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Abstract: A 2-D simulation of off-state breakdown voltage (VBD) for AlGaN/GaN high electron
mobility transistors (HEMTs) with multi field-plates (FPs) is presented in this paper. The effect of
geometrical variables of FP and insulator layer on electric field distribution and VBD are investigated
systematically. The FPs can modulate the potential lines and distribution of an electric field, and the
insulator layer would influence the modulation effect of FPs. In addition, we designed a structure
of HEMT which simultaneously contains gate FP, source FP and drain FP. It is found that the VBD

of AlGaN/GaN HEMTs can be improved greatly with the corporation of gate FP, source FP and
drain FP. We achieved the highest VBD in the HEMT contained with three FPs by optimizing the
structural parameters including length of FPs, thickness of FPs, and insulator layer. For HEMT with
three FPs, FP-S alleviates the concentration of the electric field more effectively. When the length
of the source FP is 24 µm and the insulator thickness between the FP-S and the AlGaN surface is
1950 nm, corresponding to the average electric field of about 3 MV/cm at the channel, VBD reaches
2200 V. More importantly, the 2D simulation model is based on a real HMET device and will provide
guidance for the design of a practical device.

Keywords: AlGaN/GaN HEMTs; field-plates; off-state breakdown voltage; electric field distribution

1. Introduction

Gallium nitride (GaN)-based high electron mobility transistor (HEMT) has become an attractive
candidate for high power applications, due to integrating lots of outstanding physical properties like
high breakdown voltage, high frequency application and low on-resistance [1–3]. For power devices,
the property of high breakdown voltage is particularly significant. On account of the limit of technique
process, the off-state breakdown voltage (VBD) of AlGaN/GaN HEMTs is still far from the limitation
of GaN material [4].

Field-plate (FP) technology is expected to be a feasible and effective way to increase the breakdown
voltage by reducing the peak value of an electric field along the channel [5]. From the perspective
of field-plate position, FPs can be divided into gate field-plate (FP-G), source field plate (FP-S),
and drain field plate (FP-D). Zhang, N.Q. et al. first proposed the FP-G and achieved a high VBD

of 570 V, but resulting in severe degradation of frequency characteristics [6]. Since then, multiple
grating FP-G [7,8] and novel FP-G structures [9,10] have been invented to reduce the frequency
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degradation. Relevant analytical models [11,12] and reliability improvement [13] were also reported,
providing a deeper insight into the relationship between FPs and VBD. In terms of FP-S, a T-shaped
FP-S was designed by Mao Wei et al. and it attained high VBD and high efficiency remarkably [14].
In order to enhance VBD more effectively, the combination of both FP-G and FP-S is inevitable [15–17].
An extremely high VBD of 8300 V was achieved by using the thick poly-AlN passivation on HEMTs with
both FP-G and FP-S [18]. Toshiki Kabemura et al. made a 2-D analysis of breakdown characteristics
of FP HEMTs with a high-k passivation layer, confirming that the VBD would increase with relative
permittivity increasing [19]. For investigating the impact of FP-G and FP-S on the capacitances,
Aamir et al. modeled the bias dependence of terminal capacitances, and the proposed model
is in excellent agreement with measured data [20]. Meanwhile, the incorporation of FP-S and
FP-D was considered to be an effective way to improve VBD and reduce the on-resistance to about
0.6 mΩ·cm2 [21]. However, in comparison with FP-G and FP-S, FP-D is rarely induced to enhance VBD

but mostly induced to improve reverse breakdown voltage [22]. In fact, FP-D can reduce the undesired
electric field peak from the metal peak introduced by annealing [23]. It is necessary to combine the
three FPs. Up to now, the properties of HEMT with FP-G, FP-S and FP-D simultaneously are seldom
discussed. At the same time, considering the complexity of structure, more structural parameters such
as length of FPs, thickness of FPs and insulator layer are also needed to be optimized in detail. Hence,
systematic simulation is necessary and will provide the guidance for experiment.

