Organic Food in Athletes Diet—Narrative Review of Alternative Products in Sports Nutrition
Highlights
- Athletes, having specific nutritional requirements, need the right diet to maximise their physical performance.
- Organic foods are rich in selected nutrients, including, among others, antioxidants or omega-3 fatty acids.
- Some of the nutrients found in higher amounts in organic products may have applications in improving athletes’ performance and accelerating the recovery process.
- Organic food appears to be an interesting alternative for athletes, yet more studies are needed to unambiguously determine its impact on meeting the special needs of athletes.
Abstract
:1. Introduction
2. Search Strategy and Selection Criteria
3. Organic Food and Antioxidant Potential
4. Iron
5. Calcium and Vitamin D
Study | Study Group | Method | Iron | Calcium | Vit. D | References | |||
---|---|---|---|---|---|---|---|---|---|
mg | % Below | mg | % Below | µg/UI | % Below | ||||
Baranauskas et al. (2020) | n = 323 High-performance athletes | 24 h dietary food recall | n/d | n/d | 1254.0 ± 580.2 * 1113.9 ± 501.9 * | n/d | n/d | n/d | [75] |
Jenner et al. (2018) | n = 46 Male Australian football players | 7-day food diary | n/d | n/d | 952 ± 287 | 56 | n/d | n/d | [76] |
Ishizu et al. (2022) | n = 589 Female collegiate athletes | FFQ | 6.1 (4.5–8.4) | n/d | 487 (361–728) | n/d | 4.8 (2.9–8.7) | n/d | [77] |
Baranauskas et al. (2020) | n = 247 Elite athletes | 24 h dietary food recall | 28.8 ± 9.8 ^ 18.8 ± 7.5 ^ | n/d | 1227 ± 511 ^ 927 ± 474 ^ | n/d | 144 ± 104 ^ 88 ± 76 ^ | n/d | [78] |
Vermeulen et al. (2021) | n = 23 Female ice hockey players | 7-day food diary | 17 ± 7 | 52 | 1022 ± 256 | 78 | 4.5 ± 2.4 | 100 | [79] |
Książek et al. (2020) | n = 26 Male football players | 7-day food diary | 14.9 ± 2.5 # 16.7 ± 3.3 # | n/d | 1179.9 ± 265.8 # 1291.5 ± 318.2 # | n/d | 4.9 # 56.5 # | n/d | [80] |
Gogojewicz et al. (2020) | n = 62 CrossFit athletes | 3-day food diary | 16.5 ± 3.6 ^ 12.6 ± 3.2 ^ | n/d | 1214 ± 550 ^ 894 ± 431 ^ | n/d | 6.3 ± 5.8 ^ 5.8 ± 6.2 ^ | n/d | [81] |
Dobrowolski and Włodarek (2019) | n = 41 Female soccer players | 3-day food diary | 8.8 | n/d | 646 ± 290 | 82.9 | 1.69 | n/d | [38] |
Jenner et al. (2019) | n = 23 Female football players | 3-day food diary | 12.1 ± 3.5 | 87 | 852.0 ± 288.0 | 61 | n/d | n/d | [82] |
Kim et al. (2019) | n = 36 Adolescent distance runners | 3-day food diary | 16.9 ± 4.4 | 2 | 582.2 ± 182.7 | 31 | 6.2 ± 3.3 | n/d | [83] |
Gomez-Hixson et al. (2022) | n = 75 NCAA Division III soccer players | 3-day food diary | 18.6 ± 6.9 | n/d | 1000.1 ± 402.8 | n/d | 4.1 ± 3.6 | n/d | [84] |
Masoga et al. (2019) | n = 51 Amateur bodybuilding athletes | 24 h dietary food recall | 173.3 ± 4.1 ^ 9.9 ± 2.6 ^ | 9.8 | 580.1 ± 355.3 ^ 477.6 ± 146.1 ^ | 86.3 | n/d | n/d | [85] |
6. Protein and Amino Acids
7. Fatty Acids
8. Caffeine in Organic Products
9. Pesticide Content in Food and the Diet of Athletes
10. Limitations
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Academy of Nutrition and Dietetics; American College of Sports Medicine; Dietitians of Canada. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Economos, C.D.; Bortz, S.S.; Nelson, M.E. Nutritional Practices of Elite Athletes: Practical Recommendations. Sports Med. 1993, 16, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Tipton, K.D.; Wolfe, R.R. Protein and Amino Acids for Athletes. J. Sports Sci. 2004, 22, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Kiens, B.; Ivy, J.L. Carbohydrates and Fat for Training and Recovery. J. Sports Sci. 2004, 22, 15–30. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament and the Council. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. 2018. Available online: https://eur-lex.europa.eu/eli/reg/2018/848/oj (accessed on 4 May 2024).
