Maternal Diet Influences Human Milk Protein Concentration and Adipose Tissue Marker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Human Milk Collection and Analysis
2.3. Assessment of Maternal Diet
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Mothers and Infants
3.2. Human Milk Composition
3.3. Association of Maternal Nutrition with Human Milk Composition
3.4. Association of Body Mass Index with Human Milk Composition
3.5. Association of Body Mass Index and Maternal Nutrition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lonnerdal, B. Bioactive proteins in breast milk. J. Paediatr. Child Health 2013, 49 (Suppl. S1), 1–7. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. A. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonnerdal, B. Breast milk: A truly functional food. Nutrition 2000, 16, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Newton, E.R. Breastmilk: The gold standard. Clin. Obstet. Gynecol. 2004, 47, 632–642. [Google Scholar] [CrossRef]
- Terrin, G.; De Nardo, M.C.; Boscarino, G.; Di Chiara, M.; Cellitti, R.; Ciccarelli, S.; Gasparini, C.; Parisi, P.; Urna, M.; Ronchi, B.; et al. Early Protein Intake Influences Neonatal Brain Measurements in Preterms: An Observational Study. Front. Neurol. 2020, 11, 885. [Google Scholar] [CrossRef]
- Novak, E.M.; Innis, S.M. Dietary long chain n-3 fatty acids are more closely associated with protein than energy intakes from fat. Prostaglandins Leukot Essent Fat. Acids 2012, 86, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Dritsakou, K.; Liosis, G.; Valsami, G.; Polychronopoulos, E.; Skouroliakou, M. The impact of maternal- and neonatal-associated factors on human milk’s macronutrients and energy. J. Matern.-Fetal Neonatal Med. 2017, 30, 1302–1308. [Google Scholar] [CrossRef]
- Bachour, P.; Yafawi, R.; Jaber, F.; Choueiri, E.; Abdel-Razzak, Z. Effects of smoking, mother’s age, body mass index, and parity number on lipid, protein, and secretory immunoglobulin A concentrations of human milk. Breastfeed Med. 2012, 7, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Oledzka, G.; Szostak-Wegierek, D.; Weker, H.; Wesolowska, A. Maternal Nutrition and Body Composition During Breastfeeding: Association with Human Milk Composition. Nutrients 2018, 10, 1379. [Google Scholar] [CrossRef] [Green Version]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef]
- Hahn, W.H.; Jeong, T.; Park, S.; Song, S.; Kang, N.M. Content fat and calorie of human milk is affected by interactions between maternal age and body mass index. J. Matern.-Fetal Neonatal Med. 2018, 31, 1385–1388. [Google Scholar] [CrossRef]
- Kreissl, A.; Zwiauer, V.; Repa, A.; Binder, C.; Thanhaeuser, M.; Jilma, B.; Berger, A.; Haiden, N. Human Milk Analyser shows that the lactation period affects protein levels in preterm breastmilk. Acta Paediatr. 2016, 105, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Valizadeh, E.; Hosseini, N.; Khatibshahidi, S.; Raeisi, S. The Role of Infant Sex on Human Milk Composition. Breastfeed Med. 2020, 15, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Pham, Q.; Patel, P.; Baban, B.; Yu, J.; Bhatia, J. Factors Affecting the Composition of Expressed Fresh Human Milk. Breastfeed Med. 2020, 15, 551–558. [Google Scholar] [CrossRef]