In this paper, the effect of geometrical variables of FP and insulator layer on field distribution
and VBD were investigated systematically. The electric field distribution and VBD under different
FP were compared by simulation using Silvaco TCAD [24]. Moreover, the FP-G, FP-S and FP-D are
employed simultaneously in an AlGaN/GaN HEMT to improve VBD effectively. The physical models
are illustrated in Section 2. The parameters including length of FPs, thickness of FPs, and insulator
layer of FPs were optimized for improving VBD. The breakdown characteristics of HEMT with FP-G,
FP-S and FP-D were simultaneously discussed.

2. Physic Models

The two-dimensional numerical simulations were carried out by Silvaco TCAD. The simulated
model was based on the experimental structure. Figure 1 shows a not-to-scale cross-section view
of the device structure analyzed in this paper. The gate length LG was 3 µm, the source-to-gate
distance LSG was 9 µm, and the gate-to-drain distance LGD was 22 µm. The field-plate length LFP-G’
was 2 µm. The insulator was assumed to be SiO2 in this simulation, which was usually used in our lab.
The permittivity of SiO2 was set to 5, corresponding to the value of the experimental measurement.
Likewise, Si3N4 [25] and Al2O3 [26] could also be selected as passivation, and the kind of insulator
would not change the trend of VBD versus FPs [19]. The thickness of insulator layer t1 and t2; length of
FPs LFP-G, LFP-S and LFP-D; and the thickness of FPs tFP-G and tFP-S are variable in the following Section.
The leakage current [27], especially from the buffer layer, may result in electron injection from the
channel into the buffer layer and a large drain current [28]. Setting traps in the GaN buffer is a usual
way to decrease the leakage current at pinch-off state [19,29,30], but it may cause a no-convergence
problem. Moreover, we aimed to present the relevance between electric field distributions and FPs
clearly and exclude the punch-through from the buffer layer. Therefore, with the purpose of simplifying
calculation, we set the GaN buffer layer to be 200 nm, reducing the influence of buffer leakage current
flow from source to drain [31]. Besides, the thicknesses of the Al0.23Ga0.77N barrier and GaN channel
are 25 nm and 10nm respectively.

Detailed simulation conditions are as follows. The 1×1013 cm−2 positive charges were placed
along the Al0.23Ga0.77N/GaN heterojunction to create the two-dimension electron gas, and the channel
mobility was set to 1500 cm2/V·s [32]. Also, the field-dependent mobility model and Shockley-Read-Hall
(SRH) Recombination model were used. Thermal impact is common in the experiments [33,34], but we
did not discuss it during the simulation. The breakdown voltage simulation in this paper was based on
the Selberherr’s impact ionization model. The ionization coefficients were AN = AP = 2.98 × 108 and
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BN = BP = 3.44 × 107 [35]. Moreover, simulations about breakdown performance were all carried out
with the gate biased at −6 V, keeping devices on the off-state. Finally, VBD was defined as the drain
voltage when the peak electric field in the channel reached 3 MV/cm [10,14,22].
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Figure 1. Schematic of HEMT with FP-G, FP-S and FP-D.

3. Influences of Structural Parameters of Different Field-Plates

3.1. Gate Field-Plate

We first discuss the influence of gate field-plate on VBD. Figure 2 shows the device structure
only with FP-G. Three parameters are studied, including the insulator layer thickness t1, the FP-G
length LFP-G and the FP-G thickness tFP-G. Figure 3a shows the distributions of electric field along the
heterojunction interface for t1 from 100 nm to 300 nm when LFP-G is 4µm and tFP-G is 100 nm. For the
sake of presenting the electric field peaks intuitively, we only display the electric field distributions
partly around the region from gate to drain. As shown in Figure 3a, for thin insulator layer t1

