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Abstract: InAlN/Al/GaN high electron mobility transistors (HEMTs) directly on Si with dynamic
threshold voltage for steep subthreshold slope (<60 mV/dec) are demonstrated in this study,
and attributed to displacement charge transition effects. The material analysis with High-Resolution
X-ray Diffraction (HR-XRD) and the relaxation by reciprocal space mapping (RSM) are performed
to confirm indium barrier composition and epitaxy quality. The proposed InAlN barrier HEMTs
exhibits high ON/OFF ratio with seven magnitudes and a steep threshold swing (SS) is also obtained
with SS = 99 mV/dec for forward sweep and SS = 28 mV/dec for reverse sweep. For GaN-based
HEMT directly on Si, this study displays outstanding performance with high ON/OFF ratio and SS <
60 mV/dec behaviors.

Keywords: InAlN; swing; wafer-scale; high-electron-mobility transistor (HEMT)

1. Introduction

Wide-bandgap GaN-based HEMTs have attracted lots of attention due to sensor applications
for gas, pH, and biomedical analyses, etc. [1,2]. How to lower the operation voltage by using steep
switching technology is a critical issue in the Internet of Things (IoT) era, which is beneficial for
reducing power consumption and improving reliability. Recently, GaN HEMTs based directly on
Si have shown advantages and benefits for larger area wafer-scale epitaxy for high throughput
mass-production. The incorporation of indium into GaN as a barrier layer improves the power
density and reliability because of lattice match for mole fraction ~18% [3,4], as well as higher
polarization than possible with the general AlGaN barrier [5]. The strong spontaneous polarization
of InAlN/GaN leads higher 2DEG charge density and drive-current as compared with general
AlGaN/GaN. A lattice-matched InAlN/GaN configuration possessing high chemical and thermal
stability is reported with high-temperature 1-MHz large-signal operation at 1000 ◦C (in vacuum) for
25 h [6]. The InAlN HEMTs thus offer the opportunity of use in environments with temperatures of at
least 1000 ◦C. This characteristic makes high temperature sensor applications feasible InAlN barrier
metal insulator semiconductor high electron mobility transistors (MIS-HEMTs) on sapphire have been
demonstrated by the Hong Kong University of Science and Technology (HKUST) [7] with Schottky
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source/drain with steep subthreshold swing (SS) behavior and high ON/OFF ratio. The InAlN/GaN on
Si with ~107 and 108 ON/OFF ratio with Ohmic and hybrid source/drain, respectively, is reported [8,9].
Intel exhibits a near ideal 60 mV/dec of subthreshold swing for MIS-HEMT enhancement mode, and a
depletion mode device with steep SS < 60 mV/dec because of “negative” capacitance effect is shown
using an AlInN metal-oxide-semiconductor (MOS) HEMT on SiC [10]. The negative capacitance concept
is already demonstrated for steep switching on the Complementary Metal-Oxide-Semiconductor
(CMOS) platform, including experimental and simulation development [11]. In general, the barrier
layer with incorporated In exhibits a steep switch slope, ultra-low drain current leakage floor, and high
ON/OFF ratio when compared with AlGaN barriers.

In this study, the In0.18Al0.82N/AlN/GaN directly on Si substrate with dynamic threshold
voltage effect for steep switch slope characteristic is demonstrated. The advantages of InAlN HEMTs
grown directly on a Si substrate are not only high thermal dissipation, but also high throughput,
CMOS-compatible wafer-scale, and low cost, as compared to SiC or sapphire. It should be noted that
the thermal conductivity of Si (~1.3 W/cm ◦C) and SiC (~3.6 W/cm ◦C) are much higher than sapphire
(~0.23 W/cm ◦C).

2. Device Fabrication

The InAlN/AlN/GaN HEMTs structure is grown on the 150 mm/100 mm Si(111) substrate
by Metal Organic Chemical Vapor Deposition (MOCVD, Figure 1a), and the schematic diagram of
InAlN/AlN/GaN-on-Si MOS-HEMT as shown in Figure 1b. An about 3.9 µm-thick carbon-doped
buffer layer and 300 nm i-GaN are deposited. Subsequently, a 2.2 nm AlN spacer is formed to reduce
alloy scattering and interface roughness [12]. A strained-layer superlattices (SLS) structure TEM image
shown in Figure 2a,c shows several secondary peaks by SLS. Note that the SLS is composed of AlN
and GaN supercycles. The purpose is strain relaxation and dislocation pinning at the SLS buffer
layer to obtain perfect InAlN/GaN epitaxy. The 6.4 nm barrier layer is grown with In0.18Al0.82N on
the top to form two-dimensional electron gas (2DEGs), as shown in Figure 2b. A capping layer of
approximately 2.9 nm Al2O3 is formed as a gate dielectric and prevents the barrier layer oxidation
during the source/drain rapid annealing process. Moreover, the Al2O3 passivation can improve current
collapse at saturation region [13], which is performed for 30 cycles by atomic layer deposition (ALD)
using a Fiji-202 DCS (Cambridge NanoTech, Waltham, MA, USA) at 250 ◦C with trimethyl-aluminium
(TMA) and H2O as the precursors. For the fabrication process of the devices, the gate-last process
is performed. The Ohmic source/drain contacts are placed by the liftoff technique, in which Al2O3