- Reganold, J.P.; Wachter, J.M. Organic Agriculture in the Twenty-First Century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, G.; Romanello, L.; Canavari, M. The Future of Organic Certification: Potential Impacts of the Inclusion of Participatory Guarantee Systems in the European Organic Regulation. Agric. Food Econ. 2024, 12, 2. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Oszmiański, J. Microbiological Hazards in Minimally Processed Foods and Effective Methods to Eliminate Them. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2014, 2, 5–18. Available online: http://journal.pttz.org/wp-content/uploads/2015/02/01_Nowicka.pdf (accessed on 4 May 2024). [CrossRef]
- Bloksma, J.; Northolt, M.; Huber, M.; van der Burgt, G.-J.; van de Vijver, L. A New Food Quality Concept Based on Life Processes. In Handbook of Organic Food Safety and Quality; Elsevier: Amsterdam, The Netherlands, 2007; pp. 53–73. ISBN 9781845693411. [Google Scholar]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Higher PUFA and N-3 PUFA, Conjugated Linoleic Acid, α-Tocopherol and Iron, but Lower Iodine and Selenium Concentrations in Organic Milk: A Systematic Literature Review and Meta- and Redundancy Analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Barański, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Composition Differences between Organic and Conventional Meat: A Systematic Literature Review and Meta-Analysis. Br. J. Nutr. 2016, 115, 994–1011. [Google Scholar] [CrossRef] [PubMed]
- Çakmakçı, S.; Çakmakçı, R. Quality and Nutritional Parameters of Food in Agri-Food Production Systems. Foods 2023, 12, 351. [Google Scholar] [CrossRef] [PubMed]
- Worthington, V. Nutritional Quality of Organic Versus Conventional Fruits, Vegetables, and Grains. J. Altern. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, S.; Dhir, A.; Sagar, M.; Gupta, B. Determinants of Organic Food Consumption. A Systematic Literature Review on Motives and Barriers. Appetite 2019, 143, 104402. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.; Paul, J. Health Motive and the Purchase of Organic Food: A Meta-Analytic Review. Int. J. Consum. Stud. 2020, 44, 162–171. [Google Scholar] [CrossRef]
- Peternelj, T.-T.; Coombes, J.S. Antioxidant Supplementation during Exercise Training. Sports Med. 2011, 41, 1043–1069. [Google Scholar] [CrossRef] [PubMed]
- Antonioni, A.; Fantini, C.; Dimauro, I.; Caporossi, D. Redox Homeostasis in Sport: Do Athletes Really Need Antioxidant Support? Res. Sports Med. 2019, 27, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, E.; Marszałek, K.; Lipowski, J.; Jasińska, U.; Kazimierczak, R.; Średnicka-Tober, D.; Rembiałkowska, E. Polyphenols and Carotenoids in Pickled Bell Pepper from Organic and Conventional Production. Food Chem. 2019, 278, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Ponder, A.; Hallmann, E. The Effects of Organic and Conventional Farm Management and Harvest Time on the Polyphenol Content in Different Raspberry Cultivars. Food Chem. 2019, 301, 125295. [Google Scholar] [CrossRef] [PubMed]
- Król, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The Content of Polyphenols in Coffee Beans as Roasting, Origin and Storage Effect. Eur. Food Res. Technol. 2020, 246, 33–39. [Google Scholar] [CrossRef]
- Rachtan-Janicka, J.; Ponder, A.; Hallmann, E. The Effect of Organic and Conventional Cultivations on Antioxidants Content in Blackcurrant (Ribes nigrum L.). Species. Appl. Sci. 2021, 11, 5113. [Google Scholar] [CrossRef]
- Armesto, J.; Rocchetti, G.; Senizza, B.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Lucini, L.; Lorenzo, J.M. Nutritional Characterization of Butternut Squash (Cucurbita moschata D.): Effect of Variety (Ariel vs. Pluto) and Farming Type (Conventional vs. Organic). Food Res. Int. 2020, 132, 109052. [Google Scholar] [CrossRef] [PubMed]
- Srednicka-Tober, D.; Baranski, M.; Kazimierczak, R.; Ponder, A.; Kopczynska, K.; Hallmann, E. Selected Antioxidants in Organic vs. Conventionally Grown Apple Fruits. Appl. Sci. 2020, 10, 2997. [Google Scholar] [CrossRef]
- Pedro, A.C.; Pérez-Rodríguez, M.L.; Sánchez-Mata, M.C.; Bisinella, R.Z.; de Oliveira, C.S.; Schnitzler, E.; Bet, C.D.; Maciel, G.M.; Haminiuk, C.W.I. Biological Activities, Chromatographic Profile and Thermal Stability of Organic and Conventional Goji Berry. J. Food Meas. Charact. 2022, 16, 1263–1273. [Google Scholar] [CrossRef]
- Giampieri, F.; Mazzoni, L.; Cianciosi, D.; Alvarez-Suarez, J.M.; Regolo, L.; Sánchez-González, C.; Capocasa, F.; Xiao, J.; Mezzetti, B.; Battino, M. Organic vs. Conventional Plant-Based Foods: A Review. Food Chem. 2022, 383, 132352. [Google Scholar] [CrossRef]