- Kent, J.C.; Mitoulas, L.R.; Cregan, M.D.; Ramsay, D.T.; Doherty, D.A.; Hartmann, P.E. Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics 2006, 117, e387–e395. [Google Scholar] [CrossRef] [Green Version]
- Bzikowska-Jura, A.; Sobieraj, P.; Szostak-Wegierek, D.; Wesolowska, A. Impact of Infant and Maternal Factors on Energy and Macronutrient Composition of Human Milk. Nutrients 2020, 12, 2591. [Google Scholar] [CrossRef]
- Bravi, F.; Di Maso, M.; Eussen, S.; Agostoni, C.; Salvatori, G.; Profeti, C.; Tonetto, P.; Quitadamo, P.A.; Kazmierska, I.; Vacca, E.; et al. Dietary Patterns of Breastfeeding Mothers and Human Milk Composition: Data from the Italian MEDIDIET Study. Nutrients 2021, 13, 1722. [Google Scholar] [CrossRef] [PubMed]
- Bzikowska, A.; Czerwonogrodzka-Senczyna, A.; Weker, H.; Wesolowska, A. Correlation between human milk composition and maternal nutritional status. Rocz. Państwowego Zakładu Hig. 2018, 69, 363–367. [Google Scholar] [CrossRef]
- Keikha, M.; Bahreynian, M.; Saleki, M.; Kelishadi, R. Macro- and Micronutrients of Human Milk Composition: Are They Related to Maternal Diet? A Comprehensive Systematic Review. Breastfeed Med 2017, 12, 517–527. [Google Scholar] [CrossRef]
- Jorgensen, M.H.; Hernell, O.; Hughes, E.; Michaelsen, K.F. Is there a relation between docosahexaenoic acid concentration in mothers’ milk and visual development in term infants? J. Pediatr. Gastroenterol. Nutr. 2001, 32, 293–296. [Google Scholar] [CrossRef]
- Daud, A.Z.; Mohd-Esa, N.; Azlan, A.; Chan, Y.M. The trans fatty acid content in human milk and its association with maternal diet among lactating mothers in Malaysia. Asia Pac. J. Clin. Nutr. 2013, 22, 431–442. [Google Scholar] [PubMed]
- Maru, M.; Birhanu, T.; Tessema, D.A. Calcium, magnesium, iron, zinc and copper, compositions of human milk from populations with cereal and ‘enset’ based diets. Ethiop. J. Health Sci. 2013, 23, 90–97. [Google Scholar]
- Lee, P.S.; Wickramasinghe, V.P.; Lamabadusuriya, S.P.; Duncan, A.W.; Wainscott, G.; Weeraman, J.D.; Wijekoon, A.S.; Wong, K.H. Breast milk DHA levels in Sri Lankan mothers vary significantly in three locations that have different access to dietary fish. Ceylon Med. J. 2013, 58, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Collins, C.; Ratliff, M.; Xie, B.; Wang, Y. Breastfeeding Reduces Childhood Obesity Risks. Child. Obes. 2017, 13, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, L.; Zhu, Y.; Huang, G.; Wang, P.P. The association between breastfeeding and childhood obesity: A meta-analysis. BMC Public Health 2014, 14, 1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Lv, D.; Wang, L.; Feng, X.; Zhang, R.; Liu, W.; Han, W. Breastfeeding and overweight/obesity among children and adolescents: A cross-sectional study. BMC Pediatr. 2022, 22, 347. [Google Scholar] [CrossRef]
- Rito, A.I.; Buoncristiano, M.; Spinelli, A.; Salanave, B.; Kunesova, M.; Hejgaard, T.; Garcia Solano, M.; Fijalkowska, A.; Sturua, L.; Hyska, J.; et al. Association between Characteristics at Birth, Breastfeeding and Obesity in 22 Countries: The WHO European Childhood Obesity Surveillance Initiative—COSI 2015/2017. Obes. Facts 2019, 12, 226–243. [Google Scholar] [CrossRef] [Green Version]
- Gartner, L.M.; Morton, J.; Lawrence, R.A.; Naylor, A.J.; O’Hare, D.; Schanler, R.J.; Eidelman, A.I.; American Academy of Pediatrics Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics 2005, 115, 496–506. [Google Scholar]
