Effects of Coffee on Gut Microbiota and Bowel Functions in Health and Diseases: A Literature Review
Abstract
:1. Introduction
2. Effects of Coffee on the Gut Microbiota
2.1. Effect of Coffee on Microbiota Composition
Samples Studied | Treatments | Increased Phyla/Class/Genera | Decreased Phyla/Class/Genera | References |
---|---|---|---|---|
Human fecal samples | Mannooligosaccharides from coffee | ↑ Actinobacteria | ↓ Firmicutes; ↓ Lactobacillus | Umemura et al., 2004 [25] |
Human fecal samples | Coffee fibres | ↑ Bacteroides; ↑ Prevotella grp | Gniechwitz et al., 2007 [26] | |
Human fecal samples | Three cups of coffee daily for 3 days | ↑ Actinobacteria; ↑ Bifidobacterium spp. | Jaquet et al., 2009 [27] | |
Human fecal samples | Coffee extract | ↑ Actinobacteria; ↑ Firmicutes; ↑ Bifidobacterium spp. | ↓ Proteobacteria; ↓ E. coli | Benitez et al., 2019 [22] |
Human fecal samples | Coffee extract and chlorogenic acids | ↑ Actinobacteria; ↑ Firmicutes; ↑ Bifidobacterium spp. | Tomas-Barberan et al., 2014 [20] | |
Human fecal samples | Chlorogenic acid (C-QA) | ↑ Actinobacteria; ↑ Firmicutes; ↑ Bifidobacterium spp. | ↓ Bacteroidetes | de Cosío-Barr´on et al., 2020 [21] |
Human fecal samples | Nescafe coffee extracts | ↑ Actinobacteria; ↑ Firmicutes; ↑ Bifidobacterium spp. | Mills et al., 2015 [19] | |
Human fecal samples | Spent coffee | ↑ Bacteroidetes; ↑ Firmicutes; ↑ Barnesiella; ↑ Butyricicoccus; ↑ Veillonella | ↓ Actinobacteria; ↓ Faecalibacterium; ↓ Ruminococcus; ↓ Blautia | Perez-Burillo et al., 2020 [23] |
Mice fecal samples | Coffee and amoxicillin | ↑ Proteobacteria; ↑ Burkholderiaceae | ↓ Burkholderia cepacia | Diamond et al., 2021 [29] |
Rat fecal samples | Caffeinated and decaffeinated coffee | ↓ Enterobacteria; ↓ gamma-Proteobacteria | Hegde et al., 2022 [31] | |
Rat fecal samples (paradoxical sleep deprivation) | Caffeinated and decaffeinated coffee | ↑ Akkermansia; ↑ Klebsiella | ↓ S24-7; ↓ Lachnospiraceae; ↓ Oscillospira; ↓ Parabacteroides | Gu et al., 2022 [30] |
Tsumura Suzuki obese diabetes mice feces | Coffee, caffeine and chlorogenic acid | ↑ Firmicutes | ↓ Bacteroidetes | Nishitsuji et al., 2018 [28] |
Mice fecal samples | Coffee and galacto-oligosaccharide | ↑ Bifidobacterium spp. | ↓ E. coli; ↓ Clostridium spp. | Nakayama & Oishi, 2013 [32] |
2.2. Effect of Coffee on Microbiota Diversity
2.3. Effect of Coffee on Microbiota Growth
3. Effect of Coffee on Gastrointestinal Infections and Immunity
4. Effects of Coffee on Gastrointestinal Motility and Secretion
5. Effect of Coffee on the Gut-Microbiota–Brain Axis
6. Effect of Coffee on Absorption and Nutrition
7. Coffee and Medication Interaction
8. Effect of Coffee on Oral Microbiome
9. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grosso, G.; Godos, J.; Galvano, F.; Giovannucci, E.L. Coffee, Caffeine, and Health Outcomes: An Umbrella Review. Annu. Rev. Nutr. 2017, 37, 131–156. [Google Scholar] [CrossRef] [PubMed]
- Gokcen, B.B.; Sanlier, N. Coffee consumption and disease correlations. Crit. Rev. Food Sci. Nutr. 2019, 59, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Moeenfard, M.; Rocha, L.; Alves, A. Quantification of Caffeoylquinic Acids in Coffee Brews by HPLC-DAD. J. Anal. Methods Chem. 2014, 2014, 965353. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.; Bragagnolo, N. Identification and quantification of bioactive compounds in coffee brews by HPLC–DAD–MSn. J. Food Compos. Anal. 2013, 32, 105–115. [Google Scholar] [CrossRef]
- Gaascht, F.; Dicato, M.; Diederich, M. Coffee provides a natural multitarget pharmacopeia against the hallmarks of cancer. Genes. Nutr. 2015, 10, 51. [Google Scholar] [CrossRef]
- Pan, M.H.; Tung, Y.C.; Yang, G.; Li, S.; Ho, C.T. Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food Funct. 2016, 7, 4481–4491. [Google Scholar] [CrossRef]