- Dutra, M.d.C.P.; Rodrigues, L.L.; de Oliveira, D.; Pereira, G.E.; Lima, M.d.S. Integrated Analyses of Phenolic Compounds and Minerals of Brazilian Organic and Conventional Grape Juices and Wines: Validation of a Method for Determination of Cu, Fe and Mn. Food Chem. 2018, 269, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Skupień, K.; Ochmian, I.; Grajkowski, J.; Krzywy-Gawrońska, E. Nutrients, Antioxidants, and Antioxidant Activity of Organically and Conventionally Grown Raspberries. J. Appl. Bot. Food Qual. 2011, 84, 85–89. [Google Scholar]
- Crecente-Campo, J.; Nunes-Damaceno, M.; Romero-Rodríguez, M.A.; Vázquez-Odériz, M.L. Color, Anthocyanin Pigment, Ascorbic Acid and Total Phenolic Compound Determination in Organic versus Conventional Strawberries (Fragaria×ananassa Duch, Cv Selva). J. Food Compos. Anal. 2012, 28, 23–30. [Google Scholar] [CrossRef]
- Kopczyńska, K.; Kazimierczak, R.; Tober, D.Ś.; Barański, M.; Wyszyński, Z.; Kucińska, K.; Perzanowska, A.; Szacki, P.; Rembiałkowska, E.; Hallmann, E. The Profile of Selected Antioxidants in Two Courgette Varieties from Organic and Conventional Production. Antioxidants 2020, 9, 404. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, E.; Rembial Kowska, E. Characterisation of Antioxidant Compounds in Sweet Bell Pepper (Capsicum annuum L.) under Organic and Conventional Growing Systems. J. Sci. Food Agric. 2012, 92, 2409–2415. [Google Scholar] [CrossRef] [PubMed]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Püssa, T.; Matt, D.; Luik, A.; Gozdowskif, D.; Rembiałkowska, E. Beetroot (Beta vulgaris L.) and Naturally Fermented Beetroot Juices from Organic and Conventional Production: Metabolomics, Antioxidant Levels and Anticancer Activity. J. Sci. Food Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.-S.; Hininger, I.; Palazzetti, S.; Faure, H.; Roussel, A.-M.; Margaritis, I. Antioxidant Vitamin Status in High Exposure to Oxidative Stress in Competitive Athletes. Br. J. Nutr. 2004, 92, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Machefer, G.; Groussard, C.; Zouhal, H.; Vincent, S.; Youssef, H.; Faure, H.; Malardé, L.; Gratas-Delamarche, A. Nutritional and Plasmatic Antioxidant Vitamins Status of Ultra Endurance Athletes. J. Am. Coll. Nutr. 2007, 26, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Zanella, P.B.; August, P.M.; Alves, F.D.; Matté, C.; de Souza, C.G. Association of Healthy Eating Index and Oxidative Stress in Adolescent Volleyball Athletes and Non-Athletes. Nutrition 2019, 60, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Farajian, P.; Kavouras, S.A.; Yannakoulia, M.; Sidossis, L.S. Dietary Intake and Nutritional Practices of Elite Greek Aquatic Athletes. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Devrim-Lanpir, A.; Bilgic, P.; Kocahan, T.; Deliceoğlu, G.; Rosemann, T.; Knechtle, B. Total Dietary Antioxidant Intake Including Polyphenol Content: Is It Capable to Fight against Increased Oxidants within the Body of Ultra-Endurance Athletes? Nutrients 2020, 12, 1877. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, H.; Włodarek, D. Dietary Intake of Polish Female Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 1134. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, T.P.M.; Bristol, A.; McLaurin, N.; Forbes, S.C.; Tanaka, H.; Frings-Meuthen, P.; Pesta, D.; Rittweger, J.; Chilibeck, P.D. Dietary Intake of Athletes at the World Masters Athletics Championships as Assessed by Single 24 h Recall. Nutrients 2024, 16, 564. [Google Scholar] [CrossRef] [PubMed]
- Watson, T.A.; Macdonald-Wicks, L.K.; Garg, M.L. Oxidative Stress and Antioxidants in Athletes Undertaking Regular Exercise Training. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Pingitore, A.; Lima, G.P.P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and Oxidative Stress: Potential Effects of Antioxidant Dietary Strategies in Sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Dawson, B.; Goodman, C.; Landers, G.; Trinder, D. Athletic Induced Iron Deficiency: New Insights into the Role of Inflammation, Cytokines and Hormones. Eur. J. Appl. Physiol. 2008, 103, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.R. Exercise-Associated Iron Deficiency: A Review and Recommendations for Practice. Strength Cond. J. 2016, 38, 24–34. [Google Scholar] [CrossRef]
- Chatard, J.C.; Mujika, I.; Guy, C.; Lacour, J.R. Anaemia and Iron Deficiency in Athletes. Practical Recommendations for Treatment. Sports Med. 1999, 27, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, M.E.; Gillen, Z.M.; McKay, B.D.; Koehler, K.; Cramer, J.T. High Prevalence of Poor Iron Status Among 8- to 16-Year-Old Youth Athletes: Interactions Among Biomarkers of Iron, Dietary Intakes, and Biological Maturity. J. Am. Coll. Nutr. 2020, 39, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Faludi, G.; Beauclercq, S.; Pitt, J.; Desnica, N.; Pétursdóttir, Á.; Newton, E.E.; Angelidis, A.; Givens, I.; Juniper, D.; et al. Macromineral and Trace Element Concentrations and Their Seasonal Variation in Milk from Organic and Conventional Dairy Herds. Food Chem. 2021, 359, 129865. [Google Scholar] [CrossRef] [PubMed]