- Leghi, G.E.; Netting, M.J.; Middleton, P.F.; Wlodek, M.E.; Geddes, D.T.; Muhlhausler, A.B.S. The impact of maternal obesity on human milk macronutrient composition: A systematic review and meta-analysis. Nutrients 2020, 12, 934. [Google Scholar] [CrossRef] [Green Version]
- Isganaitis, E. Milky ways: Effects of maternal obesity on human milk composition and childhood obesity risk. Am. J. Clin. Nutr. 2021, 113, 772–774. [Google Scholar] [CrossRef]
- Young, B.E.; Patinkin, Z.; Palmer, C.; de la Houssaye, B.; Barbour, L.A.; Hernandez, T.; Friedman, J.E.; Krebs, N.F. Human milk insulin is related to maternal plasma insulin and BMI: But other components of human milk do not differ by BMI. Eur. J. Clin. Nutr. 2017, 71, 1094–1100. [Google Scholar] [CrossRef] [Green Version]
- Daniel, A.I.; Shama, S.; Ismail, S.; Bourdon, C.; Kiss, A.; Mwangome, M.; Bandsma, R.H.J.; O’Connor, D.L. Maternal BMI is positively associated with human milk fat: A systematic review and meta-regression analysis. Am. J. Clin. Nutr. 2021, 113, 1009–1022. [Google Scholar] [CrossRef]
- Martin, L.J.; Woo, J.G.; Geraghty, S.R.; Altaye, M.; Davidson, B.S.; Banach, W.; Dolan, L.M.; Ruiz-Palacios, G.M.; Morrow, A.L. Adiponectin is present in human milk and is associated with maternal factors. Am. J. Clin. Nutr. 2006, 83, 1106–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casabiell, X.; Pineiro, V.; Tome, M.A.; Peino, R.; Dieguez, C.; Casanueva, F.F. Presence of leptin in colostrum and/or breast milk from lactating mothers: A potential role in the regulation of neonatal food intake. J. Clin. Endocrinol. Metab. 1997, 82, 4270–4273. [Google Scholar] [CrossRef] [PubMed]
- Binder, C.; Baumgartner-Parzer, S.; Gard, L.-I.; Berger, A.; Thajer, A. Human Milk Processing and Its Effect on Protein and Leptin Concentrations. Nutrients 2023, 15, 347. [Google Scholar] [CrossRef]
- ISO 1211:2010; Milk—Determination of Fat Content—Gravimetric Method (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 8968–1:2014; Milk and Milk Products—Determination of Nitrogen Content—Part 1: Kjeldahl Principle and Crude Protein Calculation. International Organization for Standardization: Geneva, Switzerland, 2014.
- Polberger, S.; Lönnerdal, B. Simple and rapid macronutrient analysis of human milk for individualized nutrition: Basis for improved nutritional management of very-low-birth-weight-infants? J. Pediatr. Gastroenterol. Nutr. 1993, 17, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Watt, A.M.A.B. Energy Value of Foods, Basis and Derivation; Agriculture Handbook No 74 Slightly revised 1973; Human Nutrition Research Branch, Agricultural Research Service, United States Department of Agriculture: Washington, DC, USA, 1973.
- ISO 6731:2010; Milk, Cream and Evaporated Milk—Determination of Total Solids Content (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 1928:2009; Determination of Gross Calorific Value by the Bomb calorimetric Method and Calculation of Net Calorific Value. International Organization for Standardization: Geneva, Switzerland, 2009.
- Miris, A. Miris HMA User Manual. 2022, 2, 1–39. Available online: https://www.mirissolutions.com/media/19fad927-9b29-447b-adf1-877494a7c61d (accessed on 6 December 2022).