(t1 < 250 nm), the electric field at the FP-G edge is higher than the electric field at the gate edge.
Due to the modulation of FP-G, the electric field at the FP-G edge reaches the breakdown standard first.
Consequently, VBD increases with the increase of t1. However, when t1 further increases, the modulated
effect of FP-G becomes weaker. Thus, the electric field peak shifts to the gate edge, which leads to the
decrease of VBD. For the structure in Figure 2, the modulate effect induced by FP-G is optimal when
t1 = 250 nm, as shown in Figure 3b.
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Then, we change the LFP-G from 0 µm to 20 µm and keep t1 fixed at 250 nm. Without a field plate
at the drain side, the electric field at the gate edge increases rapidly and reaches the critical breakdown
field 3 MV/cm at around VD = 55 V. For short LFP-G (LFP-G<4 µm), the modulate effect of field-plate is
too small to reduce the electric field peak at the gate edge, so VBD increases slowly with the increase
of LFP-G. As shown in Figure 3c,d, with the optimized t1, LFP-G from 4 µm to 8 µm, all can reduce
the electric field peak value along the channel effectively, and the electric field peak value of the gate
edge reaches 3 MV/cm until VD = 448 V. When the LFP-G is more than 20 µm, VBD will decrease.
It is attribute to the narrower distance between the field-plate edge and the drain, which leads to the
electric field at the FP-G edge reaches the critical breakdown electric field at around VD = 435 V.

The following parameter is FP-G thickness tFP-G. It is set to 100 nm, 300 nm, 400 nm, 800 nm
and 8 µm, respectively. In previous researches, there were few studies on the relationship between
breakdown characteristics and the thickness of the field-plate. As shown in Figure 3e, VBD increases
with the increase of tFP-G. This phenomenon shows that thicker FP-G can reduce the electric field
at the FP-G edge. However, the improvement of VBD is not obvious even when the tFP-G reaches
8 µm. In view of the highest VBD achievement with less changes in technology progress, we choose
tFP-G = 100 nm as a suitable value for following researches.

3.2. Source Field-Plate

The FP-S is usually used in the GaN-based HEMTs in combination with the gate field-plate,
with the aim of achieving a great improvement of VBD. Figure 4 shows the structure with FP-S. Firstly,
the relationship between FP-S and VBD is studied in the HEMT without the FP-G. The thickness of the
gate was fixed at 100 nm. From Figure 5, the effect of FP-S on VBD is similar to that of FP-G. With regard
to t2, the optimum value of t2 is less than that of t1. Because in this device, when the FP-G is fixed to
−6 V, the FP-S is fixed to 0 V, resulting in a higher electric field at the FP-S edge than that at the FP-G
edge. Hence, to achieve the same effect of modulating the electric field by FP, the FP-S should be closer
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to the AlGaN surface. The variation trend of VBD with the length and thickness of FP-S is the same as
that of FP-G. As we know, the electric field is in direct proportion to the electric potential difference,
and the latter can be performed by the density of the potential line distribution. Therefore, the higher
electric field corresponds to the narrower potential lines. From the potential line distributions of
Figure 5g,h, we find that potential lines in (g) of FP-G edge are less crowded than that in (h) of FP-S
edge even at high drain voltage, which is in accordance with electric field distributions [11]. In a word,
in order to enhance VBD, FP-G is more efficient than FP-S when the structure only has one FP.

Electronics 2019, 8, x FOR PEER REVIEW 5 of 11 

 

than that at the FP-G edge. Hence, to achieve the same effect of modulating the electric field by FP, 

the FP-S should be closer to the AlGaN surface. The variation trend of VBD with the length and 

thickness of FP-S is the same as that of FP-G. As we know, the electric field is in direct proportion to 

the electric potential difference, and the latter can be performed by the density of the potential line 

distribution. Therefore, the higher electric field corresponds to the narrower potential lines. From the 

potential line distributions of Figure 5g,h, we find that potential lines in (g) of FP-G edge are less 

crowded than that in (h) of FP-S edge even at high drain voltage, which is in accordance with electric 

field distributions [11]. In a word, in order to enhance VBD, FP-G is more efficient than FP-S when the 

structure only has one FP. 

