The Impacts of Single Preterm Human Donor Milk Compared to Mother’s Own Milk on Growth and Body Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Groups
2.3. Body Composition
2.4. Nutitional Management
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walker, A. Breast milk as the gold standard for protective nutrients. J Pediatr. 2010, 156 (Suppl. S2), S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.M.; Moltu, S.J.; Lapillonne, A.; Akker, C.H.V.D.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.M.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and invited experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef]
- Ochoa, T.J.; Mendoza, K.; Carcamo, C.; Zegarra, J.; Bellomo, S.; Jacobs, J.; Cossey, V. Is Mother’s Own Milk Lactoferrin Intake Associated with Reduced Neonatal Sepsis, Necrotizing Enterocolitis, and Death? Neonatology 2020, 117, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Belfort, M.B.; Knight, E.; Chandarana, S.; Ikem, E.; Gould, J.F.; Collins, C.T.; Makrides, M.; Gibson, R.A.; Anderson, P.J.; Simmer, K.; et al. Associations of Maternal Milk Feeding With Neurodevelopmental Outcomes at 7 Years of Age in Former Preterm Infants. JAMA Netw. Open 2022, 5, e2221608. [Google Scholar] [CrossRef] [PubMed]
- Valverde, R.; Dinerstein, N.A.; Vain, N. Mother’s Own Milk and Donor Milk. Nutr. Care Preterm Infants 2021, 122, 212–224. [Google Scholar] [CrossRef]
- Strobel, N.A.; Adams, C.; McAullay, D.R.; Edmond, K.M. Mother’s Own Milk Compared With Formula Milk for Feeding Preterm or Low Birth Weight Infants: Systematic Review and Meta-analysis. Pediatrics 2022, 150 (Suppl. S1), e2022057092D. [Google Scholar] [CrossRef]
- Altobelli, E.; Angeletti, P.M.; Verrotti, A.; Petrocelli, R. The Impact of Human Milk on Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1322. [Google Scholar] [CrossRef]
- Schanler, R.J.; Shulman, R.J.; Lau, C. Feeding Strategies for Premature Infants: Beneficial Outcomes of Feeding Fortified Human Milk Versus Preterm Formula. Pediatrics 1999, 103, 1150–1157. [Google Scholar] [CrossRef]
- Villamor-Martínez, E.; Pierro, M.; Cavallaro, G.; Mosca, F.; Kramer, B.W.; Villamor, E. Donor Human Milk Protects against Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.K.; Singhal, A.; Vaidya, U.; Banerjee, S.; Anwar, F.; Rao, S. Optimizing Nutrition in Preterm Low Birth Weight Infants—Consensus Summary. Front. Nutr. 2017, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Luna, M.S.; Martin, S.C.; Gómez-De-Orgaz, C.S. Human milk bank and personalized nutrition in the NICU: A narrative review. Eur. J. Pediatr. 2021, 180, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom, A.; Ley, D.; Hansen-Pupp, I.; Niklasson, A.; Smith, L.; Löfqvist, C.; Hård, A.-L. New insights into the development of retinopathy of prematurity—Importance of early weight gain. Acta Paediatr. 2010, 99, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Klevebro, S.; Lundgren, P.; Hammar, U.; Smith, L.E.; Bottai, M.; Domellöf, M.; Löfqvist, C.; Hallberg, B.; Hellstrom, A. Cohort study of growth patterns by gestational age in preterm infants developing morbidity. BMJ Open 2016, 6, e012872. [Google Scholar] [CrossRef] [PubMed]
