Untargeted Metabolomics Analysis Using UHPLC-Q-TOF/MS Reveals Metabolic Changes Associated with Hypertension in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Preparation of Metabolite Extraction Samples
2.3. Chromatographic Conditions
2.4. Q-TOF Mass Spectrometry Conditions
2.5. Data Processing
2.6. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Differential Metabolites between Hypertension Groups and Normal Control
3.3. Differential Metabolites in 4 Hypertension Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joint Committee for Guideline Revision. 2018 Chinese Guidelines for Prevention and Treatment of Hypertension-A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J. Geriatr. Cardiol. 2019, 16, 182–241. [Google Scholar] [CrossRef]
- Lurbe, E.; Agabiti-Rosei, E.; Cruickshank, J.K.; Dominiczak, A.; Erdine, S.; Hirth, A.; Invitti, C.; Litwin, M.; Mancia, G.; Pall, D.; et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 2016, 34, 1887–1920. [Google Scholar] [CrossRef] [PubMed]
- Falkner, B. The enigma of primary hypertension in childhood. Front. Cardiovasc. Med. 2022, 9, 1033628. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global Prevalence of Hypertension in Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Dong, H.; Yan, Y.; Cheng, H.; Zhao, X.; Mi, J. Prevalence of hypertension and hypertension phenotypes after three visits in Chinese urban children. J. Hypertens. 2022, 40, 1270–1277. [Google Scholar] [CrossRef]
- Gunn, H.E.; Eberhardt, K.R. Family Dynamics in Sleep Health and Hypertension. Curr. Hypertens. Rep. 2019, 21, 39. [Google Scholar] [CrossRef]
- Guzman-Limon, M.; Samuels, J. Pediatric Hypertension: Diagnosis, Evaluation, and Treatment. Pediatr. Clin. N. Am. 2019, 66, 45–57. [Google Scholar] [CrossRef]
- Furusho, T.; Uchida, S.; Sohara, E. The WNK signaling pathway and salt-sensitive hypertension. Hypertens. Res. 2020, 43, 733–743. [Google Scholar] [CrossRef]
- Kho, J.; Tian, X.; Wong, W.T.; Bertin, T.; Jiang, M.M.; Chen, S.; Jin, Z.; Shchelochkov, O.A.; Burrage, L.C.; Reddy, A.K.; et al. Argininosuccinate Lyase Deficiency Causes an Endothelial-Dependent Form of Hypertension. Am. J. Hum. Genet. 2018, 103, 276–287. [Google Scholar] [CrossRef]
- Ercu, M.; Markó, L.; Schächterle, C.; Tsvetkov, D.; Cui, Y.; Maghsodi, S.; Bartolomaeus, T.U.; Maass, P.G.; Zühlke, K.; Gregersen, N.; et al. Phosphodiesterase 3A and Arterial Hypertension. Circulation 2020, 142, 133–149. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Wu, J.; Liu, M.; Li, M.; Sun, Y.; Huang, W.; Li, Y.; Zhang, Y.; Tang, W.; et al. Endothelial SIRT6 Is Vital to Prevent Hypertension and Associated Cardiorenal Injury Through Targeting Nkx3.2-GATA5 Signaling. Circ. Res. 2019, 124, 1448–1461. [Google Scholar] [CrossRef] [PubMed]
- Krivosikova, K.; Krivosikova, Z.; Wsolova, L.; Seeman, T.; Podracka, L. Hypertension in obese children is associated with vitamin D deficiency and serotonin dysregulation. BMC Pediatr. 2022, 22, 289. [Google Scholar] [CrossRef] [PubMed]
- Stanek, A.; Brozyna-Tkaczyk, K.; Myslinski, W. The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients 2021, 13, 3843. [Google Scholar] [CrossRef]