- Butt, M.S.; Sultan, M.T. Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2011, 51, 363–373. [Google Scholar] [CrossRef]
- Ding, M.; Bhupathiraju, S.N.; Satija, A.; van Dam, R.M.; Hu, F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 2014, 129, 643–659. [Google Scholar] [CrossRef]
- Ehlers, A.; Marakis, G.; Lampen, A.; Hirsch-Ernst, K.I. Risk assessment of energy drinks with focus on cardiovascular parameters and energy drink consumption in Europe. Food Chem. Toxicol. 2019, 130, 109–121. [Google Scholar] [CrossRef]
- van Dam, R.M.; Hu, F.B.; Willett, W.C. Coffee, Caffeine, and Health. N. Engl. J. Med. 2020, 383, 369–378. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, X.; Li, L. Human gut microbiome: The second genome of human body. Protein Cell 2010, 1, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Lin, Y.M.; Golovko, G.; Khanipov, K.; Cong, Y.; Savidge, T.; Fofanov, Y.; Shi, X.Z. Microbiota dysbiosis and its pathophysiological significance in bowel obstruction. Sci. Rep. 2018, 8, 13044. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.H.; Zhu, Y.; Li, Q.L.; Zhao, C.; Zhou, P.H. Enteric Nervous System: The Bridge between the Gut Microbiota and Neurological Disorders. Front. Aging Neurosci. 2022, 14, 810483. [Google Scholar] [CrossRef]
- West, C.E.; Jenmalm, M.C.; Prescott, S.L. The gut microbiota and its role in the development of allergic disease: A wider perspective. Clin. Exp. Allergy 2015, 45, 43–53. [Google Scholar] [CrossRef]
- Vitetta, L.; Coulson, S.; Linnane, A.W.; Butt, H. The gastrointestinal microbiome and musculoskeletal diseases: A beneficial role for probiotics and prebiotics. Pathogens 2013, 2, 606–626. [Google Scholar] [CrossRef]
- Hrncir, T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef]
- Mills, C.E.; Tzounis, X.; Oruna-Concha, M.J.; Mottram, D.S.; Gibson, G.R.; Spencer, J.P. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br. J. Nutr. 2015, 113, 1220–1227. [Google Scholar] [CrossRef]
- Tomas-Barberan, F.; Garcia-Villalba, R.; Quartieri, A.; Raimondi, S.; Amaretti, A.; Leonardi, A.; Rossi, M. In vitro transformation of chlorogenic acid by human gut microbiota. Mol. Nutr. Food Res. 2014, 58, 1122–1131. [Google Scholar] [CrossRef]
- de Cosío-Barr´on, A.C.G.; Hern´andez-Arriaga, A.M.; Campos-Vega, R. Spent coffee (Coffea arabica L.) grounds positively modulate indicators of colonic microbial activity. Innov. Food Sci. Emerg. Technol. 2020, 60, 102286. [Google Scholar] [CrossRef]
- Benitez, V.; Rebollo-Hernanz, M.; Hernanz, S.; Chantres, S.; Aguilera, Y.; Martin-Cabrejas, M.A. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Res. Int. 2019, 122, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Perez-Burillo, S.; Rajakaruna, S.; Pastoriza, S.; Paliy, O.; Angel Rufian-Henares, J. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chem. 2020, 316, 126309. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; von Bergen, M.; Saleh, B.M.; Homsi, M.N.; Abd El-Al, M.S. How do green and black coffee brews and bioactive interaction with gut microbiome affect its health outcomes? Mining evidence from mechanistic studies, metagenomics and clinical trials. Trends Food Sci. Technol. 2021, 118, 920–937. [Google Scholar] [CrossRef]
- Umemura, M.; Fujii, S.; Asano, I.; Hoshino, H.; Iino, H. Effect of “coffee mix drink” containing mannooligosaccharides from coffee mannan on defecation and fecal microbiota in healthy volunteer. Food Sci. Technol. Res. 2004, 10, 195–198. [Google Scholar] [CrossRef]
- Gniechwitz, D.; Reichardt, N.; Blaut, M.; Steinhart, H.; Bunzel, M. Dietary fiber from coffee beverage: Degradation by human fecal microbiota. J. Agric. Food Chem. 2007, 55, 6989–6996. [Google Scholar] [CrossRef]
- Jaquet, M.; Rochat, I.; Moulin, J.; Cavin, C.; Bibiloni, R. Impact of coffee consumption on the gut microbiota: A human volunteer study. Int. J. Food Microbiol. 2009, 130, 117–121. [Google Scholar] [CrossRef]