- BioVendor. Application Protocol: Determination of Leptin in Breast Milk with Human Leptin ELISA; BioVendor: Brno, Czech Republic, 2011; pp. 1–3. [Google Scholar]
- Hartmann, B.M.; Va squez-Caicedo, A.L.; Bell, S.; Krems, C.; Brombach, C. The German nutrient database: Basis for analysis of the nutritional status of the German population. J. Food Compos. Anal. 2008, 21, S115–S118. [Google Scholar] [CrossRef]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellof, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral nutrient supply for preterm infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Nutrition, E.C.O.; Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; et al. Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 112–125. [Google Scholar]
- Piemontese, P.; Liotto, N.; Mallardi, D.; Roggero, P.; Puricelli, V.; Gianni, M.L.; Morniroli, D.; Tabasso, C.; Perrone, M.; Menis, C.; et al. The Effect of Human Milk on Modulating the Quality of Growth in Preterm Infants. Front. Pediatr. 2018, 6, 291. [Google Scholar] [CrossRef]
- Duerden, E.G.; Thompson, B.; Poppe, T.; Alsweiler, J.; Gamble, G.; Jiang, Y.; Leung, M.; Tottman, A.C.; Wouldes, T.; Miller, S.P.; et al. Early protein intake predicts functional connectivity and neurocognition in preterm born children. Sci. Rep. 2021, 11, 4085. [Google Scholar] [CrossRef]
- Cormack, B.E.; Harding, J.E.; Miller, S.P.; Bloomfield, F.H. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019, 11, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaelsen, K.F.; Greer, F.R. Protein needs early in life and long-term health. Am. J. Clin. Nutr. 2014, 99, 718S–722S. [Google Scholar] [CrossRef]
- Mihatsch, W.A.; Hogel, J.; Pohlandt, F. Hydrolysed protein accelerates the gastrointestinal transport of formula in preterm infants. Acta Paediatr. 2001, 90, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Kreissl, A.; Zwiauer, V.; Repa, A.; Binder, C.; Haninger, N.; Jilma, B.; Berger, A.; Haiden, N. Effect of fortifiers and additional protein on the osmolarity of human milk: Is it still safe for the premature infant? J. Pediatr. Gastroenterol. Nutr. 2013, 57, 432–437. [Google Scholar] [CrossRef]
- Vass, R.A.; Kiss, G.; Bell, E.F.; Roghair, R.D.; Miseta, A.; Bodis, J.; Funke, S.; Ertl, T. Breast Milk for Term and Preterm Infants-Own Mother’s Milk or Donor Milk? Nutrients 2021, 13, 424. [Google Scholar] [CrossRef] [PubMed]
- Nommsen, L.A.; Lovelady, C.A.; Heinig, M.J.; Lonnerdal, B.; Dewey, K.G. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: The DARLING Study. Am. J. Clin. Nutr. 1991, 53, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Gridneva, Z.; Tie, W.J.; Rea, A.; Lai, C.T.; Ward, L.C.; Murray, K.; Hartmann, P.E.; Geddes, D.T. Human Milk Casein and Whey Protein and Infant Body Composition over the First 12 Months of Lactation. Nutrients 2018, 10, 1332. [Google Scholar] [CrossRef] [Green Version]