- Zhang, R.M.; McNerney, K.P.; Riek, A.E.; Bernal-Mizrachi, C. Immunity and Hypertension. Acta Physiol. 2021, 231, e13487. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Xing, C.; Gao, N.; Xu, R. Folate Reverses NF-kappaB p65/Rela/IL-6 Level Induced by Hyperhomocysteinemia in Spontaneously Hypertensive Rats. Front. Pharmacol. 2021, 12, 651582. [Google Scholar] [CrossRef]
- Boachie, J.; Adaikalakoteswari, A.; Samavat, J.; Saravanan, P. Low Vitamin B12 and Lipid Metabolism: Evidence from Pre-Clinical and Clinical Studies. Nutrients 2020, 12, 1925. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef]
- Liu, H.; Garrett, T.J.; Su, Z.; Khoo, C.; Gu, L. UHPLC-Q-Orbitrap-HRMS-based global metabolomics reveal metabolome modifications in plasma of young women after cranberry juice consumption. J. Nutr. Biochem. 2017, 45, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.L. The Cinderella story of metabolic profiling: Does metabolomics get to go to the functional genomics ball? Philos. Trans. R. Soc. B. Biol. Sci. 2006, 361, 147–161. [Google Scholar] [CrossRef]
- Du, Y.; Hou, L.; Chu, C.; Jin, Y.; Sun, W.; Zhang, R. Characterization of serum metabolites as biomarkers of carbon black nanoparticles-induced subchronic toxicity in rats by hybrid triple quadrupole time-of-flight mass spectrometry with non-targeted metabolomics strategy. Toxicology 2019, 426, 152268. [Google Scholar] [CrossRef]
- Mu, X.; Ji, C.; Wang, Q.; Liu, K.; Hao, X.; Zhang, G.; Shi, X.; Zhang, Y.; Gonzalez, F.J.; Wang, Q.; et al. Non-targeted metabolomics reveals diagnostic biomarker in the tongue coating of patients with chronic gastritis. J. Pharm. Biomed. Anal. 2019, 174, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Averina, M.; Brox, J.; Huber, S.; Furberg, A.S. Exposure to perfluoroalkyl substances (PFAS) and dyslipidemia, hypertension and obesity in adolescents. The Fit Futures study. Environ. Res. 2021, 195, 110740. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhao, M.; Yang, L.; Liu, X.; Pacifico, L.; Chiesa, C.; Xi, B. Identification of Potential Metabolic Markers of Hypertension in Chinese Children. Int. J. Hypertens. 2021, 2021, 6691734. [Google Scholar] [CrossRef]
- Wang, L.; Hou, E.; Wang, L.; Wang, Y.; Yang, L.; Zheng, X.; Xie, G.; Sun, Q.; Liang, M.; Tian, Z. Reconstruction and analysis of correlation networks based on GC-MS metabolomics data for young hypertensive men. Anal. Chim. Acta 2015, 854, 95–105. [Google Scholar] [CrossRef]
- Akyurek, N.; Atabek, M.E.; Eklioglu, B.S.; Alp, H. Is there a relationship between cardiovascular risk factors and dehydroepiandrosterone sulfate levels in childhood obesity? J. Pediatr. Endocrinol. Metab. 2015, 28, 545–550. [Google Scholar] [CrossRef]
- Topsakal, S.; Akin, F.; Yerlikaya, E.; Erurker, T.; Dogu, H. Dehydroepiandrosterone sulfate levels in Turkish obese patients. Eat. Weight. Disord. 2014, 19, 261–265. [Google Scholar] [CrossRef]
- Santos-Silva, R.; Fontoura, M.; Guimaraes, J.T.; Barros, H.; Santos, A.C. Association of dehydroepiandrosterone sulfate, birth size, adiposity and cardiometabolic risk factors in 7-year-old children. Pediatr. Res. 2022, 91, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, K.; Ohira, T.; Nagayoshi, M.; Kajiura, M.; Imano, H.; Kitamura, A.; Kiyama, M.; Okada, T.; Iso, H. Dehydroepiandrosterone-sulfate is associated with cardiovascular reactivity to stress in women. Psychoneuroendocrinology 2016, 69, 116–122. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, M.; Wang, W.; Chen, H.; Wang, X.; Zhao, K.; Li, Z.; Xu, J.; Fei, T. Dehydroepiandrosterone inhibits vascular proliferation and inflammation by modulating the miR-486a-3p/NLRP3 axis. Am. J. Transl. Res. 2022, 14, 6123–6136. [Google Scholar]