- Nishitsuji, K.; Watanabe, S.; Xiao, J.; Nagatomo, R.; Ogawa, H.; Tsunematsu, T.; Umemoto, H.; Morimoto, Y.; Akatsu, H.; Inoue, K.; et al. Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci. Rep. 2018, 8, 16173. [Google Scholar] [CrossRef]
- Diamond, E.; Hewlett, K.; Penumutchu, S.; Belenky, A.; Belenky, P. Coffee Consumption Modulates Amoxicillin-Induced Dysbiosis in the Murine Gut Microbiome. Front. Microbiol. 2021, 12, 637282. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, S.; Ma, W.; Wang, Q.; Li, Y.; Xia, C.; Xu, Y.; Zhang, T.; Yang, L.; Zhou, M. The Impact of Instant Coffee and Decaffeinated Coffee on the Gut Microbiota and Depression-Like Behaviors of Sleep-Deprived Rats. Front. Microbiol. 2022, 13, 778512. [Google Scholar] [CrossRef]
- Hegde, S.; Shi, D.W.; Johnson, J.C.; Geesala, R.; Zhang, K.; Lin, Y.M.; Shi, X.Z. Mechanistic Study of Coffee Effects on Gut Microbiota and Motility in Rats. Nutrients 2022, 14, 4877. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Oishi, K. Influence of coffee (Coffea arabica) and galacto-oligosaccharide consumption on intestinal microbiota and the host responses. FEMS Microbiol. Lett. 2013, 343, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Gong, X.; Wang, L.; Yu, X.; Dong, Q. Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterol. Res. Pr. Pract. 2016, 2016, 6951091. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Cheng, X.; Xing, C. The gut microbial diversity of colon cancer patients and the clinical significance. Bioengineered 2021, 12, 7046–7060. [Google Scholar] [CrossRef]
- Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016, 352, 565–569. [Google Scholar] [CrossRef]
- Dai, A.; Hoffman, K.; Xu, A.A.; Gurwara, S.; White, D.L.; Kanwal, F.; Jang, A.; El-Serag, H.B.; Petrosino, J.F.; Jiao, L. The Association between Caffeine Intake and the Colonic Mucosa-Associated Gut Microbiota in Humans-A Preliminary Investigation. Nutrients 2023, 15, 1747. [Google Scholar] [CrossRef]
- Perez-Burillo, S.; Pastoriza, S.; Fernandez-Arteaga, A.; Luzon, G.; Jimenez-Hernandez, N.; D’Auria, G.; Francino, M.P.; Rufian-Henares, J.A. Spent Coffee Grounds Extract, Rich in Mannooligosaccharides, Promotes a Healthier Gut Microbial Community in a Dose-Dependent Manner. J. Agric. Food Chem. 2019, 67, 2500–2509. [Google Scholar] [CrossRef]
- Goya-Jorge, E.; Gonza, I.; Douny, C.; Scippo, M.L.; Delcenserie, V. M-Batches to Simulate Luminal and Mucosal Human Gut Microbial Ecosystems: A Case Study of the Effects of Coffee and Green Tea. Microorganisms 2024, 12, 236. [Google Scholar] [CrossRef]
- Backhed, F.; Crawford, P.A. Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochim. Biophys. Acta 2010, 1801, 240–245. [Google Scholar] [CrossRef]
- Sales, A.L.; dePaula, J.; Mellinger Silva, C.; Cruz, A.; Lemos Miguel, M.A.; Farah, A. Effects of regular and decaffeinated roasted coffee (Coffea arabica and Coffea canephora) extracts and bioactive compounds on in vitro probiotic bacterial growth. Food Funct. 2020, 11, 1410–1424. [Google Scholar] [CrossRef]
- Bharath, N.; Sowmya, N.K.; Mehta, D.S. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study. Contemp. Clin. Dent. 2015, 6, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Carmen Monente, C.; Jimena Bravo, J.; Vitas, A.I.; Arbillaga, L.; De Peña, M.P.; Cid, C. Coffee and spent coffee extracts protect against cell mutagens and inhibit growth of food-borne pathogen microorganisms. J. Funct. Foods 2015, 12, 365–374. [Google Scholar] [CrossRef]
- Loftfield, E.; Shiels, M.S.; Graubard, B.I.; Katki, H.A.; Chaturvedi, A.K.; Trabert, B.; Pinto, L.A.; Kemp, T.J.; Shebl, F.M.; Mayne, S.T.; et al. Associations of Coffee Drinking with Systemic Immune and Inflammatory Markers. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Al Reef, T.; Ghanem, E. Caffeine: Well-known as psychotropic substance, but little as immunomodulator. Immunobiology 2018, 223, 818–825. [Google Scholar] [CrossRef]
