Effect of a 12-Week Multi-Exercise Community Program on Muscle Strength and Lipid Profile in Elderly Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Multi-Exercise Program
2.3. Nutritional Assessment and Education
2.4. Variable
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Study Participants
3.2. Comparison of Body Composition and Muscle Strength
3.3. Comparison of the Blood Test
3.4. Comparison of QoL, Depression, and Physical Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korea International Trade Association. Decline in Birth Rate Leads to Deterioration of Growth Potential... Projected 24% Decrease in Working-Age Population over the Next 20 Years. Available online: https://www.kita.net/board/totalTradeNews/totalTradeNewsDetail.do;JSESSIONID_KITA=614A769A0E5BA93F58990858CC4731C9.Hyper?no=75518&siteId=1 (accessed on 28 May 2023).
- Statistics Korea. Population Status Board. Available online: https://kosis.kr/visual/populationKorea/PopulationDashBoardMain.do (accessed on 1 February 2024).
- Kim, Y.M. Status of Korean men and women: Life expectancy, death rate and self-rated health status. Health Welf. Policy Forum 2016, 235, 15–24. [Google Scholar]
- Özsungur, F. Women’s successful aging. Health Care Women Int. 2020, 41, 997–1017. [Google Scholar] [CrossRef]
- World Health Organization. Women’s Health. Available online: https://www.who.int/health-topics/women-s-health (accessed on 1 February 2024).
- Park, J.E.; Kim, S.; Kim, M.H.; Kim, T.; Choe, S.A.; Min, H.S. Trend of Women’s Health Research in Korea, 2012–2020: Topic and Text Network Analysis. J. Korean Med. Sci. 2023, 38, e226. [Google Scholar] [CrossRef] [PubMed]
- Rhee, Y.; Cho, H.N.; Choi, E.; Choi, K.S.; Lim, J.Y.; Park, C.Y.; Park, H.Y. Korean study of women’s health-related issues (K-Stori), 2016. Public Health Wkly. Rep. 2017, 10, 1138–1147. [Google Scholar]
- Ministry of Health and Welfare. Analyzing of Korean Healthcare Status through. OECD Health Statistics 2022. Available online: https://www.khidi.or.kr/board/view?pageNum=1&rowCnt=20&no1=2308&linkId=48877141&menuId=MENU01499&maxIndex=00488774099998&minIndex=00488727099998&schType=0&schText=&schStartDate=&schEndDate=&boardStyle=&categoryId=&continent=&country= (accessed on 26 July 2023).
- Lee, Y.S.; Lee, H.Y.; Kim, T.H. Cost-effectiveness analysis of intensive blood pressure control in Korea. Hypertens. Res. 2022, 45, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.E. When “Patient-Centered” is Not Enough: A Call for Community-Centered Medicine. Ann. Fam. Med. 2019, 17, 82–84. [Google Scholar] [CrossRef] [PubMed]
- National Health Insurance Service. Long-Term Care Insurance System. Available online: https://longtermcare.or.kr/npbs/e/b/101/npeb101m01.web?menuId=npe0000000020 (accessed on 1 February 2024).
- Kwon, S. Future of long-term care financing for the elderly in Korea. J. Aging Soc. Policy 2008, 20, 119–136. [Google Scholar] [CrossRef]
- Jacobs, E.A.; Schwei, R.; Hetzel, S.; Mahoney, J.; Sebastian, K.; DeYoung, K.; Frumer, J.; Madlof, J.; Simpson, A.; Zambrano-Morales, E.; et al. Evaluation of Peer-to-Peer Support and Health Care Utilization Among Community-Dwelling Older Adults. JAMA Netw. Open 2020, 3, e2030090. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Kim, H.Y.; Heo, H.H. Development of a quantitative evaluation tool for Seoul’s community-based participatory health program ‘building healthy communities’. Health Promot. Int. 2022, 37, ii97–ii108. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.S.; Lee, S.Y. The effects of education of chronic diseases management for the elderly group in parts of Seoul. Health Policy Manag. 2010, 20, 157–172. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Bae, J.N.; Cho, M.J. Development of the Korean version of the Geriatric Depression Scale and its short form among elderly psychiatric patients. J. Psychosom. Res. 2004, 57, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.; Guigoz, Y.; Garry, P.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The mini nutritional assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Korea Disease Control and Prevention Agency. Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.kdca.go.kr/knhanes/sub04/sub04_04_02.do (accessed on 7 March 2023).