- Coviello, C.; Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Leemans, A.; Peels, B.; Isgum, I.; Viergever, M.A.; de Vries, L.S.; Buonocore, G.; et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr. Res. 2017, 83, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Meyers, J.M.; Tan, S.; Bell, E.F.; Duncan, A.F.; Guillet, R.; Stoll, B.J.; D’Angio, C.T.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental outcomes among extremely premature infants with linear growth restriction. J. Perinatol. 2019, 39, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Da-Silva, L.; Virella, D.; Fusch, C. Nutritional Assessment in Preterm Infants: A Practical Approach in the NICU. Nutrients 2019, 11, 1999. [Google Scholar] [CrossRef] [Green Version]
- Pfister, K.M.; Zhang, L.; Miller, N.C.; Ingolfsland, E.; Demerath, E.W.; Ramel, S.E. Early body composition changes are associated with neurodevelopmental and metabolic outcomes at 4 years of age in very preterm infants. Pediatr. Res. 2018, 84, 713–718. [Google Scholar] [CrossRef]
- Ramel, S.E.; Haapala, J.; Super, J.; Boys, C.; Demerath, E.W. Nutrition, Illness and Body Composition in Very Low Birth Weight Preterm Infants: Implications for Nutritional Management and Neurocognitive Outcomes. Nutrients 2020, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Binder, C.; Buchmayer, J.; Thajer, A.; Giordano, V.; Schmidbauer, V.; Harreiter, K.; Klebermass-Schrehof, K.; Berger, A.; Goeral, K. Association between Fat-Free Mass and Brain Size in Extremely Preterm Infants. Nutrients 2021, 13, 4205. [Google Scholar] [CrossRef]
- Ramel, S.E.; Gray, H.L.; Christiansen, E.; Boys, C.; Georgieff, M.K.; Demerath, E.W. Greater Early Gains in Fat-Free Mass, but Not Fat Mass, Are Associated with Improved Neurodevelopment at 1 Year Corrected Age for Prematurity in Very Low Birth Weight Preterm Infants. J. Pediatr. 2016, 173, 108–115. [Google Scholar] [CrossRef]
- Eidelman, A.I.; Nnebe-Agumadu, U.H.; Racine, E.F.; Laditka, S.B.; Coffman, M.J.; Fuemmeler, B.F.; Behrman, P.; Taylor, M.; Sokol, R.; Rothman, E.; et al. Breastfeeding and the Use of Human Milk: An Analysis of the American Academy of Pediatrics 2012 Breastfeeding Policy Statement. Breastfeed. Med. 2012, 7, 323–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piemontese, P.; Mallardi, D.; Liotto, N.; Tabasso, C.; Menis, C.; Perrone, M.; Roggero, P.; Mosca, F. Macronutrient content of pooled donor human milk before and after Holder pasteurization. BMC Pediatr. 2019, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hård, A.-L.; Nilsson, A.K.; Lund, A.-M.; Hansen-Pupp, I.; Smith, L.E.H.; Hellström, A. Review shows that donor milk does not promote the growth and development of preterm infants as well as maternal milk. Acta Paediatr. 2019, 108, 998–1007. [Google Scholar] [CrossRef] [Green Version]
- Piemontese, P.; Liotto, N.; Mallardi, D.; Roggero, P.; Puricelli, V.; Giannì, M.L.; Morniroli, D.; Tabasso, C.; Perrone, M.; Menis, C.; et al. The Effect of Human Milk on Modulating the Quality of Growth in Preterm Infants. Front. Pediatr. 2018, 6, 291. [Google Scholar] [CrossRef]
- Saarela, T.; Kokkonen, J.; Koivisto, M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005, 94, 1176–1181. [Google Scholar] [CrossRef]