- Cardenas, C.; Quesada, A.R.; Medina, M.A. Insights on the antitumor effects of kahweol on human breast cancer: Decreased survival and increased production of reactive oxygen species and cytotoxicity. Biochem. Biophys. Res. Commun. 2014, 447, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Zhong, R.; Wang, M.; Zhou, Y.; Chen, Y.; Yi, B.; Hou, F.; Liu, L.; Zhao, Y.; Chen, L.; et al. Caffeic Acid Supplement Alleviates Colonic Inflammation and Oxidative Stress Potentially through Improved Gut Microbiota Community in Mice. Front. Microbiol. 2021, 12, 784211. [Google Scholar] [CrossRef]
- Abdulfattah, A.A.; Jawkhab, H.A.; Alhazmi, A.A.; Alfaifi, N.A.; Sultan, M.A.; Alnami, R.A.; Kenani, N.Y.; Hamzi, S.A.; Abu Sharha, S.M.; Dighriri, I.M. The Association of Smoking and Coffee Consumption with Occurrence of Upper Gastrointestinal Symptoms in Patients with Active Helicobacter pylori Infection in Jazan City: A Cross-Sectional Study. Cureus 2023, 15, e33574. [Google Scholar] [CrossRef]
- Koochakpoor, G.; Salari-Moghaddam, A.; Keshteli, A.H.; Esmaillzadeh, A.; Adibi, P. Association of Coffee and Caffeine Intake with Irritable Bowel Syndrome in Adults. Front. Nutr. 2021, 8, 632469. [Google Scholar] [CrossRef]
- Nehlig, A. Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update. Nutrients 2022, 14, 399. [Google Scholar] [CrossRef]
- Karaman, N.; Turkay, C.; Yonem, O. Irritable bowel syndrome prevalence in city center of Sivas. Turk. J. Gastroenterol. 2003, 14, 128–131. [Google Scholar]
- Ng, S.C.; Tang, W.; Leong, R.W.; Chen, M.; Ko, Y.; Studd, C.; Niewiadomski, O.; Bell, S.; Kamm, M.A.; de Silva, H.J.; et al. Environmental risk factors in inflammatory bowel disease: A population-based case-control study in Asia-Pacific. Gut 2015, 64, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Black, C.J.; Ford, A.C. Global burden of irritable bowel syndrome: Trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Lee, K.; Shim, J.O. Gut Bacterial Dysbiosis in Irritable Bowel Syndrome: A Case-Control Study and a Cross-Cohort Analysis Using Publicly Available Data Sets. Microbiol. Spectr. 2023, 11, e0212522. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Yau, C.E.; Yaow, C.Y.L.; Chong, R.I.H.; Chong, N.Z.; Teoh, S.E.; Lim, Y.L.; Soh, A.Y.S.; Ng, W.K.; Thumboo, J. What Has Longitudinal ‘Omics’ Studies Taught Us about Irritable Bowel Syndrome? A Systematic Review. Metabolites 2023, 13, 484. [Google Scholar] [CrossRef]
- Ruigomez, A.; Garcia Rodriguez, L.A.; Panes, J. Risk of irritable bowel syndrome after an episode of bacterial gastroenteritis in general practice: Influence of comorbidities. Clin. Gastroenterol. Hepatol. 2007, 5, 465–469. [Google Scholar] [CrossRef]
- Schwille-Kiuntke, J.; Mazurak, N.; Enck, P. Systematic review with meta-analysis: Post-infectious irritable bowel syndrome after travellers’ diarrhoea. Aliment. Pharmacol. Ther. 2015, 41, 1029–1037. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yau, C.Y.; Loh, C.Y.L.; Lim, W.S.; Teoh, S.E.; Yau, C.E.; Ong, C.; Thumboo, J.; Namasivayam, V.S.O.; Ng, Q.X. Examining the Association between Coffee Intake and the Risk of Developing Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 4745. [Google Scholar] [CrossRef]
- Clevers, E.; Launders, D.; Helme, D.; Nybacka, S.; Storsrud, S.; Corsetti, M.; Van Oudenhove, L.; Simren, M.; Tack, J. Coffee, Alcohol, and Artificial Sweeteners Have Temporal Associations with Gastrointestinal Symptoms. Dig. Dis. Sci. 2024, 69, 2522–2529. [Google Scholar] [CrossRef]
- Feldman, E.J.; Isenberg, J.I.; Grossman, M.I. Gastric acid and gastrin response to decaffeinated coffee and a peptone meal. JAMA 1981, 246, 248–250. [Google Scholar] [CrossRef]