- LaComb, R.; Raper, N.; Enns, C.W.; Goldman, J.; Moshfegh, A. Fluid milk consumption patterns in the United States, 2003–2004. FASEB J. 2007, 21, A309. [Google Scholar] [CrossRef]
- Özen, A.E.; Bibiloni, M.d.M.; Pons, A.; Tur, J.A. Fluid intake from beverages across age groups: A systematic review. J. Hum. Nutr. Diet. 2015, 28, 417–442. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. Patterns of beverage use across the lifecycle. Physiol. Behav. 2010, 100, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.A.; Zello, G.A.; Rodgers, C.D.; Warkentin, T.D.; Baerwald, A.R.; Chilibeck, P.D. Benefits of a Plant-Based Diet and Considerations for the Athlete. Eur. J. Appl. Physiol. 2022, 122, 1163–1178. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.; Foster, M.; Mcarthur, J.O.; Ojha, R.; Petocz, P.; Samman, S. Evaluation of the Micronutrient Composition of Plant Foods Produced by Organic and Conventional Agricultural Methods. Crit. Rev. Food Sci. Nutr. 2011, 51, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Drakou, M.; Birmpa, A.; Koutelidakis, A.E.; Komaitis, M.; Panagou, E.Z.; Kapsokefalou, M. Total Antioxidant Capacity, Total Phenolic Content and Iron and Zinc Dialyzability in Selected Greek Varieties of Table Olives, Tomatoes and Legumes from Conventional and Organic Farming. Int. J. Food Sci. Nutr. 2015, 66, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Miotello, S.; Bondesan, V.; Tagliapietra, F.; Schiavon, S.; Bailoni, L. Meat Quality of Calves Obtained from Organic and Conventional Farming. Ital. J. Anim. Sci. 2009, 8, 213–215. [Google Scholar] [CrossRef]
- Karwowska, M.; Dolatowski, Z.J. Comparison of Lipid and Protein Oxidation, Total Iron Content and Fatty Acid Profile of Conventional and Organic Pork. Int. J. Food Sci. Technol. 2013, 48, 2200–2206. [Google Scholar] [CrossRef]
- Rossi, K.A. Nutritional Aspects of the Female Athlete. Clin. Sports Med. 2017, 36, 627–653. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.C. Calcium as a Boon or Bane for Athlete: A Review. Asian J. Res. Mark. 2022, 11, 1–8. [Google Scholar] [CrossRef]
- Larson-Meyer, E. Calcium and Vitamin D. In The Encyclopaedia of Sports Medicine; John Wiley & Sons Ltd.: Chichester, UK, 2013; pp. 242–262. [Google Scholar]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [Google Scholar] [CrossRef] [PubMed]
- Ogan, D.; Pritchett, K. Vitamin D and the Athlete: Risks, Recommendations, and Benefits. Nutrients 2013, 5, 1856–1868. [Google Scholar] [CrossRef] [PubMed]
- Farrokhyar, F.; Sivakumar, G.; Savage, K.; Koziarz, A.; Jamshidi, S.; Ayeni, O.R.; Peterson, D.; Bhandari, M. Effects of Vitamin D Supplementation on Serum 25-Hydroxyvitamin D Concentrations and Physical Performance in Athletes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med. 2017, 47, 2323–2339. [Google Scholar] [CrossRef] [PubMed]
- Wiciński, M.; Adamkiewicz, D.; Adamkiewicz, M.; Śniegocki, M.; Podhorecka, M.; Szychta, P.; Malinowski, B. Impact of Vitamin D on Physical Efficiency and Exercise Performance—A Review. Nutrients 2019, 11, 2826. [Google Scholar] [CrossRef] [PubMed]
- Cannell, J.J.; Hollis, B.W.; Sorenson, M.B.; Taft, T.N.; Anderson, J.J.B. Athletic Performance and Vitamin D. Med. Sci. Sports Exerc. 2009, 41, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Brodziak, A.; Król, J.; Litwińczuk, Z.; Barłowska, J. Differences in Bioactive Protein and Vitamin Status of Milk from Certified Organic and Conventional Farms. Int. J. Dairy Technol. 2018, 71, 321–332. [Google Scholar] [CrossRef]
- Jakobsen, J.; Saxholt, E. Vitamin D Metabolites in Bovine Milk and Butter. J. Food Compos. Anal. 2009, 22, 472–478. [Google Scholar] [CrossRef]
- Čuboň, J.; Foltys, V.; Haščík, P.; Kačániová, M.; Ubrežiová, I.; Kráčmar, S. The Raw Milk Quality from Organic and Conventional Agriculture. Acta Univ. Agric. Silvic. Mendelianae Brun. 2008, 56, 25–30. [Google Scholar] [CrossRef]
- Popović Vranješ, A. Production of Hard Goat Cheese and Goat Whey from Organic Goat’s Milk. Mljekarstvo 2017, 67, 177–187. [Google Scholar] [CrossRef]
- Brodziak, A.; Wajs, J.; Zuba-Ciszewska, M.; Król, J.; Stobiecka, M.; Jańczuk, A. Organic versus Conventional Raw Cow Milk as Material for Processing. Animals 2021, 11, 2760. [Google Scholar] [CrossRef] [PubMed]
- Rachid, S.K.; Rasheed, B.O.; Jaff, P.M.; Faraj, K.A. Vitamin D Status Among Women Living in Sulaimani, Kurdistan Region and HPLC-MS Analysis for Measuring Vitamin D in Organic and Non-Organic Eggs. Kirkuk Univ. J. Sci. Stud. 2017, 12, 160–172. [Google Scholar] [CrossRef]