- Aibar-Almazán, A.; Martínez-Amat, A.; Cruz-Díaz, D.; Jesús de la Torre-Cruz, M.; Jiménez-García, J.D.; Zagalaz-Anula, N.; Redecillas-Peiró, M.T.; Mendoza-Ladrón de Guevara, N.; Hita-Contreras, F. The Influence of Pilates Exercises on Body Composition, Muscle Strength, and Gait Speed in Community-Dwelling Older Women: A Randomized Controlled Trial. J. Strength Cond. Res. 2022, 36, 2298–2305. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Villareal, D.T. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Chen, H.T.; Chung, Y.C.; Chen, Y.J.; Ho, S.Y.; Wu, H.J. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J. Am. Geriatr. Soc. 2017, 65, 827–832. [Google Scholar] [CrossRef]
- Reed, R.L.; Pearlmutter, L.; Yochum, K.; Meredith, K.E.; Mooradian, A.D. The relationship between muscle mass and muscle strength in the elderly. J. Am. Geriatr. Soc. 1991, 39, 555–561. [Google Scholar] [CrossRef]
- Grimby, G. Muscle performance and structure in the elderly as studied cross-sectionally and longitudinally. J. Gerontol. Biol. Sci. Med. Sci. 1995, 50, 17–22. [Google Scholar]
- Nilsson, M.I.; Mikhail, A.; Lan, L.; Di Carlo, A.; Hamilton, B.; Barnard, K.; Hettinga, B.P.; Hatcher, E.; Tarnopolsky, M.G.; Nederveen, J.P.; et al. A Five-Ingredient Nutritional Supplement and Home-Based Resistance Exercise Improve Lean Mass and Strength in Free-Living Elderly. Nutrients 2020, 12, 2391. [Google Scholar] [CrossRef]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis. 2017, 16, 132. [Google Scholar] [CrossRef]
- Ferreira, A.P.; Ferreira, C.B.; Brito, C.J.; Souza, V.C.; Córdova, C.; Nóbrega, O.T.; França, N.M. The effect of aerobic exercise intensity on attenuation of postprandial lipemia is dependent on apolipoprotein E genotype. Atherosclerosis 2013, 229, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.; Taylor, E.; Ng, V.; Murrell, A.; Patil, A.; van der Touw, T.; Wolden, M.; Andronicos, N.; Smart, N.A. Estimating the Effect of Aerobic Exercise Training on Novel Lipid Biomarkers: A Systematic Review and Multivariate Meta-Analysis of Randomized Controlled Trials. Sports Med. 2023, 53, 871–886. [Google Scholar] [CrossRef]
- Nassef, Y.; Lee, K.J.; Nfor, O.N.; Tantoh, D.M.; Chou, M.C.; Liaw, Y.P. The Impact of Aerobic Exercise and Badminton on HDL Cholesterol Levels in Taiwanese Adults. Nutrients 2020, 12, 1204. [Google Scholar] [CrossRef]
- Black, S.; Kushner, I.; Samols, D. C-reactive Protein. J. Biol. Chem. 2004, 279, 48487–48490. [Google Scholar] [CrossRef]
- Petersen, A.M.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef]
- Ramel, A.; Geirsdottir, O.G.; Jonsson, P.V.; Thorsdottiri, I. C-Reactive Protein and Resistance Exercise in Community Dwelling Old Adults. J. Nutr. Health Aging 2015, 19, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.F.; Schechtman, K.B.; Ehsani, A.A.; Steger-May, K.; Brown, M.; Sinacore, D.R.; Yarasheski, K.E.; Holloszy, J.O. Effects of exercise training on frailty in community-dwelling older adults: Results of a randomized, controlled trial. J. Am. Geriatr. Soc. 2002, 50, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