- Morlacchi, L.; Roggero, P.; Giannì, M.L.; Bracco, B.; Porri, D.; Battiato, E.; Menis, C.; Liotto, N.; Mallardi, D.; Mosca, F. Protein use and weight-gain quality in very-low-birth-weight preterm infants fed human milk or formula. Am. J. Clin. Nutr. 2018, 107, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Costa-Orvay, J.A.; Figueras-Aloy, J.; Romera, G.; Closa-Monasterolo, R.; Carbonell-Estrany, X. The effects of varying protein and energy intakes on the growth and body composition of very low birth weight infants. Nutr. J. 2011, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Madore, L.S.; Bora, S.; Erdei, C.; Jumani, T.; Dengos, A.R.; Sen, S. Effects of Donor Breastmilk Feeding on Growth and Early Neurodevelopmental Outcomes in Preterm Infants: An Observational Study. Clin. Ther. 2017, 39, 1210–1220. [Google Scholar] [CrossRef]
- Urlando, A.; Dempster, P.; Aitkens, S. A New Air Displacement Plethysmograph for the Measurement of Body Composition in Infants. Pediatr. Res. 2003, 53, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Yao, M.; Liu, Y.; Lin, A.; Zou, H.; Urlando, A.; Wong, W.W.; Nommsen-Rivers, L.; Dewey, K.G. Validation of a new pediatric air-displacement plethysmograph for assessing body composition in infants. Am. J. Clin. Nutr. 2004, 79, 653–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, T.; Ramel, S.E.; Catalano, P.; Ni Caoimh, C.; Roggero, P.; Murray, D.; Fields, D.A.; Demerath, E.W.; Johnson, W. New charts for the assessment of body composition, according to air-displacement plethysmography, at birth and across the first 6 mo of life. Am. J. Clin. Nutr. 2019, 109, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Moltu, S.J.; Bronsky, J.; Embleton, N.; Gerasimidis, K.; Indrio, F.; Köglmeier, J.; de Koning, B.; Lapillonne, A.; Norsa, L.; Verduci, E.; et al. Nutritional Management of the Critically Ill Neonate: A Position Paper of the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 274–289. [Google Scholar] [CrossRef]
- Gale, C.; Logan, K.M.; Jeffries, S.; Parkinson, J.R.C.; Santhakumaran, S.; Uthaya, S.; Durighel, G.; Alavi, A.; Thomas, E.; Bell, J.D.; et al. Sexual dimorphism in relation to adipose tissue and intrahepatocellular lipid deposition in early infancy. Int. J. Obes. 2015, 39, 629–632. [Google Scholar] [CrossRef] [Green Version]
- Uthaya, S.; Thomas, E.L.; Hamilton, G.; Doré, C.J.; Bell, J.; Modi, N. Altered Adiposity after Extremely Preterm Birth. Pediatr. Res. 2005, 57, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Modi, N.; Thomas, E.L.; Harrington, T.A.M.; Uthaya, S.; Doré, C.J.; Bell, J.D. Determinants of Adiposity during Preweaning Postnatal Growth in Appropriately Grown and Growth-Restricted Term Infants. Pediatr. Res. 2006, 60, 345–348. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Cui, L.; Liu, Z.; Wang, Y.; Zhang, Y.; Shi, C.; Cheng, Y. Optimizing parenteral nutrition to achieve an adequate weight gain according to the current guidelines in preterm infants with birth weight less than 1500 g: A prospective observational study. BMC Pediatr. 2021, 21, 303. [Google Scholar] [CrossRef] [PubMed]
- Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.; Nair, H.; Simpson, J.; Embleton, N. Use of Donor Human Milk and Maternal Breastfeeding Rates. J. Hum. Lact. 2016, 32, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Duggan, C.P. Nutritional Deficiencies During Critical Illness. Pediatr. Clin. N. Am. 2009, 56, 1143–1160. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, D.; Andres, A.; Fields, D.A.; Evans, W.J.; Kuczmarski, R.; Lowe, W.L.; Lumeng, J.C.; Oken, E.; Shepherd, J.A.; Sun, S.; et al. Body Composition Measurements from Birth through 5 Years: Challenges, Gaps, and Existing & Emerging Technologies-A National Institutes of Health workshop. Obes. Rev. 2020, 21, e13033. [Google Scholar] [CrossRef]
- Brownell, E.A.; Matson, A.P.; Smith, K.C.; Moore, J.E.; Esposito, P.A.; Lussier, M.M.; Lerer, T.J.; Hagadorn, J.I. Dose-response Relationship Between Donor Human Milk, Mother’s Own Milk, Preterm Formula, and Neonatal Growth Outcomes. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Montjaux-Régis, N.; Cristini, C.; Arnaud, C.; Glorieux, I.; Vanpee, M.; Casper, C. Improved growth of preterm infants receiving mother’s own raw milk compared with pasteurized donor milk. Acta Paediatr. 2011, 100, 1548–1554. [Google Scholar] [CrossRef]
- Kreissl, A.; Sauerzapf, E.; Repa, A.; Binder, C.; Thanhaeuser, M.; Jilma, B.; Ristl, R.; Berger, A.; Haiden, N. Starting enteral nutrition with preterm single donor milk instead of formula affects time to full enteral feeding in very low birthweight infants. Acta Paediatr. 2017, 106, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.J.; Yao, M.; Shypailo, R.J.; Urlando, A.; Wong, W.W.; Heird, W.C. Body-composition assessment in infancy: Air-displacement plethysmography compared with a reference 4-compartment model. Am. J. Clin. Nutr. 2007, 85, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Mazahery, H.; Von Hurst, P.R.; McKinlay, C.J.D.; Cormack, B.E.; Conlon, C.A. Air displacement plethysmography (pea pod) in full-term and pre-term infants: A comprehensive review of accuracy, reproducibility, and practical challenges. Matern. Health Neonatol. Perinatol. 2018, 4, 12. [Google Scholar] [CrossRef]
- Forsum, E.; Olhager, E.; Törnqvist, C. An Evaluation of the Pea Pod System for Assessing Body Composition of Moderately Premature Infants. Nutrients 2016, 8, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | MOM-Group (n = 206) | HDM-Group (n = 145) | p-Values |
---|---|---|---|
Gestational age, weeks-median (IQR) | 27 + 2 (25 + 6, 28 + 6) | 27 + 0 (25 + 2, 28 + 4) | 0.10 |
Male, (n, %) | 113 (55) | 81 (56) | 0.46 |
Birth weight, gram-median (IQR) | 960 (725, 1150) | 870 (670, 1110) | 0.09 |
Birth weight, Z-score-median (IQR) | 0.0 (−0.9, 0.9) | −0.7 (−1.2, −1.0) | 0.07 |
Birth length, cm-median (IQR) | 35 (32, 38) | 34 (32, 37) | 0.08 |
Birth length, Z-score-median (IQR) | 0.2 (−1.0, 1.0) | −0.4 (−1.1, 0.1) | 0.14 |
Head circumference, cm-median (IQR) | 25 (23, 27) | 24 (23, 26) | 0.11 |
Head circumference, Z-score-median (IQR) | 0.6 (−0.8, 1.4) | 0.0 (−0.5, 1.3) | 0.38 |
Antenatal steroids for lung maturation (n, %) | 178 (86) | 139 (90) | 0.36 |
PPROM, (n, %) | 66 (32) | 45 (31) | 0.84 |
Cesarean section (n, %) | 190 (92) | 133 (92) | 0.86 |
Small for gestational age (n, %) | 33 (16) | 20 (14) | 0.57 |
Umbilical artery pH-median (IQR) | 7.31 (7.28, 7.36) | 7.32 (7.27, 7.36) | 0.92 |
Apgar Score, 5 min-median (IQR) | 9 (8, 9) | 9 (8, 9) | 0.07 |
Apgar Score, 10 min-median (IQR) | 9 (9, 9) | 9 (9, 9) | 0.15 |
ROP grade II–IV (n, %) | 19 (9) | 14 (10) | 0.89 |