- Kühn, J.; Schutkowski, A.; Kluge, H.; Hirche, F.; Stangl, G.I. Free-Range Farming: A Natural Alternative to Produce Vitamin D-Enriched Eggs. Nutrition 2014, 30, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Mäder, P.; Hahn, D.; Dubois, D.; Gunst, L.; Alföldi, T.; Bergmann, H.; Oehme, M.; Amadò, R.; Schneider, H.; Graf, U.; et al. Wheat Quality in Organic and Conventional Farming: Results of a 21 Year Field Experiment. J. Sci. Food Agric. 2007, 87, 1826–1835. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tabele Składu i Wartości Odżywczej Żywności; PZWL: Warsaw, Poland, 2018. [Google Scholar]
- Akbaba, U.; Ahin, Y.; Türkez, H. Comparison of Element Contents in Haricot Beans Grown under Organic and Conventional Farming Regimes for Human Nutrition and Health. Acta Sci. Pol. Hortorum Cultus 2012, 11, 117–125. [Google Scholar]
- Raigón, M.D.; Rodríguez-Burruezo, A.; Prohens, J. Effects of Organic and Conventional Cultivation Methods on Composition of Eggplant Fruits. J. Agric. Food Chem. 2010, 58, 6833–6840. [Google Scholar] [CrossRef]
- Rahman, A.; Baharlouei, P.; Koh, E.H.Y.; Pirvu, D.G.; Rehmani, R.; Arcos, M.; Puri, S. A Comprehensive Analysis of Organic Food: Evaluating Nutritional Value and Impact on Human Health. Foods 2024, 13, 208. [Google Scholar] [CrossRef] [PubMed]
- Baranauskas, M.; Jablonskienė, V.; Abaravičius, J.A.; Samsonienė, L.; Stukas, R. Dietary Acid-Base Balance in High-Performance Athletes. Int. J. Environ. Res. Public Health 2020, 17, 5332. [Google Scholar] [CrossRef] [PubMed]
- Jenner, S.L.; Trakman, G.; Coutts, A.; Kempton, T.; Ryan, S.; Forsyth, A.; Belski, R. Dietary Intake of Professional Australian Football Athletes Surrounding Body Composition Assessment. J. Int. Soc. Sports Nutr. 2018, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Ishizu, T.; Torii, S.; Taguchi, M. Habitual Dietary Status and Stress Fracture Risk Among Japanese Female Collegiate Athletes. J. Am. Nutr. Assoc. 2022, 41, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Baranauskas, M.; Jablonskienė, V.; Abaravičius, J.A.; Stukas, R. Actual Nutrition and Dietary Supplementation in Lithuanian Elite Athletes. Medicina 2020, 56, 247. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, T.F.; Boyd, L.A.; Spriet, L.L. Dietary Macronutrient and Micronutrient Intake over a 7-Day Period in Female Varsity Ice Hockey Players. Nutrients 2021, 13, 2262. [Google Scholar] [CrossRef] [PubMed]
- Książek, A.; Zagrodna, A.; Słowińska-Lisowska, M. Assessment of the Dietary Intake of High-Rank Professional Male Football Players during a Preseason Training Week. Int. J. Environ. Res. Public Health 2020, 17, 8567. [Google Scholar] [CrossRef] [PubMed]
- Gogojewicz, A.; Śliwicka, E.; Durkalec-Michalski, K. Assessment of Dietary Intake and Nutritional Status in CrossFit-Trained Individuals: A Descriptive Study. Int. J. Environ. Res. Public Health 2020, 17, 4772. [Google Scholar] [CrossRef] [PubMed]
- Jenner, S.L.; Devlin, B.L.; Forsyth, A.K.; Belski, R. Dietary Intakes of Professional Australian Football League Women’s (AFLW) Athletes during a Preseason Training Week. J. Sci. Med. Sport 2019, 22, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Oh, C.-S.; Lee, J.-H. Dietary Nutrient Intake of Korean Adolescent Distance Runners. J. Exerc. Rehabil. 2019, 15, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Hixson, K.; Biagioni, E.; Brown, M.L. Significant Differences in Dietary Intake of NCAA Division III Soccer Players Compared to Recommended Levels. J. Am. Coll. Health 2022, 70, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Masoga, S.; Makuse, S.H.M.; Bopape, M.M. Dietary Intake of Amateur Bodybuilding Athletes Around Polokwane Municipality in Limpopo Province, South Africa. Glob. J. Health Sci. 2019, 11, 134. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and Exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, C.A.; Haliniarz, M.; Tomczyńska-Mleko, M.; Mleko, S.; Kawecka-Radomska, M. The Content of Dietary Fiber, Amino Acids, Dihydroxyphenols and Some Macro- and Micronutrients in Grain of Conventionally and Organically Grown Common Wheat, Spelt Wheat and Proso Millet. Agric. Food Sci. 2015, 24, 195–205. [Google Scholar] [CrossRef]
- Carillo, P.; Cacace, D.; De Pascale, S.; Rapacciuolo, M.; Fuggi, A. Organic vs. Traditional Potato Powder. Food Chem. 2012, 133, 1264–1273. [Google Scholar] [CrossRef]
- Chitra, U. Nutritional quality and safety of organic foods. J. Food Process. Technol. 2013. Available online: https://www.semanticscholar.org/paper/Nutritional-quality-and-safety-of-organic-foods-Chitra/c53cf95ef2640a841542c56dfd8ab034320d87f4 (accessed on 10 June 2024).
