Association of Body Mass Index with Insulin-like Growth Factor-1 Levels among 3227 Chinese Children Aged 2–18 Years
Abstract
:1. Introduction
2. Methods
2.1. Setting
2.2. Study Design
2.3. Participants
2.4. Physical Examination
2.5. Laboratory Measurement
2.6. Statistical Analysis
3. Results
3.1. Demographic and Anthropometric Characteristics
3.2. Associations of BMI Categories with IGF-1
3.3. Nonlinear Relationship of BMISDS with IGF-1SDS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spagnoli, A.; Rosenfeld, R.G. The mechanisms by which growth hormone brings about growth. The relative contributions of growth hormone and insulin-like growth factors. Endocrinol. Metab. Clin. N. Am. 1996, 25, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Brabant, G.; Wallaschofski, H. Normal levels of serum IGF-I: Determinants and validity of current reference ranges. Pituitary 2007, 10, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Al-Samerria, S.; Radovick, S. The Role of Insulin-like Growth Factor-1 (IGF-1) in the Control of Neuroendocrine Regulation of Growth. Cells 2021, 10, 2664. [Google Scholar] [CrossRef]
- Clemmons, D.R. Clinical utility of measurements of insulin-like growth factor 1. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Matar, M.; Al-Shaar, L.; Maalouf, J.; Nabulsi, M.; Arabi, A.; Choucair, M.; Tamim, H.; El-Hajj Fuleihan, G. The Relationship between Calciotropic Hormones, IGF-1, and Bone Mass Across Pubertal Stages. J. Clin. Endocrinol. Metab. 2016, 101, 4860–4870. [Google Scholar] [CrossRef] [PubMed]
- Bouhours-Nouet, N.; Gatelais, F.; Boux de Casson, F.; Rouleau, S.; Coutant, R. The insulin-like growth factor-I response to growth hormone is increased in prepubertal children with obesity and tall stature. J. Clin. Endocrinol. Metab. 2007, 92, 629–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, T.J.; Ahmed, M.L.; Preece, M.A.; Hindmarsh, P.; Dunger, D.B. The relationship between Insulin-like Growth Factor 1, sex steroids and timing of the pubertal growth spurt. Clin. Endocrinol. 2015, 82, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Laron, Z.; Anin, S.; Klipper-Aurbach, Y.; Klinger, B. Effects of insulin-like growth factor on linear growth, head circumference, and body fat in patients with Laron-type dwarfism. Lancet 1992, 339, 1258–1261. [Google Scholar] [CrossRef]
- Mamabolo, R.L.; Berti, C.; Monyeki, M.A.; Kruger, H.S. Association between insulin-like growth factor-1, measures of overnutrition and undernutrition and insulin resistance in black adolescents living in the North-West Province, South Africa. Am. J. Hum. Biol. 2014, 26, 189–197. [Google Scholar] [CrossRef]
- Falorni, A.; Bini, V.; Cabiati, G.; Papi, F.; Arzano, S.; Celi, F.; Sanasi, M. Serum levels of type I procollagen C-terminal propeptide, insulin-like growth factor-I (IGF-I), and IGF binding protein-3 in obese children and adolescents: Relationship to gender, pubertal development, growth, insulin, and nutritional status. Metab. Clin. Exp. 1997, 46, 862–871. [Google Scholar] [CrossRef]
- Thissen, J.P.; Ketelslegers, J.M.; Underwood, L.E. Nutritional regulation of the insulin-like growth factors. Endocr. Rev. 1994, 15, 80–101. [Google Scholar] [PubMed]