- Chang, N.; Jung, J.A.; Kim, H.; Jo, A.; Kang, S.; Lee, S.W.; Yi, H.; Kim, J.; Yim, J.G.; Jung, B.M. Macronutrient composition of human milk from Korean mothers of full term infants born at 37-42 gestational weeks. Nutr. Res. Pract. 2015, 9, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Zhang, Y.; Ning, Y.; You, L.; Ma, D.; Zheng, Y.; Yang, X.; Li, W.; Wang, J.; Wang, P. Breast milk macronutrient composition and the associated factors in urban Chinese mothers. Chin. Med. J. 2014, 127, 1721–1725. [Google Scholar]
- Newburg, D.S.; Woo, J.G.; Morrow, A.L. Characteristics and potential functions of human milk adiponectin. J. Pediatr. 2010, 156 (Suppl. S2), S41–S46. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N.; et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001, 7, 941–946. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, X.; Jin, L.; Stringfield, T.; Lin, L.; Chen, Y. Expression profiles of adiponectin receptors in mouse embryos. Gene Expr. Patterns 2005, 5, 711–715. [Google Scholar] [CrossRef]
- Bonnet, M.; Delavaud, C.; Laud, K.; Gourdou, I.; Leroux, C.; Djiane, J.; Chilliard, Y. Mammary leptin synthesis, milk leptin and their putative physiological roles. Reprod. Nutr. Dev. 2002, 42, 399–413. [Google Scholar] [CrossRef]
- Caprio, S.; Tamborlane, W.V.; Silver, D.; Robinson, C.; Leibel, R.; McCarthy, S.; Grozman, A.; Belous, A.; Maggs, D.; Sherwin, R.S. Hyperleptinemia: An early sign of juvenile obesity. Relations to body fat depots and insulin concentrations. Am. J. Physiol. 1996, 271 Pt 1, E626–E630. [Google Scholar] [CrossRef]
- Nagy, T.R.; Gower, B.A.; Trowbridge, C.A.; Dezenberg, C.; Shewchuk, R.M.; Goran, M.I. Effects of gender, ethnicity, body composition, and fat distribution on serum leptin concentrations in children. J. Clin. Endocrinol. Metab. 1997, 82, 2148–2152. [Google Scholar] [CrossRef]
- Havel, P.J.; Kasim-Karakas, S.; Mueller, W.; Johnson, P.R.; Gingerich, R.L.; Stern, J.S. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: Effects of dietary fat content and sustained weight loss. J. Clin. Endocrinol. Metab. 1996, 81, 4406–4413. [Google Scholar]
- Weyermann, M.; Brenner, H.; Rothenbacher, D. Adipokines in human milk and risk of overweight in early childhood: A prospective cohort study. Epidemiology 2007, 18, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Bronsky, J.; Mitrova, K.; Karpisek, M.; Mazoch, J.; Durilova, M.; Fisarkova, B.; Stechova, K.; Prusa, R.; Nevoral, J. Adiponectin, AFABP, and leptin in human breast milk during 12 months of lactation. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Sardo, A.; Rossi, L.; Benetti, S.; Savino, A.; Silvestro, L. Mother and Infant Body Mass Index, Breast Milk Leptin and Their Serum Leptin Values. Nutrients 2016, 8, 383. [Google Scholar] [CrossRef] [PubMed]
- Dusserre, E.; Moulin, P.; Vidal, H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim. Biophys. Acta 2000, 1500, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, S.; Hechler, C.; Gebauer, C.; Kiess, W.; Kratzsch, J. Leptin in maternal serum and breast milk: Association with infants’ body weight gain in a longitudinal study over 6 months of lactation. Pediatr. Res. 2011, 70, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Bronsky, J.; Karpisek, M.; Bronska, E.; Pechova, M.; Jancikova, B.; Kotolova, H.; Stejskal, D.; Prusa, R.; Nevoral, J. Adiponectin, adipocyte fatty acid binding