- Coffey, R.J.; Go, V.L.; Zinsmeister, A.R.; DiMagno, E.P. The acute effects of coffee and caffeine on human interdigestive exocrine pancreatic secretion. Pancreas 1986, 1, 55–61. [Google Scholar] [CrossRef]
- Acquaviva, F.; DeFrancesco, A.; Andriulli, A.; Piantino, P.; Arrigoni, A.; Massarenti, P.; Balzola, F. Effect of regular and decaffeinated coffee on serum gastrin levels. J. Clin. Gastroenterol. 1986, 8, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Kidd, M.; Hauso, O.; Drozdov, I.; Gustafsson, B.I.; Modlin, I.M. Delineation of the chemomechanosensory regulation of gastrin secretion using pure rodent G cells. Gastroenterology 2009, 137, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.L. Functional anatomy and physiology of gastric secretion. Curr. Opin. Gastroenterol. 2015, 31, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.B.; Steinbaugh, J.T.; Fromkes, J.J.; Mekhjian, H.S.; Caldwell, J.H. Inhibitory effect of coffee on lower esophageal sphincter pressure. Gastroenterology 1980, 79, 1262–1266. [Google Scholar] [CrossRef]
- Van Deventer, G.; Kamemoto, E.; Kuznicki, J.T.; Heckert, D.C.; Schulte, M.C. Lower esophageal sphincter pressure, acid secretion, and blood gastrin after coffee consumption. Dig. Dis. Sci. 1992, 37, 558–569. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Uranga, J.A.; Del Castillo, M.D.; Abalo, R. Effects of Coffee and Its Components on the Gastrointestinal Tract and the Brain-Gut Axis. Nutrients 2020, 13, 88. [Google Scholar] [CrossRef]
- Atkinson, J. The effect of coffee and coffee components on the stomach muscle. Z. Ernahrungswiss 1976, 15, 156–163. [Google Scholar] [CrossRef]
- Argirova, M.D.; Stefanova, I.D.; Krustev, A.D. New biological properties of coffee melanoidins. Food Funct. 2013, 4, 1204–1208. [Google Scholar] [CrossRef]
- Boekema, P.J.; Lo, B.; Samsom, M.; Akkermans, L.M.; Smout, A.J. The effect of coffee on gastric emptying and oro-caecal transit time. Eur. J. Clin. Investig. 2000, 30, 129–134. [Google Scholar] [CrossRef]
- Mehta, R.S.; Song, M.; Staller, K.; Chan, A.T. Association between Beverage Intake and Incidence of Gastroesophageal Reflux Symptoms. Clin. Gastroenterol. Hepatol. 2020, 18, 2226–2233.e2224. [Google Scholar] [CrossRef]
- Brown, S.R.; Cann, P.A.; Read, N.W. Effect of coffee on distal colon function. Gut 1990, 31, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.; Welcher, K.; Zimmerman, B.; Stumbo, P. Is coffee a colonic stimulant? Eur. J. Gastroenterol. Hepatol. 1998, 10, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Waclawikova, B.; Codutti, A.; Alim, K.; El Aidy, S. Gut microbiota-motility interregulation: Insights from In vivo, ex vivo and in silico studies. Gut Microbes 2022, 14, 1997296. [Google Scholar] [CrossRef] [PubMed]
- Eamudomkarn, N.; Kietpeerakool, C.; Kaewrudee, S.; Jampathong, N.; Ngamjarus, C.; Lumbiganon, P. Effect of postoperative coffee consumption on gastrointestinal function after abdominal surgery: A systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2018, 8, 17349. [Google Scholar] [CrossRef]
- Cornwall, H.L.; Edwards, B.A.; Curran, J.F.; Boyce, S. Coffee to go? The effect of coffee on resolution of ileus following abdominal surgery: A systematic review and meta-analysis of randomised controlled trials. Clin. Nutr. 2020, 39, 1385–1394. [Google Scholar] [CrossRef]
- Zhang, k.; Johnson, J.C.; Saygili, S.; Geesala, R.; Recharla, N.; Shi, X.Z. Mechanisms underlying the beneficial effect of coffee in postoperative ileus (Abstract). Gastroenterology 2024, 166, S299–S300. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Morais, L.H.; Schreiber, H.L.T.; Mazmanian, S.K. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021, 19, 241–255. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Kechribari, I.; Sotirakoglou, K.; Tarantilis, P.; Gourdomichali, T.; Michas, G.; Kravvariti, V.; Voumvourakis, K.; Zampelas, A. Acute effects of coffee consumption on self-reported gastrointestinal symptoms, blood pressure and stress indices in healthy individuals. Nutr. J. 2016, 15, 26. [Google Scholar] [CrossRef]