- Mannella, P.; Simoncini, T.; Caretto, M.; Genazzani, A.R. Dehydroepiandrosterone and Cardiovascular Disease. Vitam. Horm. 2018, 108, 333–353. [Google Scholar] [CrossRef]
- Sakko, M.; Rautemaa-Richardson, R.; Sakko, S.; Richardson, M.; Sorsa, T. Antibacterial Activity of 2-Hydroxyisocaproic Acid (HICA) against Obligate Anaerobic Bacterial Species Associated with Periodontal Disease. Microbiol. Insights 2021, 14, 11786361211050086. [Google Scholar] [CrossRef] [PubMed]
- Mindikoglu, A.L.; Opekun, A.R.; Putluri, N.; Devaraj, S.; Sheikh-Hamad, D.; Vierling, J.M.; Goss, J.A.; Rana, A.; Sood, G.K.; Jalal, P.K.; et al. Unique metabolomic signature associated with hepatorenal dysfunction and mortality in cirrhosis. Transl. Res. 2018, 195, 25–47. [Google Scholar] [CrossRef]
- Dhuper, S.; Buddhe, S.; Patel, S. Managing cardiovascular risk in overweight children and adolescents. Paediatr. Drugs 2013, 15, 181–190. [Google Scholar] [CrossRef]
- Binka, E.; Brady, T.M. Real-World Strategies to Treat Hypertension Associated with Pediatric Obesity. Curr. Hypertens. Rep. 2019, 21, 18. [Google Scholar] [CrossRef]
- Lu, G.; Meier, K.E.; Jaffa, A.A.; Rosenzweig, S.; Egan, B.M. Oleic acid and angiotensin II induce a synergistic mitogenic response in vascular smooth muscle cells. Hypertension. Hypertension 1998, 31, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Yun, M.R.; Lee, J.Y.; Park, H.S.; Heo, H.J.; Park, J.Y.; Bae, S.S.; Hong, K.W.; Sung, S.M.; Kim, C.D. Oleic acid enhances vascular smooth muscle cell proliferation via phosphatidylinositol 3-kinase/Akt signaling pathway. Pharmacol. Res. 2006, 54, 97–102. [Google Scholar] [CrossRef]
- Gremmels, H.; Bevers, L.M.; Fledderus, J.O.; Braam, B.; van Zonneveld, A.J.; Verhaar, M.C.; Joles, J.A. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells. Eur. J. Pharmacol. 2015, 751, 67–72. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Reddy, S.; Kotchen, T.A. A high sucrose, high linoleic acid diet potentiates hypertension in the Dahl salt sensitive rat. Am. J. Hypertens. 1999, 12, 183–187. [Google Scholar] [CrossRef]
- Mahmmoud, Y.A.; Christensen, S.B. Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E(2)P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump. Biochim. Biophys. Acta 2011, 1808, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
- Jovanovich, A.; Isakova, T.; Block, G.; Stubbs, J.; Smits, G.; Chonchol, M.; Miyazaki, M. Deoxycholic Acid, a Metabolite of Circulating Bile Acids, and Coronary Artery Vascular Calcification in CKD. Am. J. Kidney Dis. 2018, 71, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kimber, C.; Zhang, S.; Johnson, C.; West, R.E., 3rd; Prokopienko, A.J.; Mahnken, J.D.; Yu, A.S.; Hoofnagle, A.N.; Ir, D.; Robertson, C.E.; et al. Randomized, Placebo-Controlled Trial of Rifaximin Therapy for Lowering Gut-Derived Cardiovascular Toxins and Inflammation in CKD. Kidney360 2020, 1, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Wierema, T.K.; Houben, A.J.; Kroon, A.; Postma, C.T.; Koster, D.; van Engelshoven, J.M.; Smits, P.; de Leeuw, P.W. Mechanisms of adenosine-induced renal vasodilatation in hypertensive patients. J. Hypertens 2005, 23, 1731–1736. [Google Scholar] [CrossRef]