- Golijan, J.; Sečanski, M. Organic plant products are of more improved chemical composition than conventional ones. Food Feed Res. 2021, 48, 79–117. [Google Scholar] [CrossRef]
- Gwin, J.A.; Church, D.D.; Wolfe, R.R.; Ferrando, A.A.; Pasiakos, S.M. Muscle Protein Synthesis and Whole-Body Protein Turnover Responses to Ingesting Essential Amino Acids, Intact Protein, and Protein-Containing Mixed Meals with Considerations for Energy Deficit. Nutrients 2020, 12, 2457. [Google Scholar] [CrossRef] [PubMed]
- Tipton, K.D.; Witard, O.C. Protein Requirements and Recommendations for Athletes: Relevance of Ivory Tower Arguments for Practical Recommendations. Clin. Sports Med. 2007, 26, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Minelli, G.; Sirri, F.; Folegatti, E.; Meluzzi, A.; Franchini, A. Egg Quality Traits of Laying Hens Reared in Organic and Conventional Systems. Ital. J. Anim. Sci. 2007, 6, 728–730. [Google Scholar] [CrossRef]
- Balisteiro, D.M.; Rombaldi, C.V.; Genovese, M.I. Protein, Isoflavones, Trypsin Inhibitory and in Vitro Antioxidant Capacities: Comparison among Conventionally and Organically Grown Soybeans. Food Res. Int. 2013, 51, 8–14. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Díaz, I.; Sárraga, C.; García-Regueiro, J.A.; Castellari, M. Nutritional Properties of Organic and Conventional Beef Meat at Retail. J. Sci. Food Agric. 2019, 99, 4218–4225. [Google Scholar] [CrossRef] [PubMed]
- Jenner, S.L.; Buckley, G.L.; Belski, R.; Devlin, B.L.; Forsyth, A.K. Dietary Intakes of Professional and Semi-Professional Team Sport Athletes Do Not Meet Sport Nutrition Recommendations—A Systematic Literature Review. Nutrients 2019, 11, 1160. [Google Scholar] [CrossRef] [PubMed]
- Elias, S.S.M.; Saad, H.A.; Taib, M.N.M.; Jamil, Z. Effects of Sports Nutrition Education Intervention on Sports Nutrition Knowledge, Attitude and Practice, and Dietary Intake of Malaysian Team Sports Athletes. Malays. J. Nutr. 2018, 24, 103–116. [Google Scholar]
- Parnell, J.A.; Wiens, K.P.; Erdman, K.A. Dietary Intakes and Supplement Use in Pre-Adolescent and Adolescent Canadian Athletes. Nutrients 2016, 8, 526. [Google Scholar] [CrossRef] [PubMed]
- Spendlove, J.; Mitchell, L.; Gifford, J.; Hackett, D.; Slater, G.; Cobley, S.; O’Connor, H. Dietary Intake of Competitive Bodybuilders. Sport Med. 2015, 45, 1041–1063. [Google Scholar] [CrossRef]
- Lun, V.; Erdman, K.A.; Reimer, R.A. Evaluation of Nutritional Intake in Canadian High-Performance Athletes. Clin. J. Sport Med. 2009, 19, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.L.; Matias, C.N.; Santos, D.A.; Morgado, J.P.; Monteiro, C.P.; Sousa, M.; Minderico, C.S.; Rocha, P.M.; St-Onge, M.P.; Sardinha, L.B.; et al. Characterization and Comparison of Nutritional Intake between Preparatory and Competitive Phase of Highly Trained Athletes. Medicina 2018, 54, 41. [Google Scholar] [CrossRef] [PubMed]
- Madden, R.F.; Shearer, J.; Parnell, J.A. Evaluation of Dietary Intakes and Supplement Use in Paralympic Athletes. Nutrients 2017, 9, 1266. [Google Scholar] [CrossRef] [PubMed]
- Baranauskas, M.; Kupčiūnaitė, I.; Stukas, R. Dietary Intake of Protein and Essential Amino Acids for Sustainable Muscle Development in Elite Male Athletes. Nutrients 2023, 15, 4003. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Nishisaka, M.M.; McGrath, A.F.; Kristo, A.S.; Sikalidis, A.K.; Reaves, S.K. Protein Intake in NCAA Division 1 Soccer Players: Assessment of Daily Amounts, Distribution Patterns, and Leucine Levels as a Quality Indicator. Sports 2023, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Philpott, J.D.; Witard, O.C.; Galloway, S.D.R. Applications of Omega-3 Polyunsaturated Fatty Acid Supplementation for Sport Performance. Res. Sports Med. 2019, 27, 219–237. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.; Riccioni, G.; Parrinello, G.; D’Orazio, N. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients 2018, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Koba, K.; Yanagita, T. Health Benefits of Conjugated Linoleic Acid (CLA). Obes. Res. Clin. Pract. 2014, 8, e525–e532. [Google Scholar] [CrossRef] [PubMed]
