surface Passivation and Deposition Methods on the 1/f Noise Performance of AlInN/AlN/GaN High Electron Mobility Transistors. IEEE Electron Device Lett.
**2015**, 36, 315–317. [Google Scholar] [CrossRef] - Eblabla, A.; Li, X.; Thayne, I.; Wallis, D.J.; Guiney, I.; Elgaid, K. High Performance GaN High Electron Mobility Transistors on Low Resistivity Silicon for X-Band Applications. IEEE Electron Device Lett.
**2015**, 36, 899–901. [Google Scholar] [CrossRef] [Green Version] - Zhao, S.L.; Hou, B.; Chen, W.W.; Mi, M.H.; Zheng, J.X.; Zhang, J.C.; Ma, X.H.; Hao, Y. Analysis of the Breakdown Characterization Method in GaN-Based HEMTs. IEEE Trans. Power Electron.
**2016**, 31, 1517–1527. [Google Scholar] [CrossRef] - Xu, Z.; Wang, J.; Cai, Y.; Liu, J.; Yang, Z.; Li, X.; Wang, M.; Yu, M.; Xie, B.; Wu, W. High Temperature Characteristics of GaN-Based Inverter Integrated With Enhancement-Mode (E-Mode) MOSFET and Depletion-Mode (D-Mode) HEMT. IEEE Electron Device Lett.
**2014**, 35, 33–35. [Google Scholar] [CrossRef] - Liao, B.; Zhou, Q.; Qin, J.; Wang, H. Simulation of AlGaN/GaN HEMTs’ Breakdown Voltage Enhancement Using Gate Field-Plate, Source Field-Plate and Drain Field Plate. Electronics
**2019**, 8, 406. [Google Scholar] [CrossRef] [Green Version] - Chini, A.; Meneghesso, G.; Pantellini, A.; Lanzieri, C.; Zanoni, E. Reliability Investigation of GaN HEMTs for MMICs Applications. Micromachines
**2014**, 5, 570–582. [Google Scholar] [CrossRef] [Green Version] - Belkacemi, K.; Hocine, R. Efficient 3D-TLM Modeling and Simulation for the Thermal Management of Microwave AlGaN/GaN HEMT Used in High Power Amplifiers SSPA. J. Low Power Electron. Appl.
**2018**, 8, 23. [Google Scholar] [CrossRef] [Green Version] - Dang, R.; Yang, L.; Lv, Z.; Song, C.; Xu, Z. A New Method to Extract Gate Bias-Dependent Parasitic Resistances in GaAs pHEMTs. Electronics
**2019**, 8, 266. [Google Scholar] [CrossRef] [Green Version] - Rodríguez, R.; González, B.; García, J.; Toulon, G.; Morancho, F.; Núñez, A. DC Gate Leakage Current Model Accounting for Trapping Effects in AlGaN/GaN HEMTs. Electronics
**2018**, 7, 210. [Google Scholar] [CrossRef] [Green Version] - Song, C.; Yang, X.; Ji, P.; Tang, J.; Wu, S.; Xu, Y.; Imran, A.; Wang, M.; Yang, Z.; Xu, F. Impact of Silicon Substrate with Low Resistivity on Vertical Leakage Current in AlGaN/GaN HEMTs. Appl. Sci.
**2019**, 9, 2373. [Google Scholar] [CrossRef] [Green Version] - Efthymiou, L.; Camuso, G.; Longobardi, G.; Chien, T.; Chen, M.; Udrea, F. On the Source of Oscillatory Behaviour during Switching of Power Enhancement Mode GaN HEMTs. Energies
**2017**, 10, 407. [Google Scholar] [CrossRef] - Meneghini, M.; Rossetto, I.; Rizzato, V.; Stoffels, S.; Van Hove, M.; Posthuma, N.; Wu, T.-L.; Marcon, D.; Decoutere, S.; Meneghesso, G. Gate Stability of GaN-Based HEMTs with P-Type Gate. Electronics
**2016**, 5, 14. [Google Scholar] [CrossRef] - Kang, B.; Wang, H.-T.; Tien, L.-C.; Ren, F.; Gila, B.; Norton, D.; Abernathy, C.; Lin, J.; Pearton, S. Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors. Sensors
**2006**, 6, 643–666. [Google Scholar] [CrossRef] [Green Version] - Mao, S.; Xu, Y. Investigation on the I–V Kink Effect in Large Signal Modeling of AlGaN/GaN HEMTs. Micromachines
**2018**, 9, 571. [Google Scholar] [CrossRef] [Green Version] - He, Y.; Mi, M.; Wang, C.; Zheng, X.; Zhang, M.; Zhang, H.; Wu, J.; Yang, L.; Zhang, P.; Ma, X. Enhancement-Mode AlGaN/GaN Nanowire Channel High Electron Mobility Transistor With Fluorine Plasma Treatment by ICP. IEEE Electron Device Lett.
**2017**, 38, 1421–1424. [Google Scholar] [CrossRef] - Zhang, W.; Zhang, Y.; Mao, W.; Ma, X.; Zhang, J.; Hao, Y. Influence of the Interface Acceptor-Like Traps on the Transient Response of AlGaN/GaN HEMTs. IEEE Electron Device Lett.
**2013**, 34, 45–47. [Google Scholar] [CrossRef] - Lu, Y.; Ma, X.; Yang, L.; Hou, B.; Mi, M.; Zhang, M.; Zheng, J.; Zhang, H.; Hao, Y. High RF Performance AlGaN/GaN HEMT Fabricated by Recess-Arrayed Ohmic Contact Technology. IEEE Electron Device Lett.
**2018**, 39, 811–814. [Google Scholar] [CrossRef] - Yang, L.; Hou, B.; Mi, M.; Zhu, Q.; Wu, M.; Zhu, J.; Lu, Y.; Zhang, M.; Chen, L.; Zhou, X. High-Performance Enhancement-mode AlGaN/GaN high electron mobility transistors combined with TiN-based Source Contact Ledge and Two-Step Fluorine Treatment. IEEE Electron Device Lett.
**2018**. [Google Scholar] [CrossRef] - Zhang, M.; Ma, X.-H.; Yang, L.; Mi, M.; Hou, B.; He, Y.; Wu, S.; Lu, Y.; Zhang, H.-S.S.; Zhu, Q. Influence of Fin Configuration on the Characteristics of AlGaN/GaN Fin-HEMTs. IEEE Trans. Electron Devices
**2018**, 65, 1745–1752. [Google Scholar] [CrossRef] - Kwak, H.-T.; Chang, S.-B.; Kim, H.-J.; Jang, K.-W.; Yoon, H.; Lee, S.-H.; Lim, J.-W.; Kim, H.-S. Operational Improvement of AlGaN/GaN High Electron Mobility Transistor by an Inner Field-Plate Structure. Appl. Sci.
**2018**, 8, 974. [Google Scholar] [CrossRef] [Green Version] - Anderson, T.; Ren, F.; Pearton, S.; Kang, B.S.; Wang, H.-T.; Chang, C.-Y.; Lin, J. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices. Sensors
**2009**, 9, 4669–4694. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Cheney, D.; Douglas, E.; Liu, L.; Lo, C.-F.; Gila, B.; Ren, F.; Pearton, S. Degradation Mechanisms for GaN and GaAs High Speed Transistors. Materials
**2012**, 5, 2498–2520. [Google Scholar] [CrossRef] - Shur, M.S.; Rumyantsev, S.L.; Levinshtein, M.E.; Khan, M.A.; Gaska, R. Low frequency and 1/f noise in wide-gap semiconductors: Silicon carbide and gallium nitride. IEE Proc. Circuits Devices Syst.
**2002**, 149, 32–39. [Google Scholar] [CrossRef] - Nikoo, M.S.; Jafari, A.; Matioli, E. GaN Transistors for Miniaturized Pulsed-Power Sources. IEEE Trans. Plasma Sci.
**2019**, 47, 3241–3245. [Google Scholar] [CrossRef] - Zheng, J.X.; Ma, X.H.; Lu, Y.; Zhao, B.C.; Zhang, H.S.; Zhang, M.; Hao, Y. A Scalable Active Compensatory Sub-Circuit for Accurate GaN HEMT Large Signal Models. IEEE Microw. Wirel. Compon. Lett.