cap layer is removed in the same layout of lithography step. Ti/Al/Ni/Au (20 nm/120 nm/25 nm/
100 nm) is then deposited by Electron-Beam Evaporator with working pressure <4.0 × 10−6 Torr. After
liftoff processing and cleaning the residual photoresist, rapid thermal annealing (RTA) at 850 ◦C for
30 s in high purity N2 ambient is performed to form Ohmic contact.
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wafer-scale standard. (b) Schematic diagram of InAlN/AlN/GaN-on-Si MOS-HEMT.
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Figure 2. (a) GaN-based grown directly on 100 mm and 150 mm Si(111) wafer for CMOS compatible
wafer-scale standard. (b) Cross-sectional TEM of 2.9 nm-thick Al2O3 cap layer and In0.18Al0.82N(6.4 nm)/
AlN(2.2 nm) barrier layer. (c) Strained-layer superlattices/AlN on Si substrate.

3. Results and Discussion

The sheet resistance and electron mobility of 2DEG obtained in In0.18Al0.82N/AlN/i-GaN are
527.7 ohm/� and 820 cm2/Vs, respectively, by Hall measurement. The composition of indium = 18%
is confirmed from the (002) reflection by HR-XRD as shown Figure 3a, and the same position for InAlN
and GaN indicates the lattice-match. Note that the Si peak is the reference and represents InAlN/GaN
growing directly on the Si substrate. The multiple peaks indicate a strained-layer superlattice as graded
buffer layer. RSM in the (002) and (105) reflection direction indicates strain-free In0.18Al0.82N/GaN and
full relaxation in GaN with a graded buffer layer, respectively, as shown in Figure 3b. The electrical
characteristics are performed by a Keithley 4200 semiconductor parameter analyzer—with high
power source measure units (SMUs). The transfer characteristics (IDSVGS) are shown in Figure 4a
with high ON/OFF ratio ~107 for InAlN device. The off-state current is ~2 × 10−8 A/mm (i.e.,
2 × 10−11 A/µm) with a low leakage current because of the lattice-match between In0.18Al0.82N and
GaN, which is close to the limitation of the measurement instrument and environment (~10−12–10−15

A/µm). Based on Vegard’s Law, the lattice is matched and strain free between the In0.18Al0.82N and
GaN heterojunction [14]. The IGB is ~10−8–10−12 A, which is lower than transient current in Figure 4b.
Therefore, the gate transient current corresponding to triangular voltage stimulus is contributed by
displacement current. The low IGB is due to Al2O3 as gate dielectric for MOS-HEMT. The saturation
drain current (IDsat) of InAlN device is measured ~125 mA/mm with LG = 15 µm at VDS = 10 V
and VG = 2 V. A steep SS that is also obtained in the InAlN device exhibits SS = 99 mV/dec for
forward sweep and SS = 28 mV/dec for reverse sweep. For gate bias smaller than VT, the channel
is not formatted due to no 2DEG. The electrons accumulate on top of GaN to form 2DEG for the
channel with gate bias approaching to VT, as shown in Figure 5. The fast-current response for transient
behaviors between the gate and source/drain shows similarly for InAlN and AlGaN in Figure 4b.
The measurement setup is shown in Figure 4c, and the waveform generator/fast measurement unit
(WGFMU) module is used. The triangular waveform is applied as blue line in Figure 4b. The voltage
range is from −7 V to −3 V to correspond OFF-state to subthreshold region of IDSVGS in Figure 4a.
The gate response current is shown in black and red line in Figure 4b for displacement current, in which
it is much higher than DC gate leakage (Figure 4a). Note that the transient current response to the
triangular voltage stimulus is used for ferroelectric material polarization by displacement current
extraction [15].
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With increasing bias, a lower displacement current in InAlN is observed for cases B due to
neutralized spontaneous polarization of AlN (Al-rich) and InN (In-rich). For reverse sweep with
case C, electrons of acceptor-like traps (QA) transit to metal electrode as shown in Figure 5 and
lead lower displacement current in Figure 4b. This would make the electrons transit from 2DEG
to QA at Al2O3/InAlN interface of InN region for reverse sweep to have gate bias approach to VT.
This results in VT being more dynamically positive and SS below 60 mV/dec for reverse sweep in
Figure 4a. Finally, the 2DEG is vanished with a gate bias smaller than VT and back to the initial
state. Note that the higher transient current of AlGaN in case D reflects the higher leakage current
in Figure 4b. The asymmetric current with signal up and down (cases A & B vs. C & D in Figure 4b)
is because of intrinsic spontaneous polarization in barrier layers. The steep switching in this work is
obtained by displacement charge transition effect, which is different with other steep slope transistors
technology, such as negative capacitance, threshold selector, TFET (tunneling FET), etc. For negative
capacitance, the surface potential or internal gate voltage is amplified by ferroelectric gate stack [16].
The spontaneous rupture of filament is developed in Ag/TiO2-based device for threshold selector [17].
For TFET, the steep current increasing is occurred by BTBT (band-to-band tunneling) [18].
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Figure 3. (a) High-Resolution X-ray Diffraction (HR-XRD) rocking curve of the (002) peak of
InAlN/AlN/GaN-on-Si. The signal peaks of the Si substrate and InAlN or GaN are observed,
indicating the Indium-based ternary heterojunction structure grown directly on the Si substrate.
(b) RSM (Reciprocal Space Mapping) of InAlN/AlN/GaN on-Si in (002). The peaks are aligned,
indicating full relaxation in GaN with a SLS buffer layer and strain free In0.18Al0.82N/GaN.
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Figure 4. (a) The transfer characteristic (IDSVGS) of AlGaN/GaN-on-Si and InAlN/AlN/GaN-on-Si
MOS-HEMTs. The InAlN device has ION/IOFF ~107 and SS = 28 mV/dec covering up to ~4 decades
in the reverse sweep. The IGB is lower than IDS. (b) Transient current of an AlGaN and InAlN device.
The asymmetric current with signal up and down is due to intrinsic spontaneous polarization. (c) The
measurement setup of transient response by using the waveform generator/fast measurement unit
(WGFMU) module.
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Figure 5. Schematic diagram showing the charge balance at case (A–D) in Figure 4. For case C, electrons
of acceptor-like traps (QA) transit to metal electrode and lead to drive out the electrons of 2DEG for
reverse sweep. This results in VT being more dynamically positive and SS below 60 mV/dec for
reverse sweep.