- Vaccaro, A.; Kaplan Dor, Y.; Nambara, K.; Pollina, E.A.; Lin, C.; Greenberg, M.E.; Rogulja, D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020, 181, 1307–1328.e1315. [Google Scholar] [CrossRef]
- Song, Z.; Liu, L.; Xu, Y.; Cao, R.; Lan, X.; Pan, C.; Zhang, S.; Zhao, H. Caffeine-Induced Sleep Restriction Alters the Gut Microbiome and Fecal Metabolic Profiles in Mice. Int. J. Mol. Sci. 2022, 23, 14837. [Google Scholar] [CrossRef] [PubMed]
- Overstreet, D.S.; Penn, T.M.; Cable, S.T.; Aroke, E.N.; Goodin, B.R. Higher habitual dietary caffeine consumption is related to lower experimental pain sensitivity in a community-based sample. Psychopharmacology 2018, 235, 3167–3176. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, B.; Li, R.; Yang, P.; Leng, P.; Huang, Y. Exploration of the link between gut microbiota and purinergic signalling. Purinergic Signal 2023, 19, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Uribe, G.; Villeger, R.; Bressollier, P.; Dillard, R.N.; Worthley, D.L.; Wang, T.C.; Powell, D.W.; Urdaci, M.C.; Pinchuk, I.V. Lactobacillus rhamnosus GG increases cyclooxygenase-2 expression and prostaglandin E2 secretion in colonic myofibroblasts via a MyD88-dependent mechanism during homeostasis. Cell Microbiol. 2018, 20, e12871. [Google Scholar] [CrossRef] [PubMed]
- Cowan, T.E.; Palmnas, M.S.; Yang, J.; Bomhof, M.R.; Ardell, K.L.; Reimer, R.A.; Vogel, H.J.; Shearer, J. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 2014, 25, 489–495. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.J.; Chen, J.X.; Yang, J.C.; Ling, L.; Cai, X.B.; Chen, Y.S. Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism. Diabetol. Metab. Syndr. 2023, 15, 37. [Google Scholar] [CrossRef]
- Martinez, I.; Lattimer, J.M.; Hubach, K.L.; Case, J.A.; Yang, J.; Weber, C.G.; Louk, J.A.; Rose, D.J.; Kyureghian, G.; Peterson, D.A.; et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013, 7, 269–280. [Google Scholar] [CrossRef]
- Bhandarkar, N.S.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Brown, L.; Panchal, S.K. Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens 2021, 10, 1369. [Google Scholar] [CrossRef]
- Al-Othman, A.; Al-Musharaf, S.; Al-Daghri, N.M.; Yakout, S.; Alkharfy, K.M.; Al-Saleh, Y.; Al-Attas, O.S.; Alokail, M.S.; Moharram, O.; Sabico, S.; et al. Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents. Nutr. J. 2012, 11, 56. [Google Scholar] [CrossRef]
- Barger-Lux, M.J.; Heaney, R.P. Caffeine and the calcium economy revisited. Osteoporos. Int. 1995, 5, 97–102. [Google Scholar] [CrossRef]
- Pécoud, A.; Donzel, P.; Schelling, J.L. Effect of foodstuffs on the absorption of zinc sulfate. Clin. Pharmacol. Ther. 1975, 17, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Morck, T.A.; Lynch, S.R.; Cook, J.D. Inhibition of food iron absorption by coffee. Am. J. Clin. Nutr. 1983, 37, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Ulvik, A.; Vollset, S.E.; Hoff, G.; Ueland, P.M. Coffee consumption and circulating B-vitamins in healthy middle-aged men and women. Clin. Chem. 2008, 54, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Ohnaka, K.; Ikeda, M.; Maki, T.; Okada, T.; Shimazoe, T.; Adachi, M.; Nomura, M.; Takayanagi, R.; Kono, S. Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J. Nutr. Metab. 2012, 207426. [Google Scholar] [CrossRef]
- Kim, J.K.; Choi, M.S.; Yoo, H.H.; Kim, D.H. The Intake of Coffee Increases the Absorption of Aspirin in Mice by Modifying Gut Microbiome. Pharmaceutics 2022, 14, 746. [Google Scholar] [CrossRef]