**2016**, 26, 431–433. [Google Scholar] [CrossRef] - Yang, L.; Zhang, M.; Hou, B.; Mi, M.; Wu, M.; Zhu, Q.; Zhu, J.; Lu, Y.; Chen, L.; Zhou, X. High Channel Conductivity, Breakdown Field Strength, and Low Current Collapse in AlGaN/GaN/Si δ -Doped AlGaN/GaN:C HEMTs. IEEE Trans. Electron Devices
**2019**, 66, 1202–1207. [Google Scholar] [CrossRef] - Yang, L.; Mi, M.; Hou, B.; Zhu, J.; Zhang, M.; He, Y.; Lu, Y.; Zhu, Q.; Zhou, X.; Lv, L. Improvement of Subthreshold Characteristic of Gate-Recessed AlGaN/GaN Transistors by Using Dual-Gate Structure. IEEE Trans. Electron Devices
**2017**, 64, 4057–4064. [Google Scholar] [CrossRef] - SEMIKRON. “SEMITRANS® 3 Fast IGBT4 Modules,”. Products and Shop. Available online: http://shop.semikron.com/en/Products-and-Shop/Product-Groups/IGBT-MOSFET-Modules/SEMITRANS/SKM400GM12T4.html?listtype=search&searchparam=22892490&redirected=1 (accessed on 30 October 2020).
- Fuji Electric. Discrete IGBT Power Semiconductors. Products and Solutions. Available online: https://www.fujielectric.com/products/semiconductor/parametric-search/index.php?lang=en&category=1 (accessed on 30 October 2020).
- Texas Instruments. LMG34XRXXX GaNFET, Product Information and Support. Available online: https://www.ti.com/product/LMG3411R150. (accessed on 30 October 2020).
- Wang, H.; Wang, F.; Zhang, J. Power Semiconductor Device Figure of Merit for High-Power-Density Converter Design Applications. IEEE Trans. Electron Devices
**2008**, 55, 466–470. [Google Scholar] [CrossRef] - Huang, A.Q. New Unipolar Switching Power Device Figures of Merit. IEEE Electron Device Lett.
**2004**, 25, 298–301. [Google Scholar] [CrossRef] - Keyes, R.W. Figure of merit for semiconductors for high-speed switches. Proc. IEEE
**1972**, 60, 225. [Google Scholar] [CrossRef] - Ohmi, T.; Takeuchi, M. The progress in power semiconductor devices. J. Inst. Electr. Eng. Japan
**1990**, 110, 81–82. [Google Scholar] [CrossRef] - Shigekane, H.; Kirihata, H.; Uchida, Y. Developments in modern high power semiconductor devices. In Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs, Monterey, CA, USA, 18–20 May 1993; pp. 16–21. [Google Scholar] [CrossRef]
- Ji, B.; Song, X.; Sciberras, E.; Cao, W.; Hu, Y.; Pickert, V. Multiobjective Design Optimization of IGBT Power Modules Considering Power Cycling and Thermal Cycling. IEEE Trans. Power Electron.
**2015**, 30, 2493–2504. [Google Scholar] [CrossRef] [Green Version] - Hudgins, J.L. Power Electronic Devices in the Future. IEEE J. Emerg. Sel. Top. Power Electron.
**2013**, 1, 11–17. [Google Scholar] [CrossRef] - Zhou, D.; Peng, Y.; Iannuzzo, F.; Hartmann, M.; Blaabjerg, F. Thermal Mapping of Power Semiconductors in H-Bridge Circuit. Appl. Sci.
**2020**, 10, 4340. [Google Scholar] [CrossRef] - Scheuermann, U. Reliability challenges of automotive power electronics. Microelectron. Reliab.
**2009**, 49, 1319–1325. [Google Scholar] [CrossRef] - Held, M.; Jacob, P.; Nicoletti, G.; Scacco, P.; Poech, M.-H. Fast power cycling test of IGBT modules in traction application. In Proceedings of the Second International Conference on Power Electronics and Drive Systems, Singapore, 26–29 May 1997; Volume 1, pp. 425–430. [Google Scholar] [CrossRef]
- Department of Defense (DoD) United States of America (USA). Military Handbook; Reliability Prediction of Electronic Equipment (MIL-HDBK-217F); US Military Specs: Arlington, VA, USA, 1991.