IVH grade III–IV (n, %) | 5 (2) | 3 (2) | 0.82 |
Chronic lung disease, (n, %) | 21 (10) | 10 (7) | 0.28 |
NEC stage ≥ 2, (n, %) | 13 (6) | 7 (5) | 0.55 |
Postmenstrual age at discharge, week-median (IQR) | 38 + 3 (37 + 1, 40 + 2) | 38 + 3 (37 + 2, 39 + 4) | 0.77 |
Weight at discharge, gram-median (IQR) | 2807 (2508, 3090) | 2760 (2407, 3045) | 0.29 |
Weight velocity, g/kg/d—from birth until discharge | 23.1 (20.7, 26.0) | 22.5 (19.7, 25.8) | 0.15 |
Length at discharge, gram-median (IQR) | 46.0 (44.2, 48.0) | 45.5 (43.0, 48.5) | 0.09 |
Length increase, cm/week-from birth until discharge | 1.02 (0.88, 1.14) | 0.95 (0.81, 1.09) | 0.06 |
HC at discharge, gram-median (IQR) | 33.0 (32.0, 34.0) | 33.0 (31.5, 34.0) | 0.07 |
HC increase, cm/week-from birth until discharge | 0.75 (0.67, 0.83) | 0.73 (0.61, 0.88) | 0.20 |
Variables | MOM-Group (n = 206) | HDM-Group (n = 145) | p-Values |
---|---|---|---|
Days on any parenteral nutrition * | 17 (12, 20) | 18 (14, 21) | 0.13 |
Enteral nutrition | |||
Mother´s own milk, total volume in liters * | 13.71 (9.66, 16.81) | 1.52 (0.40, 3.58) | <0.001 |
Preterm human donor milk, total volume in liters * | 0.35 (0.07, 1.18) | 10.23 (8.79, 11.83) | <0.001 |
Preterm formula, total volume in liters * | 0.80 (0.57, 1.05) | 4.90 (3.56, 6.78) | <0.001 |
Exclusively mother´s own milk at discharge, (n, %) | 144 (70%) | - | - |
Unadjusted Variables | MOM-Group (n = 206) | HDM-Group (n = 145) |
---|---|---|
Postmenstrual age at measurement | 42 + 1 (39 + 6, 44 + 6) | 43 + 2 (40 + 1, 45 + 6) |
Body composition parameters | ||
FFM, percentage | 78.7 (73.5, 84.3) | 77.0 (72.5, 82.7) |
FM, percentage | 21.3 (15.8, 26.4) | 23.0 (17.4, 27.6) |
FFM, gram | 2770 (2400, 3311) | 3060 (2400, 3705) |
FM, gram | 741 (498, 1109) | 854 (578, 1313) |
FFM, Z-score | −1.09 (−2.02, 1.11) | −1.13 (−2.03, 1.12) |
FM, Z-score | 1.06 (−0.08, 2.22) | 1.19 (−0.14, 2.20) |
Anthropometric parameters | ||
Weight, gram | 3528 (3002, 4479) | 4025 (3044, 5032) |
Length, cm | 50.5 (48.0, 54.0) | 51.0 (48.8, 55.1) |
Head circumference, cm | 35.3 (34.0, 37.0) | 35.7 (34.0, 37.6) |
Data are median and Interquartile Range (IQR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thajer, A.; Teunissen, E.; Kainz, T.; Calek, E.; Harreiter, K.; Berger, A.; Binder, C. The Impacts of Single Preterm Human Donor Milk Compared to Mother’s Own Milk on Growth and Body Composition. Nutrients 2023, 15, 1578. https://doi.org/10.3390/nu15071578
Thajer A, Teunissen E, Kainz T, Calek E, Harreiter K, Berger A, Binder C. The Impacts of Single Preterm Human Donor Milk Compared to Mother’s Own Milk on Growth and Body Composition. Nutrients. 2023; 15(7):1578. https://doi.org/10.3390/nu15071578
Chicago/Turabian StyleThajer, Alexandra, Esther Teunissen, Theresa Kainz, Elisabeth Calek, Karin Harreiter, Angelika Berger, and Christoph Binder. 2023. "The Impacts of Single Preterm Human Donor Milk Compared to Mother’s Own Milk on Growth and Body Composition" Nutrients 15, no. 7: 1578. https://doi.org/10.3390/nu15071578
APA StyleThajer, A., Teunissen, E., Kainz, T., Calek, E., Harreiter, K., Berger, A., & Binder, C. (2023). The Impacts of Single Preterm Human Donor Milk Compared to Mother’s Own Milk on Growth and Body Composition. Nutrients, 15(7), 1578. https://doi.org/10.3390/nu15071578