- Belayneh, A.; Molla, F. The Effect of Coffee on Pharmacokinetic Properties of Drugs: A Review. Biomed. Res. Int. 2020, 2020, 7909703. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Yalamanchili, V.; Smith, L.M. The effect of vitamin D on calcium absorption in older women. J. Clin. Endocrinol. Metab. 2012, 97, 3550–3556. [Google Scholar] [CrossRef]
- Moreno-Ceballos, M.; Arroyave, J.C.; Cortes-Mancera, F.M.; Röthlisberger, S. Chemopreventive effect of coffee against colorectal cancer and hepatocellular carcinoma. Int. J. Food Prop. 2019, 22, 536–555. [Google Scholar] [CrossRef]
- Anwar, S.; Bhandari, U.; Panda, B.P.; Dubey, K.; Khan, W.; Ahmad, S. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk. J. Pharm. Biomed. Anal. 2018, 159, 100–112. [Google Scholar] [CrossRef]
- Peng, J.H.; Leng, J.; Tian, H.J.; Yang, T.; Fang, Y.; Feng, Q.; Zhao, Y.; Hu, Y.Y. Geniposide and Chlorogenic Acid Combination Ameliorates Non-alcoholic Steatohepatitis Involving the Protection on the Gut Barrier Function in Mouse Induced by High-Fat Diet. Front. Pharmacol. 2018, 9, 1399. [Google Scholar] [CrossRef]
- Iqbal, N.; Ahmad, B.; Janbaz, K.H. The effect of caffeine on the pharmacokinetics of acetaminophen in man. Biopharm. Drug Dispos. 1995, 16, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.R.; Hansten, P.D. Caffeine and Clozapine; Pharmacy Times: Cranbury, NJ, USA, 2013. [Google Scholar]
- Togao, M.; Tajima, S.; Kurakawa, T.; Wagai, G.; Otsuka, J.; Kado, S.; Kawakami, K. Normal variation of the gut microbiota affects hepatic cytochrome P450 activity in mice. Pharmacol. Res. Perspect. 2021, 9, e00893. [Google Scholar] [CrossRef] [PubMed]
- Poll, B.G.; Xu, J.; Jun, S.; Sanchez, J.; Zaidman, N.A.; He, X.; Lester, L.; Berkowitz, D.E.; Paolocci, N.; Gao, W.D.; et al. Acetate, a Short-Chain Fatty Acid, Acutely Lowers Heart Rate and Cardiac Contractility Along with Blood Pressure. J. Pharmacol. Exp. Ther. 2021, 377, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Willis, J.R.; Gabaldon, T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef]
- Ogata, K.; Takeshita, T.; Shibata, Y.; Matsumi, R.; Kageyama, S.; Asakawa, M.; Yamashita, Y. Effect of coffee on the compositional shift of oral indigenous microbiota cultured in vitro. J. Oral Sci. 2019, 61, 418–424. [Google Scholar] [CrossRef]
- Peters, B.A.; McCullough, M.L.; Purdue, M.P.; Freedman, N.D.; Um, C.Y.; Gapstur, S.M.; Hayes, R.B.; Ahn, J. Association of Coffee and Tea Intake with the Oral Microbiome: Results from a Large Cross-Sectional Study. Cancer Epidemiol. Biomark. Prev. 2018, 27, 814–821. [Google Scholar] [CrossRef]
- Murugesan, S.; Al Ahmad, S.F.; Singh, P.; Saadaoui, M.; Kumar, M.; Al Khodor, S. Profiling the Salivary microbiome of the Qatari population. J. Transl. Med. 2020, 18, 127. [Google Scholar] [CrossRef]
- Yu, K.M.; Cho, H.S.; Lee, A.M.; Lee, J.W.; Lim, S.K. Analysis of the influence of host lifestyle (coffee consumption, drinking, and smoking) on Korean oral microbiome. Forensic Sci. Int. Genet. 2024, 68, 102942. [Google Scholar] [CrossRef]
- Rhee, Y.; Choi, Y.; Park, J.; Park, H.R.; Kim, K.; Kim, Y.H. Association between coffee consumption and periodontal diseases: A systematic review and meta-analysis. BMC Oral. Health 2022, 22, 272. [Google Scholar] [CrossRef]
- Struppek, J.; Walther, C.; Bunte, K.; Zyriax, B.C.; Wenzel, J.P.; Senftinger, J.; Nikorowitsch, J.; Heydecke, G.; Seedorf, U.; Beikler, T.; et al. The association between coffee consumption and periodontitis: A cross-sectional study of a northern German population. Clin. Oral. Investig. 2022, 26, 2421–2427. [Google Scholar] [CrossRef]
- Signoretto, C.; Bianchi, F.; Burlacchini, G.; Sivieri, F.; Spratt, D.; Canepari, P. Drinking habits are associated with changes in the dental plaque microbial community. J. Clin. Microbiol. 2010, 48, 347–356. [Google Scholar] [CrossRef]