- Farhadi, M.; Abapour, M.; Sabahi, M. Failure analysis and reliability evaluation of modulation techniques for neutral point clamped inverters—A usage model approach. Eng. Fail. Anal.
**2017**, 71, 90–104. [Google Scholar] [CrossRef] [Green Version] - IEEE Power Electronics Society. International Technology Roadmap for Wide Bandgap Power Semiconductors (ITRW); IEEE Press: Piscataway, NJ, USA, 2019. [Google Scholar]
- Liao, M. Semiconductor diamond. In Ultra-Wide Bandgap Semiconductor Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 111–261. [Google Scholar]
- Zhang, X.; Meng, J. Recent progress of boron nitrides. In Ultra-Wide Bandgap Semiconductor Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 347–419. [Google Scholar]
- Liao, M. Progress in semiconductor β-Ga2O. In Ultra-Wide Bandgap Semiconductor Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 263–345. [Google Scholar]
- Hassan, A.; Savaria, Y.; Sawan, M. GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review. IEEE Access
**2018**, 6, 78790–78802. [Google Scholar] [CrossRef] - Wong, M.H.; Higashiwaki, M. Vertical β -Ga₂O₃ Power Transistors: A Review. IEEE Trans. Electron Devices
**2020**, 67, 3925–3937. [Google Scholar] [CrossRef] - Bader, S.J.; Lee, H.; Chaudhuri, R.; Huang, S.; Hickman, A.; Molnar, A.; Xing, H.G.; Jena, D.; Then, H.W. Prospects for Wide Bandgap and Ultrawide Bandgap CMOS Devices. IEEE Trans. Electron Devices
**2020**, 67, 4010–4020. [Google Scholar] [CrossRef] - Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater.
**2018**, 4, 1600501. [Google Scholar] [CrossRef] [Green Version] - Flack, T.J.; Pushpakaran, B.N.; Bayne, S.B. GaN Technology for Power Electronic Applications: A Review. J. Electron. Mater.
**2016**, 45, 2673–2682. [Google Scholar] [CrossRef] - Johnson, E. Physical limitations on frequency and power parameters of transistors. In IRE International Convention Record; IEEE: Piscataway, NJ, USA, March 1966; Volume 13, pp. 27–34. [Google Scholar] [CrossRef]
- Mantooth, H.A.; Peng, K.; Santi, E.; Hudgins, J.L. Modeling of Wide Bandgap Power Semiconductor Devices—Part I. IEEE Trans. Electron Devices
**2015**, 62, 423–433. [Google Scholar] [CrossRef] - Ding, X.; Zhou, Y.; Cheng, J. A review of gallium nitride power device and its applications in motor drive. Ces Trans. Electr. Mach. Syst.
**2019**, 3, 54–64. [Google Scholar] [CrossRef] - Manikam, V.R.; Cheong, K.Y. Die Attach Materials for High Temperature Applications: A Review. IEEE Trans. Compon. Packag. Manuf. Technol.
**2011**, 1, 457–478. [Google Scholar] [CrossRef]