protein, and epidermal fatty acid binding protein: Proteins newly identified in human breast milk. Clin. Chem. 2006, 52, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Rigourd, V.; Lopera, I.; Cata, F.; Benoit, G.; Jacquemet, B.; Lapillonne, A. Role of Daily Milk Volume and Period of Lactation in Nutrient Content of Human Milk: Results from a Prospective Study. Nutrients 2020, 12, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preusting, I.; Brumley, J.; Odibo, L.; Spatz, D.L.; Louis, J.M. Obesity as a Predictor of Delayed Lactogenesis II. J. Hum. Lact. 2017, 33, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.D.; Aldag, J.C.; Chatterton, R.T.; Zinaman, M. Comparison of milk output between mothers of preterm and term infants: The first 6 weeks after birth. J. Hum. Lact. 2005, 21, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, K.M.; Yaktine, A.L. Weight Gain During Pregnancy: Reexamining the Guidelines; Rasmussen, K.M., Yaktine, A.L., Eds.; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
Characteristic | n = 136 |
---|---|
Maternal characteristics | |
Age of mother (years) | 33 (27–36) |
Height (cm) | 167 (162–172) |
Weight (kg) | 68 (±10) |
BMI (kg/m2) | 24.3 (22.0–27.1) |
Lactation (days) | 29 (14–66) |
Breastfeeding/pumping per day | 6 (4–7) |
Primiparous, n (%) | 77 (56.6) |
Cesarean delivery, n (%) | 124 (91.2) |
Infants’ characteristics | |
Male sex, n (%) | 76 (55.9) |
Preterm infants < 37 weeks of GA, n (%) | 126 (92.7) |
Gestational age (wk + d) | 29 + 3 (26 + 2–33 + 5) |
Birth weight (g) | 1063 (845–2269) |
Birth height (cm) | 35.5 (33.5–45.0) |
Head circumference (cm) | 26.0 (24.0–31.9) |
Parameter | Human Milk (n = 136) |
---|---|
True protein (g/100 mL) | 1.10 (0.90–1.40) |
Crude protein (g/100 mL) | 1.30 (1.06–1.65) |
Fat (g/100 mL) | 2.96 (±0.87) |
Carbohydrate (g/100 mL) | 7.70 (7.00–8.00) |
Energy (kcal/100 mL) | 63.19 (±9.80) |
Total solids (g/100 mL) | 12.15 (±1.31) |
Adiponectin (ng/mL) | 18.90 (13.60–25.45) |
Leptin (ng/mL) | 0.108 (0.008–0.314) |
Mothers’ Nutrient and Energy Intake/d | Human Milk Composition | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
True Protein (g/100 mL) | Crude Protein (g/100 mL) | Fat (g/100 mL) | Carbohydrate (g/100 mL) | Energy (kcal/100 mL) | Total Solids (g/100 mL) | Adiponectin (ng/mL) | Leptin (ng/mL) | ||||||||||
Parameter | Median (IQR) | r | p | r | p | r | p | r | p | r | p | r | p | r | p | r | p |
Protein (g) | 59.9 (44.1–100.2) | 0.997 | <0.001 | 0.995 | <0.001 | 0.184 | 0.032 | 0.369 | <0.001 | 0.463 | <0.001 | 0.531 | <0.001 | 0.413 | <0.001 | 0.199 | 0.035 |
Protein (% kcal) | 16.0 (14.0–19.0) | 0.995 | <0.001 | 0.996 | <0.001 | 0.186 | 0.031 | 0.361 | <0.001 | 0.462 | <0.001 | 0.530 | <0.001 | 0.411 | <0.001 | 0.191 | 0.040 |
Fat (g) | 96.4 (81.4–118.3) | 0.205 | 0.017 | 0.208 | 0.015 | 0.999 | <0.001 | 0.029 | 0.740 | 0.878 | <0.001 | 0.776 | <0.001 | 0.028 | 0.758 | 0.109 | 0.235 |
Fat (% kcal) | 43.0 (37.3–48.0) | 0.206 | 0.016 | 0.209 | 0.015 | 0.999 | <0.001 | 0.034 | 0.698 | 0.879 | <0.001 | 0.777 | <0.001 | 0.031 | 0.733 | 0.108 | 0.238 |