Design | Treatment | Significance | Microbiota Change | Reference |
---|---|---|---|---|
In vivo rats | Coffee | Reduction in liver triglycerides | Clostridium Cluster XI ↓ | Cowan et al. 2014 [85] |
In vivo rats | Coffee | Reduction in obesity, metabolic syndrome, and inflammation; increase in gut barrier function | Firmicutes (F)-to-Bacteroidetes (B) ratio ↓ | Cowan et al. 2014 [85] |
In vivo rats | Coffee | Potential for gut dysbiosis, antibiotic resistance, opportunistic infection; may be involved with insulin resistance | Enterobacteriaceae ↑ | Cowan et al. 2014 [85] |
In vivo mice | Caffeine | Protection of gut lining, barrier function, and production of SCFAs | Dubosiella, Bifidobacterium and Desulfovibrio ↑ | Chen et al. 2023 [86] |
In vivo mice | Caffeine | Reduction in nutrient breakdown and immune modulation, but potentially, a restoration from dysbiosis | Bacteroides, Lactobacillus and Lactococcus ↓ | Chen et al. 2023 [86] |
In vivo mice | Coffee | Improvement in endotoxemia and systemic inflammation | Prevotella ↓ | Nishitsuji, Watanabe, & Xiao 2018 [28] |
In vivo mice | Coffee | Increase in gastrointestinal polypeptide; stimulation of insulin secretion and protection against metabolic syndrome | Coprococcus ↑ | Nishitsuji, Watanabe, & Xiao 2018 [28] |
In vivo humans In vivo mice | Coffee | Support in acetate production, but a marker of high-fat diet | Blautia ↓ | Martinez et al. 2013 [87]; Nishitsuji, Watanabe, & Xiao 2018 [28] |
Design | Treatment | Nutrient Effects | Mechanism | References |
---|---|---|---|---|
In vivo human | Coffee | Circulating Vitamin D ↑ | Inhibition of Vitamin D receptors | Al-Othman et al. 2012 [89] |
In vivo human | Caffeine | Calcium levels ↓ | Imbalance of Calcium/inhibition of Vitamin D receptors | Barger-Lux & Heaney 1995 [90] |
In vivo human | Coffee | Zinc levels ↓ | Binding of phenolic compounds | Pécoud et al. 1975 [91] |
In vivo human | Coffee | Iron absorption ↓ | Phenolic binding of nonheme iron in the lumen | Morck 1983 [92] |
In vivo human | Coffee | B vitamin levels ↓ | Complex formation with polyphenols | Ulvik 2008 [93] |
In vivo human | Coffee | Glucose ↓ | Inhibition of hepatic glucose-6-phosphate translocase | Ohnaka 2012 [94] |
Design | Treatment | Medication Interaction | Mechanism | References |
---|---|---|---|---|
In vivo mice | Coffee | Aspirin absorption ↑ | Proteobacteria, Helicobacteraceae, and Bacteroidaceae ↓; Lactobacillaceae ↑ | Kim et al. 2022 [95] |
In vivo human | Coffee | Paracetamol Absorption ↑ | Competitive binding to adenosine receptors | Iqbal 1995 [101] |
In vivo human | Coffee | Clozapine, Lithium, Theophylline, Warfarin Absorption ↓ | Activation of CYP enzymes by metabolites * | Belayneh et al. 2020 [96] |
In vitro mice | Coffee | Amoxicillin | Slowed growth of Burkholderiaceae | Diamond et al. 2021 [29] |
In vivo mice | Cholinergic acid | Geniposide absorption ↑ | Protect gut barrier function | Peng et al. 2018 [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saygili, S.; Hegde, S.; Shi, X.-Z. Effects of Coffee on Gut Microbiota and Bowel Functions in Health and Diseases: A Literature Review. Nutrients 2024, 16, 3155. https://doi.org/10.3390/nu16183155
Saygili S, Hegde S, Shi X-Z. Effects of Coffee on Gut Microbiota and Bowel Functions in Health and Diseases: A Literature Review. Nutrients. 2024; 16(18):3155. https://doi.org/10.3390/nu16183155
Chicago/Turabian StyleSaygili, Sena, Shrilakshmi Hegde, and Xuan-Zheng Shi. 2024. "Effects of Coffee on Gut Microbiota and Bowel Functions in Health and Diseases: A Literature Review" Nutrients 16, no. 18: 3155. https://doi.org/10.3390/nu16183155
APA StyleSaygili, S., Hegde, S., & Shi, X. -Z. (2024). Effects of Coffee on Gut Microbiota and Bowel Functions in Health and Diseases: A Literature Review. Nutrients, 16(18), 3155. https://doi.org/10.3390/nu16183155