**Figure 2.**Classification of modern power electronic switches based on (

**a**) number of terminals, (

**b**) number of layers or junctions, (

**c**) controllability and (

**d**) bidirectional capability.

**Figure 5.**Structural diagram and schematic symbols of (

**a**,

**b**) an NPN transistor and (

**c**,

**d**) a PNP transistor [101].

**Figure 6.**Diagrams showing (

**a**) the schematic symbol of a depletion mode N-channel MOSFET, (

**b**) the schematic symbol of an enhancement mode N-channel MOSFET (

**c**) the structural diagram of an N-channel MOSFET (

**d**) the schematic symbol of a depletion mode P-channel MOSFET, (

**e**) the schematic symbol of an enhancement mode P-channel MOSFET and (

**f**) the structural diagram of a P-channel MOSFET [110].

**Figure 7.**Diagrams showing the (

**a**) the non-punch-through (NPT) structure of an IGBT (

**b**) the punch-through (PT) structure of an IGBT and (

**c**) the circuit schematic of an IGBT [117].

**Figure 8.**Schematic symbol of a static induction transistor [125].

**Figure 9.**Basic structure of a thyristor [132].

**Figure 10.**Schematic symbol of a silicon controlled rectifier (SCR) [132].

**Figure 11.**Schematic symbol of gate-turn-off thyristor (GTO) [134].

**Figure 12.**Schematic symbol of (

**a**) a triode ac switch (Triac) and (

**b**) the detailed depiction of a Triac’s formation from two SCRs [138].

**Figure 13.**Schematic symbol of a diode AC switch (Diac) [139].

**Figure 15.**Schematic implementation of (

**a**) the ideal switch and the different possible implementation of the four quadrant switch with (

**b**) two IGBTs each with an antiparallel diode connected anti-serially in common emitter configuration (

**c**) two IGBTs each with an antiparallel diode connected anti-serially in common collector configuration (

**d**) two reverse biasing IGBTs connected in antiparallel configuration and (

**e**) diode bridge configuration with one IGBT [70].

**Figure 16.**Comparison of some of the prominent power electronic switches for their controllability and ideal V-I characteristics.

**Table 1.**Comparison of the Power Electronic Switches across their Controllability and Bidirectional Capability.

Uncontrollable | Semi-Controllable | Fully Controllable | |
---|---|---|---|

Unidirectional | Diode | Thyristor | BJT, MOSFET, GTO, SIT, SITH, IGBT, SITH and MCT |

Bidirectional | Diac | Triac |

FOM | Equation | Application | |
---|---|---|---|

Materials | JFOM | $\frac{{E}_{c}{v}_{s}}{2\pi}$ | Definition of cut-off frequency and maximum applicable voltage. Useful for choosing devices in signal amplifications. |

KFOM | $\lambda \frac{c{v}_{s}}{4\pi \epsilon}$ | Time delay of transistor action, essentially an indication of the switching speed limits. | |

BFOM | $\epsilon \mu {E}_{c}^{3}$ | Comparison to highlight conduction losses. | |

HMFOM | ${E}_{c}\sqrt{\mu}$ | Comparing power loss in different materials. | |

HCAFOM | $\epsilon {E}_{c}^{2}\sqrt{\mu}$ | Chip area comparison of materials. | |

HTFOM | $\frac{\lambda}{\epsilon {E}_{c}}$ | Comparison of different materials to highlight thermal performances. | |

Devices | BHFFOM | $\frac{1}{{R}_{on}{C}_{in}}$ | Switching loss due to input capacitance and Conduction loss comparison for high frequency application. |

NHFFOM | $\frac{1}{{R}_{on}{C}_{oss}}$ | Switching loss due to output capacitance and Conduction loss comparison for high frequency application. | |

FOM_{(O)} | $\frac{{V}_{c}{I}_{c}}{{V}_{on}{t}_{off}S}$ | Comparison considering power rating, power loss and chip area of the device. Does not consider structural parameters of the device. | |

FOM_{(S)} | $\frac{{V}_{c}{I}_{c}}{{V}_{on}{t}_{off}S{R}_{th}{L}_{s}}$ | Comparison considering power rating, power loss, chip area and thermal resistance of the device. Considers device structural parameters. | |

PDFOM | $\frac{1}{{A}_{pack}{R}_{th}\sqrt{{R}_{on}{Q}_{gd}}}$ | Comparison of devices considering packaging, thermal properties and loss for application in converters. | |

HDFOM | $\sqrt{{R}_{on}{Q}_{gd}}$ | Comparing power loss in different devices ignoring the loss in the gate switching circuit. |

_{O}—FOM proposed by Ohmi and Takeuchi [190], and

_{S}—FOM proposed by Shigekane et al. [191].