- Kilar, J.; Kasprzyk, A. Fatty Acids and Nutraceutical Properties of Lipids in Fallow Deer (Dama Dama) Meat Produced in Organic and Conventional Farming Systems. Foods 2021, 10, 2290. [Google Scholar] [CrossRef] [PubMed]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International Society of Sports Nutrition Position Stand: Caffeine and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of Acute Ingestion of Caffeine on Team Sports Performance: A Systematic Review and Meta-Analysis. Res. Sports Med. 2019, 27, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, L.M.R.; Neto, E.d.S.; Molina, G.E.; Amato, A.A.; Arruda, S.F.; Reis, C.E.G.; da Costa, T.H.M. Coffee Increases Post-Exercise Muscle Glycogen Recovery in Endurance Athletes: A Randomized Clinical Trial. Nutrients 2021, 13, 3335. [Google Scholar] [CrossRef] [PubMed]
- do Carvalho, D.C.; Brigagão, M.R.P.L.; dos Santos, M.H.; de Paula, F.B.A.; Giusti-Paiva, A.; Azevedo, L. Organic and Conventional Coffea arabica L.: A Comparative Study of the Chemical Composition and Physiological, Biochemical and Toxicological Effects in Wistar Rats. Plant Foods Hum. Nutr. 2011, 66, 114–121. [Google Scholar] [CrossRef]
- Hallmann, E.; Ożga, M.; Rembiałkowska, E. The Content of Bioactive Compounds in Selected Kind of Coffee from Organic and Conventional Production. J. Res. Appl. Agric. Eng. 2010, 55, 99–104. [Google Scholar]
- Kim, M.J.; Kim, J.H.; Kim, J.H.; Kim, Y.J. Comparative Studies on the Antioxidant Capacities and Catechin Profiles of Conventional and Organic Green Tea. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 475–480. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Rusaczonek, A.; Rembiałkowska, E. Polyphenols, Tannins and Caffeine Content and Antioxidant Activity of Green Teas Coming from Organic and Non-Organic Production. Renew. Agric. Food Syst. 2015, 30, 263–269. [Google Scholar] [CrossRef]
- Piyasena, K.G.N.P.; Hettiarachchi, L.S.K. Comparison of Tea Quality Parameters of Conventionally and Organically Grown Tea, and Effects of Fertilizer on Tea Quality: A Mini-Review. Food Chem. Adv. 2023, 3, 100399. [Google Scholar] [CrossRef]
- Coelho, T.R.; Pereira, H.M.; Bittencourt Guimarães, A.T. Physical function as a marker to assess the effects of occupational long-term pesticide exposure. PLoS ONE 2024, 19, e0300980. [Google Scholar] [CrossRef] [PubMed]
- Erkudov, V.O.; Rozumbetov, K.U.; Pugovkin, A.P.; Matchanov, A.T.; Esimbetov, A.T.; Arachchi, S.; Rathnayake, U. Assessment of youth fitness under long-term exposure to toxic environmental conditions due to pesticides: Case from Aral Sea region. Case Stud. Chem. Environ. Eng. 2023, 8, 100504. [Google Scholar] [CrossRef]
- Fuhrimann, S.; van den Brenk, I.; Atuhaire, A.; Mubeezi, R.; Staudacher, P.; Huss, A.; Kromhout, H. Recent pesticide exposure affects sleep: A cross-sectional study among smallholder farmers in Uganda. Environ. Int. 2022, 158, 106878. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, M.I.; Sajjad, A.; Shakeel, Q.; Hussain, A. Environmental and Health Effects of Pesticide Residues. In Sustainable Agriculture Reviews 48: Pesticide Occurrence, Analysis and Remediation; Springer: Cham, Switzerland, 2021; pp. 311–336. ISBN 9783030547196. [Google Scholar]
- Kumar, N.; Pathera, A.K.; Saini, P.; Kumar, M. Harmful Effects of Pesticides on Human Health. Ann. Agri-Bio Res. 2012, 17, 125–127. [Google Scholar]
- McKinlay, R.; Plant, J.A.; Bell, J.N.B.; Voulvoulis, N. Endocrine Disrupting Pesticides: Implications for Risk Assessment. Environ. Int. 2008, 34, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef]
- Wang, X.; Gao, M.; Tan, Y.; Li, Q.; Chen, J.; Lan, C.; Jiangtulu, B.; Wang, B.; Shen, G.; Yu, Y.; et al. Associations of Dietary Exposure to Organochlorine Pesticides from Plant-Origin Foods with Lipid Metabolism and Inflammation in Women: A Multiple Follow-up Study in North China. Bull. Environ. Contam. Toxicol. 2021, 107, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Liu, Q.Q.; Li, K.; Chang, C.-H.; Lu, C.A. Assessing Dietary Pesticide Intake and Potential Health Effects: The Application of Global Metabolomics Analysis. J. Agric. Food Chem. 2022, 70, 4086–4091. [Google Scholar] [CrossRef] [PubMed]
- Smith-Spangler, C.; Brandeau, M.L.; Hunter, G.E.; Bavinger, J.C.; Pearson, M.; Eschbach, P.J.; Sundaram, V.; Liu, H.; Schirmer, P.; Stave, C.; et al. Are Organic Foods Safer or Healthier Than Conventional Alternatives? Ann. Intern. Med. 2012, 157, 348. [Google Scholar] [CrossRef] [PubMed]
- Suciu, N.A.; Ferrari, F.; Trevisan, M. Organic and Conventional Food: Comparison and Future Research. Trends Food Sci. Technol. 2019, 84, 49–51. [Google Scholar] [CrossRef]