- Czogała, W.; Strojny, W.; Tomasik, P.; Multanowski, M.B.; Wójcik, M.; Miklusiak, K.; Krzysztofik, E.; Wróbel, A.; Miklusiak, K.; Skoczeń, S. The Insight into Insulin-Like Growth Factors and Insulin-Like Growth-Factor-Binding Proteins and Metabolic Profile in Pediatric Obesity. Nutrients 2021, 13, 2432. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Kim, H.S.; Kang, J.H.; Kim, D.H.; Chung, C.Y. Serum levels of insulin-like growth factor (IGF)-I, free IGF-I, IGF binding protein (IGFBP)-1, IGFBP-3 and insulin in obese children. J. Pediatr. Endocrinol. Metab. 1999, 12, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Ricco, R.C.; Ricco, R.G.; Queluz, M.C.; de Paula, M.; Atique, P.V.; Custódio, R.J.; Tourinho Filho, H.; Del Roio Liberatori, R., Jr.; Martinelli, C.E., Jr. IGF-1R mRNA expression is increased in obese children. Growth Horm. IGF Res. 2018, 39, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Hu, Y.; Liu, C.; Qi, J.; Li, G. Low insulin-like growth factor 1 is associated with low high-density lipoprotein cholesterol and metabolic syndrome in Chinese nondiabetic obese children and adolescents: A cross-sectional study. Lipids Health Dis. 2016, 15, 112. [Google Scholar] [CrossRef] [Green Version]
- Attia, N.; Tamborlane, W.V.; Heptulla, R.; Maggs, D.; Grozman, A.; Sherwin, R.S.; Caprio, S. The metabolic syndrome and insulin-like growth factor I regulation in adolescent obesity. J. Clin. Endocrinol. Metab. 1998, 83, 1467–1471. [Google Scholar] [CrossRef]
- Alderete, T.L.; Byrd-Williams, C.E.; Toledo-Corral, C.M.; Conti, D.V.; Weigensberg, M.J.; Goran, M.I. Relationships between IGF-1 and IGFBP-1 and adiposity in obese African-American and Latino adolescents. Obesity Silver Spring Md. 2011, 19, 933–938. [Google Scholar] [CrossRef]
- Cianfarani, S.; Inzaghi, E.; Alisi, A.; Germani, D.; Puglianiello, A.; Nobili, V. Insulin-like growth factor-I and -II levels are associated with the progression of nonalcoholic fatty liver disease in obese children. J. Pediatr. 2014, 165, 92–98. [Google Scholar] [CrossRef]
- Kuang, J.; Zhang, L.; Xu, Y.; Xue, J.; Liang, S.; Xiao, J. Reduced Insulin-Like Growth Factor 1 Is Associated with Insulin Resistance in Obese Prepubertal Boys. BioMed Res. Int. 2021, 2021, 6680316. [Google Scholar] [CrossRef]
- Li, H.; Ji, C.Y.; Zong, X.N.; Zhang, Y.Q. [Height and weight standardized growth charts for Chinese children and adolescents aged 0 to 18 years]. Zhonghua Er Ke Za Zhi 2009, 47, 487–492. [Google Scholar]
- Marshall, W.A.; Tanner, J.M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, W.A.; Tanner, J.M. Variations in the pattern of pubertal changes in boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.Y.; Zhang, Y.Q.; Li, Y.; Li, H. Comparison of the difference in serum insulin growth factor-1 levels between chronological age and bone age among children. Clin. Biochem. 2021, 96, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Snyder, D.K.; Clemmons, D.R.; Underwood, L.E. Dietary carbohydrate content determines responsiveness to growth hormone in energy-restricted humans. J. Clin. Endocrinol. Metab. 1989, 69, 745–752. [Google Scholar] [CrossRef]
- Livingstone, C. Insulin-like growth factor-I (IGF-I) and clinical nutrition. Clin. Sci. 2013, 125, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Clemmons, D.R.; Klibanski, A.; Underwood, L.E.; McArthur, J.W.; Ridgway, E.C.; Beitins, I.Z.; Van Wyk, J.J. Reduction of plasma immunoreactive somatomedin C during fasting in humans. J. Clin. Endocrinol. Metab. 1981, 53, 1247–1250. [Google Scholar] [CrossRef]
- Schneider, H.J.; Saller, B.; Klotsche, J.; März, W.; Erwa, W.; Wittchen, H.U.; Stalla, G.K. Opposite associations of age-dependent insulin-like growth factor-I standard deviation scores with nutritional state in normal weight and obese subjects. Eur. J. Endocrinol. 2006, 154, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Abdur, R.; Hammad, M.M.; Irina, A.K.; Preethi, C.; Reem, A.S.; Fahd, A.M.; Mohamed, A.F.; Jehad, A. Profiling of Insulin-Like Growth Factor Binding Proteins (IGFBPs) in Obesity and Their Association With Ox-LDL and Hs-CRP in Adolescents. Front. Endocrinol. 2021, 12, 727004. [Google Scholar]