 

Figure 4. Device structure with FP-S analyzed in this study. Figure 4. Device structure with FP-S analyzed in this study.

Electronics 2019, 8, x FOR PEER REVIEW 5 of 11 

 

than that at the FP-G edge. Hence, to achieve the same effect of modulating the electric field by FP, 

the FP-S should be closer to the AlGaN surface. The variation trend of VBD with the length and 

thickness of FP-S is the same as that of FP-G. As we know, the electric field is in direct proportion to 

the electric potential difference, and the latter can be performed by the density of the potential line 

distribution. Therefore, the higher electric field corresponds to the narrower potential lines. From the 

potential line distributions of Figure 5g,h, we find that potential lines in (g) of FP-G edge are less 

crowded than that in (h) of FP-S edge even at high drain voltage, which is in accordance with electric 

field distributions [11]. In a word, in order to enhance VBD, FP-G is more efficient than FP-S when the 

structure only has one FP. 

 

Figure 4. Device structure with FP-S analyzed in this study. 

Figure 5. Cont.



Electronics 2019, 8, 406 6 of 11Electronics 2019, 8, x FOR PEER REVIEW 6 of 11 

 

 

Figure 5. The electric field distributions along the channel for different values of (a) t2, (c) LFP-S, and 

(e) tFP-S. Off-state breakdown voltage VBD for different values of (b) t2, (d) LFP-S, and (f) tFP-S. The 

Potential line distributions along the channel when (g) t1 = 250 nm, LFP-G = 4 μm, tFP-G = 1.4 μm, VBD = 

521 V, and (h) t2 = 120 nm, LFP-S = 18 μm, tFP-S = 1.4 μm, VBD = 473 V. 

3.3. Drain Field-Plate 

For FP-D, it is usually used to improve the reverse breakdown voltage. In fact, the electric field 

peak from the metal peak introduced by annealing could also be reduced by FP-D. However, the 

electric field peak does not appear on the drain edge in the Silvaco simulation, because of the flat and 

smooth edge of ohmic electros. Thus, single FP-D usually has little impact on electric field 

distribution along the channel. However, the electric field peak at the FP-S edge will increase if the 

distance between FP-S and FP-D is too close. Therefore, we only explored the relationship between 

FP-D length and VBD when the structure has both FP-S and FP-D, as shown in Figure 6. Figure 7 

shows that when LFP-D>13 μm, VBD decreases due to the narrow distance between the two FPs. In 

consideration of passivation quality in the practical experiment, breakdown may occur between the 

two FPs. So, it may be more appropriate when LFP-D is set to 1 μm. 

 

Figure 6. Device structure with FP-S and FP-D analyzed in this study. 
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The Potential line distributions along the channel when (g) t1 = 250 nm, LFP-G = 4 µm, tFP-G = 1.4 µm,
VBD = 521 V, and (h) t2 = 120 nm, LFP-S = 18 µm, tFP-S = 1.4 µm, VBD = 473 V.

3.3. Drain Field-Plate

For FP-D, it is usually used to improve the reverse breakdown voltage. In fact, the electric field
peak from the metal peak introduced by annealing could also be reduced by FP-D. However, the electric
field peak does not appear on the drain edge in the Silvaco simulation, because of the flat and smooth
edge of ohmic electros. Thus, single FP-D usually has little impact on electric field distribution along
the channel. However, the electric field peak at the FP-S edge will increase if the distance between
FP-S and FP-D is too close. Therefore, we only explored the relationship between FP-D length and
VBD when the structure has both FP-S and FP-D, as shown in Figure 6. Figure 7 shows that when
LFP-D>13 µm, VBD decreases due to the narrow distance between the two FPs. In consideration of
passivation quality in the practical experiment, breakdown may occur between the two FPs. So, it may
be more appropriate when LFP-D is set to 1 µm.
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4. Devices Contained with FP-G, FP-S, and FP-D