Total (n = 109) | Control Group (n = 52) | Exercise Group (n = 57) | p Value | |
---|---|---|---|---|
Age (years) | 65.4 ± 4.3 | 63.8 ± 3.8 | 66.8 ± 4.3 | <0.001 |
Menopausal age (years) | 50.8 ± 4.6 | 51.0 ± 5.0 | 50.7 ± 4.3 | 0.298 |
Educational level | ||||
≤Middle school | 68 (62.4) | 64 (65.4) | 34 (59.6) | 0.619 |
High school | 37 (33.9) | 16 (30.8) | 21 (36.8) | |
≥College | 4 (3.7) | 2 (3.8) | 2 (3.6) | |
Economic status | ||||
High | 2 (1.8) | 0 (0.0) | 2 (3.5) | 0.309 |
Middle–high | 25 (22.9) | 13 (25.0) | 12 (21.1) | |
Middle–low | 58 (53.2) | 25 (48.1) | 33 (57.9) | |
Low | 24 (22.0) | 14 (26.9) | 10 (17.5) | |
Drinking | ||||
Drinker | 25 (22.9) | 15 (28.8) | 10 (17.5) | 0.374 |
Past drinker | 7 (6.5) | 5 (5.8) | 4 (7.0) | |
Non-drinker | 77 (70.6) | 34 (65.4) | 43 (75.4) | |
Usual stress level | ||||
A lot | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.710 |
A little | 64 (58.7) | 31 (59.6) | 33 (57.9) | |
None | 45 (41.3) | 21 (40.4) | 24 (42.1) | |
Subjective health recognition | ||||
Very healthy | 4 (3.7) | 2 (3.8) | 2 (3.5) | 0.522 |
Healthy | 88 (80.7) | 39 (75.0) | 49 (86.0) | |
Unhealthy | 16 (14.7) | 10 (19.2) | 6 (10.5) | |
Very unhealthy | 1 (0.9) | 1 (1.9) | 0 (0.0) | |
Diseases | ||||
Diabetes | 10 (9.2) | 6 (11.5) | 4 (7.0) | 0.628 |
Hypertension | 19 (17.4) | 12 (23.1) | 7 (12.3) | 0.218 |
Hyperlipidemia | 12 (11.0) | 9 (17.3) | 3 (5.3) | 0.089 |
Control Group (n = 52) | Exercise Group (n = 57) | Effects (p Value) | |||||
---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Baseline | 12 Weeks | Time | Group | Time × Group | |
Body mass index (kg/m2) | 25.4 ± 3.6 | 25.6 ± 3.5 | 24.6 ± 3.0 | 24.6 ± 2.9 | 0.643 | 0.651 | 0.608 |
Waist circumference (cm) | 33.5 ± 3.3 | 34.1 ± 3.6 | 33.1 ± 3.3 | 32.1 ± 4.6 | 0.226 | 0.150 | 0.114 |
Body fat (%) | 42.2 ± 4.0 | 41.9 ± 4.0 | 41.0 ± 3.7 | 39.4 ± 3.6 | 0.368 | 0.011 | 0.035 |
Lean body mass (kg) | 32.7 ± 3.6 | 32.3 ± 3.1 | 32.3 ± 3.7 | 32.2 ± 3.7 | 0.165 | 0.092 | 0.132 |
Total muscle mass (kg) | 14.2 ± 1.8 | 14.1 ± 2.1 | 13.9 ± 2.1 | 14.3 ± 1.8 | 0.008 | 0.015 | 0.036 |
Appendicular skeletal mass (kg) | 12.9 ± 1.6 | 12.8 ± 1.7 | 12.6 ± 1.9 | 13.0 ± 1.6 | 0.270 | 0.013 | 0.104 |
Skeletal muscle index (kg/m2) | 5.4 ± 0.6 | 5.3 ± 0.7 | 5.3 ± 0.7 | 5.6 ± 0.7 | 0.007 | 0.001 | 0.010 |
Sarcopenia | 30 (57.7) | 27 (51.9) | 33 (57.9) | 22 (38.6) | 0.027 | 0.016 | 0.004 |
Risk of malnutrition based on MNA | |||||||
Normal | 24 (46.2) | 14 (26.9) | 21 (36.8) | 11 (19.3) | 0.053 | 0.267 | 0.118 |
At malnutrition risk | 28 (53.8) | 38 (73.1) | 36 (63.2) | 46 (80.7) | |||
Malnutrition | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Control Group (n = 52) | Exercise Group (n = 57) | Effects (p Value) | |||||
---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Baseline | 12 Weeks | Time | Group | Time × Group | |
Total cholesterol (mg/dL) | 99.4 ± 37.4 | 98.6 ± 34.9 | 87.8 ± 30.9 | 82.8 ± 36.6 | 0.824 | 0.253 | 0.214 |