Figure 6 summarizes the GaN-based devices on Si, SiC, and sapphire substrates for ON/OFF ratio
and subthreshold swing [7,10,19–23]. This study demonstrates the InAlN barrier GaN MOS-HEMT for
SS <60 mV/dec (reverse sweep SS = 28 mV/dec) with the first time directly-on-Si and outstanding
performance with high ON/OFF ratio (~107). Besides, the ON/OFF ratio of InAlN barrier GaN
MOS-HEMT directly-on-Si can be further improved with Schottky-drain contact technology to 108 [9].
Comparison with different substrate and structure are shown in Figure 6. A steep SS, ultra-low IOFF,
and high ON/OFF ratio of InAlN/GaN on-Si MIS-HEMT are achieved.
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4. Conclusions 

The heterojunction of In0.18Al0.82N and GaN with lattice-match is validated by HR-XRD and RSM 
to confirm the indium barrier composition and epitaxy quality. The proposed promising wafer scale 
InAlN/Al/GaN HEMT directly-on-Si with steep subthreshold slope (SS < 60 mV/dec) is demonstrated 
in this study and is attributed to dynamic threshold voltage effect. The performance of the InAlN 
barrier HEMTs exhibits high ON/OFF ratio with seven magnitudes, and a steep SS is also obtained 
with SS = 99 mV/dec for forward sweep and SS = 28 mV/dec for reverse sweep. For the on-Si device, 
this study displays outstanding performance with high ON/OFF ratio and SS < 60 mV/dec behaviors. 
The steep slope characteristics of InAlN HEMTs growth on a Si substrate is feasible for applications, 
such as gas, pH, biomedical sensors, etc., and it is beneficial for reducing power consumption and 
reliability improvement in the IoT era. 
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Figure 6. ON/OFF ratio vs. subthreshold swing of GaN-based devices on Si, SiC, and Sapphire
substrates. This study shows SS <60 mV/dec of InAlN barrier GaN MOS-HEMT first time directly-on-Si.

4. Conclusions

The heterojunction of In0.18Al0.82N and GaN with lattice-match is validated by HR-XRD and RSM
to confirm the indium barrier composition and epitaxy quality. The proposed promising wafer scale
InAlN/Al/GaN HEMT directly-on-Si with steep subthreshold slope (SS < 60 mV/dec) is demonstrated
in this study and is attributed to dynamic threshold voltage effect. The performance of the InAlN
barrier HEMTs exhibits high ON/OFF ratio with seven magnitudes, and a steep SS is also obtained
with SS = 99 mV/dec for forward sweep and SS = 28 mV/dec for reverse sweep. For the on-Si device,
this study displays outstanding performance with high ON/OFF ratio and SS < 60 mV/dec behaviors.
The steep slope characteristics of InAlN HEMTs growth on a Si substrate is feasible for applications,
such as gas, pH, biomedical sensors, etc., and it is beneficial for reducing power consumption and
reliability improvement in the IoT era.
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