For much higher VBD, there is no doubt that the FP-G should be combined with the FP-S [20].
Figure 8 shows the structure of the device contained with FP-G, FP-S and FP-D simultaneously. The VBD

is affected by seven variables, t1, t2, LFP-G, LFP-S, LFP-D, tFP-G, and tFP-S. Since many parameters should
be optimized, the procedure is significant. Because the electric field peak at the gate edge is mainly
affected by FP-G, it can be suppressed by a moderate value of t1, LFP-G and tFP-G. Therefore, we can fix
these three parameters to adjust the electric field peak at the gate edge, close to but not higher than
3 M/cm. At the same time, less changes in the previous structure and little influence of FP thickness
in enhancing VBD, tFP-S and LFP-D can be confirmed too. Thus, we can confirm five parameter values
firstly, as shown in Table 1 Then we can focus on the other two parameters, t2 and LFP-S.
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As shown in Figure 9, for different LFP-S which vary from 18 µm to 28 µm, the moderated value
(up to the highest VBD) of t2 is different. We can find the reason in Figure 10a. Only when three
peaks are uniform and close to 3 MV/cm, could we achieve the highest VBD. Meanwhile, comparing
Figure 11a with Figure 11b, the potential lines distribution of the former are more crowded than that
of the latter, resulting in a lower VBD [14].

However, no matter what the value of t2 is, there is the highest VBD of all lengths for a FP-S
of 24 µm. When LFP-S is between 24 µm to 26 µm, combined with the optimal t2 = 1.7 µm, we can
acquire the highest VBD of 2200 V. Then, when LFP-S is 28 µm, due to the narrow distance between
FP-S and FP-D, the electric field peak of the FP-S edge will become higher, which makes VBD decrease.
Figure 10b shows the electric field distributions for different t2 along the channel in HEMT when LFP-S

is fixed to 24 µm. When t2 = 1950 nm, the two electric field peaks of FP-G edge and FP-S edge are
approximate but not high enough to cause breakdown. So, when VBD is around 2200 V, the highest
electric field peak appears at the gate edge. Hence, the crucial way to enhance breakdown voltage is to
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adjust relative FP parameters. By means of t2 and LFP-S, the two electric field peaks at each FPs edge
could be uniformed to be closely equal but less than 3 M/cm; and if the highest electric field peak
appears at the gate edge, we would acquire the highest VBD.

Table 1. Optimized parameter values.

Parameter Optimized Value

t1 250 nm
LFP-G 4 µm
tFP-G 100 nm
tFP-S 1.4 µm
LFP-D 1 µm
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5. Conclusions

In this paper, the effect of geometrical variables of FP and insulator layer on field distribution
and VBD were investigated systematically. An AlGaN/GaN HEMT with FP-G, FP-S and FP-D
simultaneously was also studied. On account of the incorporation of three FPs, the structure becomes
more complex, and more parameters are needed for it to be optimized. Therefore, systematic simulation
of these parameters could provide a correct direction for the design of a practical device. By Silvaco
TCAD, we optimize the length of FPs, thickness of FPs, and the insulator layer, and acquire the highest
VBD = 2200 V. The mechanism of VBD enhancement by inducing FPs is the effective modulation of
potential lines distribution in the channel. By studying the potential lines and electric field distribution
along the AlGaN/GaN heterojunction interface, we can draw some conclusions. In terms of kinds
of FP, FP-G can modulate potential lines distribution more uniformly and suppress the electric field
peak at FP edge more effectively, compared with FP-S and FP-D. In terms of multiple field-plate
combinations, the crucial way to enhance breakdown voltage is to adjust the relative FP parameters.
Consequently, the electric field peaks at gate edge, FP-G edge and FP-S edge are uniform to be closely
equal but lower than 3 M/cm. Particularly, LFP-S and t2 play the most important roles in modulating
electric field peaks at FP-G and FP-S edge. Furthermore, the field-plate thickness should be taken into
account for the inducing field-plate, in which the breakdown voltage increases with the increase of the
field-plate thickness.
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