**Table 3.**Definition of failure rates for different devices according to the MIL-HDBK-217F [197].

Device | $\mathbf{Failure}\text{}\mathbf{Rate}{\mathit{\lambda}}_{\mathit{p}}\text{}(\mathbf{Failures}/{10}^{6}\text{}\mathbf{h})$ |
---|---|

Diode (Low Frequency) | ${\lambda}_{b}{\pi}_{T}{\pi}_{S}{\pi}_{C}{\pi}_{Q}{\pi}_{E}$ |

Diode (High Frequency) | ${\lambda}_{b}{\pi}_{T}{\pi}_{A}{\pi}_{R}{\pi}_{Q}{\pi}_{E}$ |

Transistors (Low Frequency, Bipolar) | ${\lambda}_{b}{\pi}_{T}{\pi}_{A}{\pi}_{R}{\pi}_{S}{\pi}_{Q}{\pi}_{E}$ |

Transistors (Low Frequency, Si FET) | ${\lambda}_{b}{\pi}_{T}{\pi}_{A}{\pi}_{Q}{\pi}_{E}$ |

Transistors (Unijunction) | ${\lambda}_{b}{\pi}_{T}{\pi}_{Q}{\pi}_{E}$ |

Transistors (Low Power, High Frequency, Bipolar) | ${\lambda}_{b}{\pi}_{T}{\pi}_{R}{\pi}_{S}{\pi}_{Q}{\pi}_{E}$ |

Transistors (High Power, High Frequency) | ${\lambda}_{b}{\pi}_{T}{\pi}_{A}{\pi}_{M}{\pi}_{Q}{\pi}_{E}$ |

Transistors (High Frequency, GaAs FET) | ${\lambda}_{b}{\pi}_{T}{\pi}_{A}{\pi}_{M}{\pi}_{Q}{\pi}_{E}$ |

Transistors (Low Power, High Frequency, Si FET) | ${\lambda}_{b}{\pi}_{T}{\pi}_{Q}{\pi}_{E}$ |

Thyristors, SCRs and Triacs | ${\lambda}_{b}{\pi}_{T}{\pi}_{R}{\pi}_{S}{\pi}_{Q}{\pi}_{E}$ |

Material Property | Wide Band Gap | Ultra-Wide Band Gap | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

Si | SiC | 3C-SiC | 4H-SiC | 6H-SiC | GaN | GaAs | GaP | Diamond | AlGaN/AlN | β-Ga_{2}-O_{3} | c-BN | |

Bandgap, E_{g} (eV) | 1.12 | 3.2 | 2.3 | 3.26 | 2.9 | 3.4 | 1.4 | 2.26 | 5.5 | 6.0 | 4.9 | 6.4 |

Thermal Conductivity (W/m.K) | 253 | 145 | 500 | 500 | 500 | 253 | 52 | 110 | 2290–3450 | 253–319 | 11–27 | 940–2145 |

Electron Mobility, µ_{n} (cm^{2}/V.s) | 1400 | 700 | 1000 | 800 | 415 | 2000 | 8500 | 250 | 2000 | 426 | 150 | 825 |

Hole Mobility, µ_{p} (cm^{2}/V.s) | 450 | 100 | 45 | 115 | 101 | 350 | 400 | 150 | 1800 | 30 | - | 500 |

Electron Saturation Velocity, V_{nsat} (10^{6} cm/s) | 10 | 20 | 25 | 22 | 19 | 14 | 44 | 20 | 23/13 (e ^{−}/h^{+}) | 13 | 11 | - |

Critical Electric Field, E_{c} (MV/cm) | 0.3 | 3.2 | 2 | 3.18 | 2.4 | 4.9 | 0.4 | 1 | 13.0 | 15.4 | 10.3 | 17.5 |

Relative permittivity | 11.9 | 10 | 9.6 | 9.7 | 9.7 | 10.4 | 12.9 | 11.1 | 5.7 | 9.76 | 10.0 | 7.1 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jiya, I.N.; Gouws, R.
Overview of Power Electronic Switches: A Summary of the Past, State-of-the-Art and Illumination of the Future. *Micromachines* **2020**, *11*, 1116.
https://doi.org/10.3390/mi11121116

**AMA Style**

Jiya IN, Gouws R.
Overview of Power Electronic Switches: A Summary of the Past, State-of-the-Art and Illumination of the Future. *Micromachines*. 2020; 11(12):1116.
https://doi.org/10.3390/mi11121116

**Chicago/Turabian Style**

Jiya, Immanuel N., and Rupert Gouws.
2020. "Overview of Power Electronic Switches: A Summary of the Past, State-of-the-Art and Illumination of the Future" *Micromachines* 11, no. 12: 1116.
https://doi.org/10.3390/mi11121116