- Zamora, A.N.; Jansen, E.C.; Tamayo-Ortiz, M.; Goodrich, J.M.; Sanchez, B.N.; Watkins, D.J.; Tamayo-Orozco, J.A.; Tellez-Rojo, M.M.; Mercado-Garcia, A.; Baylin, A.; et al. Exposure to Phenols, Phthalates, and Parabens and Development of Metabolic Syndrome Among Mexican Women in Midlife. Front. Public Health 2021, 9, 620769. [Google Scholar] [CrossRef] [PubMed]
- Soomro, M.H.; Maesano, C.N.; Heude, B.; Bornehag, C.-G.; Annesi-Maesano, I. The association between maternal urinary phthalate metabolites concentrations and pregnancy induced hypertension: Results from the EDEN Mother-Child Cohort. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102216. [Google Scholar] [CrossRef] [PubMed]
- Sawh, M.C.; Wallace, M.; Shapiro, E.; Goyal, N.P.; Newton, K.P.; Yu, E.L.; Bross, C.; Durelle, J.; Knott, C.; Gangoiti, J.A.; et al. Dairy Fat Intake, Plasma Pentadecanoic Acid, and Plasma Iso-heptadecanoic Acid Are Inversely Associated with Liver Fat in Children. J. Pediatr. Gastroenterol. Nutr. 2021, 72, e90–e96. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, Q.; Amakye, W.K.; Su, Y.; Zhang, Z. Biomarkers of dairy fat intake and risk of cardiovascular disease: A systematic review and meta analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Jiang, C.; Zhang, M.; Jin, J.; Ge, S.; Wang, X. Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model. Aging 2019, 11, 2822–2835. [Google Scholar] [CrossRef]
- Hsu, C.-N.; Tain, Y.-L. Asymmetric Dimethylarginine (ADMA) in Pediatric Renal Diseases: From Pathophysiological Phenomenon to Clinical Biomarker and Beyond. Children 2021, 8, 837. [Google Scholar] [CrossRef]
- Lopez, V.; Uribe, E.; Moraga, F.A. Activation of arginase II by asymmetric dimethylarginine and homocysteine in hypertensive rats induced by hypoxia: A new model of nitric oxide synthesis regulation in hypertensive processes? Hypertens. Res. 2021, 44, 263–275. [Google Scholar] [CrossRef]
- Lopez, V.; Moraga, F.A.; Llanos, A.J.; Ebensperger, G.; Taborda, M.I.; Uribe, E. Plasmatic Concentrations of ADMA and Homocystein in Llama (Lama glama) and Regulation of Arginase Type II: An Animal Resistent to the Development of Pulmonary Hypertension Induced by Hypoxia. Front. Physiol. 2018, 9, 606. [Google Scholar] [CrossRef]
- Chien, S.J.; Lin, I.C.; Hsu, C.N.; Lo, M.H.; Tain, Y.L. Homocysteine and Arginine-to-Asymmetric Dimethylarginine Ratio Associated With Blood Pressure Abnormalities in Children With Early Chronic Kidney Disease. Circ. J. 2015, 79, 2031–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tousoulis, D.; Bouras, G.; Antoniades, C.; Marinou, K.; Papageorgiou, N.; Miliou, A.; Hatzis, G.; Stefanadi, E.; Tsioufis, C.; Stefanadis, C. Methionine-induced homocysteinemia impairs endothelial function in hypertensives: The role of asymmetrical dimethylarginine and antioxidant vitamins. Am. J. Hypertens. 2011, 24, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Dovinova, I.; Hrabarova, E.; Jansen, E.; Kvandova, M.; Majzunova, M.; Berenyiova, A.; Barancik, M. ADMA, homocysteine and redox status improvement affected by 7-nitroindazole in spontaneously hypertensive rats. Biomed. Pharmacother. 2018, 106, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Antoniades, C.; Shirodaria, C.; Leeson, P.; Antonopoulos, A.; Warrick, N.; Van-Assche, T.; Cunnington, C.; Tousoulis, D.; Pillai, R.; Ratnatunga, C.; et al. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: Implications for endothelial function in human atherosclerosis. Eur. Heart J. 2009, 30, 1142–1150. [Google Scholar] [CrossRef]