LDL cholesterol (mg/dL) | 115.9 ± 34.1 | 117.0 ± 32.2 | 103.9 ± 102.7 | 102.7 ± 31.1 | 0.761 | 0.646 | 0.758 |
HDL cholesterol (mg/dL) | 50.2 ± 11.1 | 50.9 ± 11.2 | 52.5 ± 12.8 | 58.9 ± 12.5 | 0.044 | 0.002 | 0.008 |
Triglyceride (mg/dL) | 154.0 ± 76.7 | 145.6 ± 80.6 | 171.9 ± 117.2 | 117.6 ± 45.9 | <0.001 | <0.001 | <0.001 |
Apolipoprotein A (mg/dL) | 143.0 ± 19.2 | 141.1 ± 20.5 | 148.2 ± 20.6 | 155.7 ± 21.0 | 0.007 | 0.108 | 0.039 |
Apolipoprotein B (mg/dL) | 95.2 ± 21.4 | 104.2 ± 25.9 | 86.0 ± 18.1 | 84.7 ± 19.5 | 0.282 | 0.147 | 0.320 |
C-reactive protein (mg/dL) | 0.10 ± 0.31 | 0.22 ± 0.32 | 0.23 ± 0.21 | 0.10 ± 0.11 | 0.011 | 0.005 | 0.030 |
Control Group (n = 52) | Exercise Group (n = 57) | |||||
---|---|---|---|---|---|---|
Baseline | 12 Weeks | p Value | Baseline | 12 Weeks | p Value | |
EQ-5D score | 0.89 ± 0.12 | 0.89 ± 0.08 | 0.797 | 0.89 ± 0.10 | 0.90 ± 0.08 | 0.206 |
GDS | 11 (21.2) | 15 (28.8) | 0.386 | 11 (19.3) | 9 (15.8) | 0.773 |
GDSSF-K | ||||||
Normal | 45 (86.5) | 43 (82.7) | 0.789 | 51 (89.5) | 51 (89.5) | 1.000 |
Depressed | 7 (13.5) | 9 (17.3) | 6 (10.5) | 6 (10.5) | ||
Physical activity | ||||||
Vigorous activity (day/week) | 3.1 ± 1.8 | 2.5 ± 1.0 | 0.584 | 3.5 ± 1.7 | 3.5 ± 1.2 | 0.479 |
Moderate activity (day/week) | 3.5 ± 1.6 | 3.0 ± 1.6 | 0.581 | 4.2 ± 1.6 | 3.8 ± 1.5 | 0.608 |
Walking (day/week) | 4.4 ± 1.9 | 5.2 ± 2.0 | 0.072 | 5.1 ± 1.7 | 6.2 ± 1.0 | <0.001 |
Physical fitness | ||||||
Muscular fitness of lower body (times/30 s) | 18.0 ± 2.8 | 19.6 ± 3.4 | 0.716 | 17.7 ± 3.4 | 25.1 ± 5.9 | <0.001 |
Muscular fitness of upper body (times/30 s) | 19.1 ± 3.7 | 19.9 ± 5.6 | 0.883 | 20.8 ± 4.3 | 31.9 ± 26.8 | <0.001 |
General endurance (times/2 min) | 121.4 ± 11.2 | 128.6 ± 15.3 | 0.465 | 119.4 ± 17.7 | 137.0 ± 25.7 | <0.001 |
Flexibility of lower body (cm) | 10.2 ± 5.4 | 14.3 ± 2.8 | 0.041 | 11.4 ± 9.0 | 21.0 ± 6.7 | <0.001 |
Flexibility of upper body (cm) | 1.6 ± 2.1 | 1.3 ± 4.6 | 0.154 | −3.2 ± 9.1 | 0.2 ± 8.0 | <0.001 |
Agility and balance (s) | 7.0 ± 2.3 | 6.8 ± 1.9 | 0.220 | 6.4 ± 1.2 | 5.6 ± 1.0 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.-S.; Kim, T.-H.; Kang, H.-J.; Lee, H.-H. Effect of a 12-Week Multi-Exercise Community Program on Muscle Strength and Lipid Profile in Elderly Women. Nutrients 2024, 16, 813. https://doi.org/10.3390/nu16060813
Lim H-S, Kim T-H, Kang H-J, Lee H-H. Effect of a 12-Week Multi-Exercise Community Program on Muscle Strength and Lipid Profile in Elderly Women. Nutrients. 2024; 16(6):813. https://doi.org/10.3390/nu16060813
Chicago/Turabian StyleLim, Hee-Sook, Tae-Hee Kim, Hyun-Joo Kang, and Hae-Hyeog Lee. 2024. "Effect of a 12-Week Multi-Exercise Community Program on Muscle Strength and Lipid Profile in Elderly Women" Nutrients 16, no. 6: 813. https://doi.org/10.3390/nu16060813
APA StyleLim, H. -S., Kim, T. -H., Kang, H. -J., & Lee, H. -H. (2024). Effect of a 12-Week Multi-Exercise Community Program on Muscle Strength and Lipid Profile in Elderly Women. Nutrients, 16(6), 813. https://doi.org/10.3390/nu16060813