Carbohydrates (g) | 197.1 (151.8–240.6) | 0.375 | <0.001 | 0.373 | <0.001 | 0.050 | 0.560 | 0.999 | <0.001 | 0.352 | <0.001 | 0.556 | <0.001 | 0.165 | 0.070 | −0.039 | 0.670 |
Carbohydrates (% kcal) | 40.0 (34.3–47.0) | 0.375 | <0.001 | 0.374 | <0.001 | 0.054 | 0.536 | 0.998 | <0.001 | 0.354 | <0.001 | 0.558 | <0.001 | 0.164 | 0.073 | −0.037 | 0.689 |
Energy (kcal) | 1966.1 (1781.9–2320.3) | 0.466 | <0.001 | 0.468 | <0.001 | 0.866 | <0.001 | 0.338 | <0.001 | 1.000 | <0.001 | 0.944 | <0.001 | 0.092 | 0.315 | 0.159 | 0.081 |
Parameter | BMI < 18.5 kg/m2 (n = 5) | BMI 18.5–24.9 kg/m2 (n = 74) | BMI 25–29.9 kg/m2 (n = 51) | BMI > 30 kg/m2 (n = 6) |
---|---|---|---|---|
True protein (g/100 mL) | 0.75 (±0.15) a,b | 1.10 (0.90–1.41) | 1.05 (0.90–1.40) | 1.06 (±0.25) c |
Crude protein (g/100 mL) | 0.90 (±0.19) a,b | 1.30 (1.10–1.73) | 1.30 (1.10–1.70) | 1.31 (±0.27) c |
Fat (g/100 mL) | 2.50 (±0.80) | 2.97 (±0.90) | 2.93 (±0.81) | 3.52 (±1.03) c |
Carbohydrate (g/100 mL) | 7.51 (±0.23) | 7.80 (6.84–8.00) | 7.70 (7.15–8.00) | 7.57 (±0.41) |
Energy (kcal/100 mL) | 57.10 (±8.26) | 62.96 (±10.23) | 63.54 (±9.00) | 68.25 (±11.55) |
Total solids (g/100 mL) | 11.22 (±0.94) | 12.11 (±1.35) | 12.25 (±1.24) | 12.68 (±1.37) |
Adiponectin (ng/mL) | 14.22 (±3.37) a | 21.75 (14.98–26.40) | 18.80 (11.5–23.9) | 16.46 (±7.55) |
Leptin (ng/mL) | 0.019 (±0.03) b | 0.063 (0.000–0.203) | 0.195 (0.045–0.391) d | 0.182 (±0.111) c |
Mothers’ Nutrient and Energy Intake/d | BMI < 18.5 kg/m2 (n = 5) | BMI 18.5–24.9 kg/m2 (n = 74) | BMI 25–29.9 kg/m2 (n = 51) | BMI > 30 kg/m2 (n = 6) |
---|---|---|---|---|
Protein (g) | 41.3 (±3.2) | 62.4 (44.2–101.0) a,b | 56.3 (44.0–100.4) | 67.3 (±21.0) c |
Protein (% kcal) | 12.0 (±3.0) | 17.0 (±5.0) | 16.0 (14.0–19.0) | 17.0 (14.0–18.0) c |
Fat (g) | 73.5 (67.2–107.8) | 98.2 (81.9–118.3) | 96.0 (79.1–115.9) | 122.6 (±41.7) c |
Fat (% kcal) | 38.0 (±8.0) | 45.0 (38.0–48.0) | 43.0 (37.0–48.0) | 50.0 (±14.0) |
Carbohydrates (g) | 186.0 (182.2–209.5) | 198.3 (±70.6) | 201.3 (169.4–241.3) | 202.4 (±38.3) |
Carbohydrates (% kcal) | 38.0 (37.5–42.5) | 39.0 (±11.0) | 40.0 (37.0–48.0) | 41.0 (±5.0) |
Energy (kcal) | 1841.0 (±306.1) | 2064.6 (±481.2) | 1950.8 (1785.5–2277.5) | 2391.6 (±635.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binder, C.; Baumgartner-Parzer, S.; Gard, L.-I.; Berger, A.; Thajer, A. Maternal Diet Influences Human Milk Protein Concentration and Adipose Tissue Marker. Nutrients 2023, 15, 433. https://doi.org/10.3390/nu15020433
Binder C, Baumgartner-Parzer S, Gard L-I, Berger A, Thajer A. Maternal Diet Influences Human Milk Protein Concentration and Adipose Tissue Marker. Nutrients. 2023; 15(2):433. https://doi.org/10.3390/nu15020433
Chicago/Turabian StyleBinder, Christoph, Sabina Baumgartner-Parzer, Liliana-Imi Gard, Angelika Berger, and Alexandra Thajer. 2023. "Maternal Diet Influences Human Milk Protein Concentration and Adipose Tissue Marker" Nutrients 15, no. 2: 433. https://doi.org/10.3390/nu15020433
APA StyleBinder, C., Baumgartner-Parzer, S., Gard, L. -I., Berger, A., & Thajer, A. (2023). Maternal Diet Influences Human Milk Protein Concentration and Adipose Tissue Marker. Nutrients, 15(2), 433. https://doi.org/10.3390/nu15020433