- Wierzbicki, A.S. Homocysteine and cardiovascular disease: A review of the evidence. Diab. Vasc. Dis. Res. 2007, 4, 143–150. [Google Scholar] [CrossRef]
- Shi, L.; Liu, X.-Y.; Huang, Z.-G.; Ma, Z.-Y.; Xi, Y.; Wang, L.-Y.; Sun, N.-L. Endogenous hydrogen sulfide and ERK1/2-STAT3 signaling pathway may participate in the association between homocysteine and hypertension. J. Geriatr. Cardiol. 2019, 16, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, G.; Liu, J.; Xu, Y. Impact of hyperhomocysteinemia on insulin resistance in patients with H-type hypertension. Clin. Exp. Hypertens. 2018, 40, 28–31. [Google Scholar] [CrossRef]
- Yang, J.; Villar, V.A.M.; Jose, P.A.; Zeng, C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid. Redox Signal. 2021, 34, 716–735. [Google Scholar] [CrossRef]
- Contreras, F.; Fouillioux, C.; Bolivar, A.; Simonovis, N.; Hernandez-Hernandez, R.; Armas-Hernandez, M.J.; Velasco, M. Dopamine, hypertension and obesity. J. Hum. Hypertens. 2002, 16 (Suppl. 1), S13–S17. [Google Scholar] [CrossRef]
- Martinez, V.J.; Asico, L.D.; Jose, P.A.; Tiu, A.C. Lipid Rafts and Dopamine Receptor Signaling. Int. J. Mol. Sci. 2020, 21, 8909. [Google Scholar] [CrossRef]
- Natarajan, A.R.; Eisner, G.M.; Armando, I.; Browning, S.; Pezzullo, J.C.; Rhee, L.; Dajani, M.; Carey, R.M.; Jose, P.A. The Renin-Angiotensin and Renal Dopaminergic Systems Interact in Normotensive Humans. J. Am. Soc. Nephrol. 2016, 27, 265–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Jiang, X.; Perwaiz, I.; Yu, P.; Wang, J.; Wang, Y.; Huttemann, M.; Felder, R.A.; Sibley, D.R.; Polster, B.M.; et al. Dopamine D(5) receptor-mediated decreases in mitochondrial reactive oxygen species production are cAMP and autophagy dependent. Hypertens. Res. 2021, 44, 628–641. [Google Scholar] [CrossRef] [PubMed]
- Qaddumi, W.N.; Jose, P.A. The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021, 9, 139. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Xia, T.; Zheng, S.; Liang, L.; Chen, Y. Synergistic Effect of Uroguanylin and D(1) Dopamine Receptors on Sodium Excretion in Hypertension. J. Am. Heart Assoc. 2022, 11, e022827. [Google Scholar] [CrossRef]
- Gildea, J.J.; Xu, P.; Kemp, B.A.; Carey, R.M.; Jose, P.A.; Felder, R.A. The Dopamine D. 1 Receptor and Angiotensin II Type-2 Receptor are Required for Inhibition of Sodium Transport Through a Protein Phosphatase 2A Pathway. Hypertension 2019, 73, 1258–1265. [Google Scholar] [CrossRef]
- Harris, R.C. Abnormalities in renal dopamine signaling and hypertension: The role of GRK4. Curr. Opin. Nephrol. Hypertens. 2012, 21, 61–65. [Google Scholar] [CrossRef]
- Harris, R.C.; Zhang, M.Z. Dopamine, the kidney, and hypertension. Curr. Hypertens. Rep. 2012, 14, 138–143. [Google Scholar] [CrossRef]
- Ovrehus, M.A.; Bruheim, P.; Ju, W.; Zelnick, L.R.; Langlo, K.A.; Sharma, K.; de Boer, I.H.; Hallan, S.I. Gene Expression Studies and Targeted Metabolomics Reveal Disturbed Serine, Methionine, and Tyrosine Metabolism in Early Hypertensive Nephrosclerosis. Kidney Int. Rep. 2019, 4, 321–333. [Google Scholar] [CrossRef]