- Baudry, J.; Debrauwer, L.; Durand, G.; Limon, G.; Delcambre, A.; Vidal, R.; Taupier-Letage, B.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; et al. Urinary Pesticide Concentrations in French Adults with Low and High Organic Food Consumption: Results from the General Population-Based NutriNet-Santé. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Curl, C.L.; Porter, J.; Penwell, I.; Phinney, R.; Ospina, M.; Calafat, A.M. Effect of a 24-Week Randomized Trial of an Organic Produce Intervention on Pyrethroid and Organophosphate Pesticide Exposure among Pregnant Women. Environ. Int. 2019, 132, 104957. [Google Scholar] [CrossRef] [PubMed]
- Rempelos, L.; Wang, J.; Barański, M.; Watson, A.; Volakakis, N.; Hoppe, H.-W.; Kühn-Velten, W.N.; Hadall, C.; Hasanaliyeva, G.; Chatzidimitriou, E.; et al. Diet and food type affect urinary pesticide residue excretion profiles in healthy individuals: Results of a randomized controlled dietary intervention trial. Am. J. Clin. Nutr. 2022, 115, 364–377. [Google Scholar] [CrossRef] [PubMed]
Study | Study Material | Similar Location and Growing Conditions between Organic and Conventional Farms | Tested Compounds | Higher Content in Conventional | Higher Content in Organic | Reference |
---|---|---|---|---|---|---|
Rachtan-Janicka et al. (2021) | Black currant | Yes | Polyphenols, vitamin C, anthocyanins | - | Vitamin C, total polyphenols, total phenolic acids, total flavonoids, anthocyanins | [22] |
Hallmann et al. (2019) | Pickled bell pepper | Yes | Dry matter, carotenoids, polyphenols | Phenolic acids | Flavonoids, carotenoids | [19] |
Crecente-Campo et al. (2012) | Strawberries | Yes | anthocyanins, ascorbic acid, total phenolic content | - | Anthocyanins, ascorbic acid | [29] |
Król et al. (2020) | Coffee beans | Yes/n/d | Dry matter, polyphenols, caffeine, flavonoids | Kaempferol, quercetin-3-O-glucoside and flavonoids in stored coffee and quercetin-3-O-rutinoside in freshly roasted coffee | Total phenolic acids, phenolic acids, flavonoids in freshly roasted coffee | [21] |
Ponder and Hallmann (2019) | Raspberries | Yes | Dry matter, phenolic acid, flavonoids, anthocyanins | - | Total polyphenols * | [20] |
Armesto et al. (2020) | Butternut squash | n/d | Physical and chemical properties, minerals, vitamins, amino acids, antioxidant components | Folic acid, β-carotene | Tocopherol | [23] |
Średnicka-Tober et al. (2020) | Apples | Yes | Dry matter, phenolic acids, flavonols, vitamin C | - | Phenolic acids, flavonols | [24] |
Dutra et al. (2018) | Grape juices and wines | n/d | Total phenolic content, antioxidant activity, minerals | Anthocyanins | - | [27] |
Skupień et al. (2011) | Raspberries | Partly/No | Dry matter, soluble solids, titratable acidity, sugars, vitamin C, total polyphenol content | - | - | [28] |
Kopczyńska et al. (2020) | Courgettes | Yes | Dry matter, phenolic compounds, carotenoids, chlorophylls, vitamin C | - | Polyphenols, phenolic acids, flavonoids, carotenoids, chlorophylls | [30] |
Hallmann and Rembiałkowska (2011) | Sweet bell pepper | Yes | Dry matter, vitamin C, carotenoids, polyphenols | - | Vitamin C, carotenoids, phenolic acids | [31] |
Kazimierczak et al. (2013) | Beetroot and beetroot juices in LNF ^ and HNF ^ level | Yes (for both juices and beetroots) | Dry matter, sugars, acidity, vitamin C, phenolic compounds, betacyanins, | Phenolic acids (LNF for beetroots), phenolic acids (HNF for juices), flavonoids (LNF for beetroots) | Vitamin C (for both beetroot and juices) | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrowolski, H.; Kopczyńska, K.; Kazimierczak, R.; Rembiałkowska, E.; Włodarek, D. Organic Food in Athletes Diet—Narrative Review of Alternative Products in Sports Nutrition. Nutrients 2024, 16, 2347. https://doi.org/10.3390/nu16142347
Dobrowolski H, Kopczyńska K, Kazimierczak R, Rembiałkowska E, Włodarek D. Organic Food in Athletes Diet—Narrative Review of Alternative Products in Sports Nutrition. Nutrients. 2024; 16(14):2347. https://doi.org/10.3390/nu16142347
Chicago/Turabian StyleDobrowolski, Hubert, Klaudia Kopczyńska, Renata Kazimierczak, Ewa Rembiałkowska, and Dariusz Włodarek. 2024. "Organic Food in Athletes Diet—Narrative Review of Alternative Products in Sports Nutrition" Nutrients 16, no. 14: 2347. https://doi.org/10.3390/nu16142347
APA StyleDobrowolski, H., Kopczyńska, K., Kazimierczak, R., Rembiałkowska, E., & Włodarek, D. (2024). Organic Food in Athletes Diet—Narrative Review of Alternative Products in Sports Nutrition. Nutrients, 16(14), 2347. https://doi.org/10.3390/nu16142347