- Khan, A.; Shin, M.S.; Jee, S.H.; Park, Y.H. Global metabolomics analysis of serum from humans at risk of thrombotic stroke. Analyst 2020, 145, 1695–1705. [Google Scholar] [CrossRef]
- Badzynska, B.; Zakrocka, I.; Sadowski, J.; Turski, W.A.; Kompanowska-Jezierska, E. Effects of systemic administration of kynurenic acid and glycine on renal haemodynamics and excretion in normotensive and spontaneously hypertensive rats. Eur. J. Pharmacol. 2014, 743, 37–41. [Google Scholar] [CrossRef]
Groups | Cases, n | M/F, n | Age ( ± s, year) | sSBP ( ± s, mmHg) | sDBP ( ± s, mmHg) | Hcy [M(Q1, Q3), μmol/L] | BMI ( ± s, kg/m2) |
---|---|---|---|---|---|---|---|
C | 29 | 13/16 | 11.31 ± 2.47 | 107.10 ± 11.23 | 66.48 ± 7.89 | 7.72 (3.01,9.10) | 20.62 ± 5.04 |
NBp | 38 | 6/2 | 12.5 ± 2.33 | 129.38 ± 9.84 *** | 79.25 ± 7.85 *** | 7.57 (7.14,7.92) | 20.75 ± 3.32 |
OBp | 8 | 30/8 ** | 12.26 ± 2.16 | 138.76 ± 11.37 *** | 77.61 ± 8.97 *** | 8.25 (6.92,9.18) | 29.00 ± 3.18 ***, +++ |
NH | 37 | 15/4 * | 13.21 ± 1.81 * | 136.42 ± 12.62 *** | 80.21 ± 10.87 *** | 12.05 (10.89,18.51) ****, ++, Ϯ Ϯ Ϯ | 21.19 ± 1.87 Ϯ Ϯ Ϯ |
OH | 19 | 33/4 *** | 13.65 ± 1.70 ***, Ϯ | 140.84 ± 10.53 *** | 82.27 ± 9.47 *** | 12.77 (11.34,16.44) ****, ++, Ϯ Ϯ Ϯ | 29.57 ± 4.03 ***, +++, ^^^ |
χ/F/K | - | 17.108 | 5.801 | 45.698 | 13.448 | 87.782 | 40.057 |
p value | - | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Adduct | Description | VIP | FC | p-Value | m/z | rt (s) |
---|---|---|---|---|---|---|
[M − H]− | DHEAS | 2.014 | 2.247 | 5.321 × 10-5 | 367.15834 | 30.48445 |
[M + H − 3H2O]+ | gamma.-muricholic acid | 1.322 | 0.077 | 3.689 × 10-18 | 355.26306 | 212.2305 |
[M − H]− | 2-hydroxyisocaproic acid | 1.793 | 1.825 | 3.466 × 10−5 | 131.07144 | 109.993 |
[M + H]+ | Adenosine | 3.893 | 0.712 | 0.045 | 268.12684 | 234.468 |
(M – H + 2Na)+ | Acetylcholine | 1.317 | 0.457 | 8.614 × 10−6 | 190.08222 | 109.7705 |
[M + H]+ | Adrenosterone | 3.243 | 86.837 | 0.001 | 301.16932 | 126.52 |
[M − H]− | Dopamine | 2.686 | 12.250 | 0.003 | 152.00228 | 185.4145 |
[M + H]+ | DL-Isoleucine | 1.431 | 0.297 | 2.219 × 10−9 | 132.1018 | 167.901 |
[M − H]− | Glycine | 2.186 | 0.439 | 1.008 × 10−5 | 74.02479 | 43.7139 |
(M + H)+ | ADMA | 1.776 | 1.747 | 3.930 × 10−5 | 203.15034 | 598.283 |
[M + H − H2O]+ | cAMP | 2.217 | 0.290 | 4.750 × 10−5 | 312.05942 | 312.74 |
[M + H − H2O]+ | Monoethyl Phthalate | 3.954 | 1.374 | 0.031 | 177.0407 | 181.5925 |
[M + H − NH3]+ | 3-methoxytyramine | 2.418 | 4.740 | 0.041 | 151.06127 | 77.34585 |
[M − H − C7H6O]− | Phloretin | 1.192 | 0.613 | 0.025 | 167.03638 | 46.9116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Liu, Y.; Liu, L.; Bai, B.; Shi, L.; Zhang, Q. Untargeted Metabolomics Analysis Using UHPLC-Q-TOF/MS Reveals Metabolic Changes Associated with Hypertension in Children. Nutrients 2023, 15, 836. https://doi.org/10.3390/nu15040836
Zhang K, Liu Y, Liu L, Bai B, Shi L, Zhang Q. Untargeted Metabolomics Analysis Using UHPLC-Q-TOF/MS Reveals Metabolic Changes Associated with Hypertension in Children. Nutrients. 2023; 15(4):836. https://doi.org/10.3390/nu15040836
Chicago/Turabian StyleZhang, Kexin, Yanyan Liu, Lingyun Liu, Baoling Bai, Lin Shi, and Qin Zhang. 2023. "Untargeted Metabolomics Analysis Using UHPLC-Q-TOF/MS Reveals Metabolic Changes Associated with Hypertension in Children" Nutrients 15, no. 4: 836. https://doi.org/10.3390/nu15040836