- Birzniece, V.; Ho, K. Mechanisms in endocrinology: Paracrine and endocrine control of the growth hormone axis by estrogen. Eur. J. Endocrinol. 2021, 184, R269–R278. [Google Scholar] [CrossRef]
- He, Q.; Karlberg, J. Bmi in childhood and its association with height gain, timing of puberty, and final height. Pediatr. Res. 2001, 49, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, H.; Takahashi, M.; Fukuoka, H.; Iguchi, G.; Kitazawa, R.; Takahashi, Y. GH-independent IGF-I action is essential to prevent the development of nonalcoholic steatohepatitis in a GH-deficient rat model. Biochem. Biophys. Res. Commun. 2012, 423, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Hoet, J.J. The role of fetal and infant growth and nutrition in the causality of diabetes and cardiovascular disease in later life. SCN News 1997, 14, 10–13. [Google Scholar]
- Argente, J.; Caballo, N.; Barrios, V.; Pozo, J.; Muñoz, M.T.; Chowen, J.A.; Hernández, M. Multiple endocrine abnormalities of the growth hormone and insulin-like growth factor axis in prepubertal children with exogenous obesity: Effect of short- and long-term weight reduction. J. Clin. Endocrinol. Metab. 1997, 82, 2076–2083. [Google Scholar] [PubMed] [Green Version]
Variables | Total | Underweight | Normal | Overweight | Obese | p | |
---|---|---|---|---|---|---|---|
N (%) | 3227 | 84 (2.6) | 2341 (72.5) | 524 (16.2) | 278 (8.6) | ||
Gender, n (%) | |||||||
Boys | 1447 (44.8) | 50 (3.5) | 1091 (75.4) | 200 (13.8) | 106 (7.3) | <0.01 | |
Girls | 1780 (55.2) | 34 (1.9) | 1250 (70.2) | 324 (18.2) | 172 (9.7) | ||
Age, years, mean (SD) | 8.8 ± 2.8 | 8.9 ± 3.2 | 8.6 ± 2.8 | 9.3 ± 2.5 | 9.4 ± 2.4 | <0.01 | |
(min, max) | (2.0, 17.6) | (2.8, 14.7) | (2.0, 17.6) | (2.4, 16.2) | (2.4, 15.6) | ||
Height, cm, mean (SD) | 129.8 ± 18.3 | 126.0 ± 18.4 | 127.2 ± 18.0 | 136.5 ± 17.2 | 140.4 ± 14.6 | <0.01 a | |
(min, max) | (81.6, 186.0) | (87.2, 164.3) | (80.5, 184.0) | (82.5, 181.0) | (83.5, 186.0) | ||
HtSDS, mean (SD) | −0.6 ± 1.4 | −1.4 ± 0.9 | −0.9 ± 1.2 | 0.1 ± 1.4 | 0.7 ± 1.5 | <0.01 | |
(min, max) | (−2.8, 5.1) | (−2.8, 1.9) | (−2.4, 3.8) | (−2.1, 4.9) | (−2.3, 5.1) | ||
Weight, mean (SD) | 30.1 ± 12.5 | 21.3 ± 6.8 | 26.4 ± 9.3 | 38.3 ± 12.6 | 47.9 ± 14.2 | <0.01 | |
(min, max) | (10.0, 90.0) | (10.0, 37.4) | (10.2, 70.0) | (12.5, 85.0) | (13.0, 90.0) | ||
WtSDS, mean (SD) | −0.2 ± 1.4 | −2.3 ± 0.6 | −0.7 ± 0.9 | 1.0 ± 0.8 | 2.3 ± 1.0 | <0.01 | |
(min, max) | (−3.4, 6.1) | (−3.4, −0.5) | (−2.4, 2.1) | (−1.3, 3.0) | (−1.4, 6.1) | ||
BMI, mean (SD) | 17.0 ± 3.2 | 13.0 ± 0.7 | 15.8 ± 1.7 | 19.8 ± 2.3 | 23.7 ± 3.2 | <0.01 | |
(min, max) | (11.8, 38.9) | (11.8, 15.1) | (12.6, 23.6) | (16.5, 26.9) | (18.3, 38.9) | ||
BMISDS, mean (SD) | 0.2 ± 1.2 | −2.3 ± 0.2 | −0.3 ± 0.7 | 1.5 ± 0.3 | 2.6 ± 0.6 | <0.01 | |
(min, max) | (−2.9, 4.9) | (−2.9, −2.1) | (−2.0, 1.0) | (1.1, 2.0) | (2.0, 4.9) | ||
Pubertal stages, n (%) | |||||||
Prepubescent | Stage I | 1444 (44.7) | 51 (3.5) | 1205 (83.4) | 135 (9.3) | 53 (3.7) | <0.01 |
Pubescent | Stage II | 1027 (31.8) | 30 (2.9) | 739 (72.0) | 171 (16.7) | 87 (8.5) | |
Stage III | 507 (15.7) | 3 (0.6) | 279 (55.0) | 145 (28.6) | 80 (15.8) | ||
Stage IV | 213 (6.6) | 0 | 99 (46.5) | 64 (30.0) | 50 (23.5) | ||
Stage V | 36 (1.1) | 0 | 19 (52.8) | 9 (25.0) | 8 (22.2) | ||
IGF-1, mean (SD) | 226.5 ± 133.8 | 169.0 ± 89.4 | 207.2 ± 122.7 | 293.3 ± 150.8 | 281.1 ± 143.8 | <0.01 b | |
(min, max) | (25.0, 940.0) | (25.0, 405.0) | (25.0, 795.0) | (27.1, 940.0) | (31.9, 796.0) | ||
IGF-1SDS, mean (SD) | 0.5 ± 1.2 | −0.2 ± 0.8 | 0.3 ± 1.0 | 1.1 ± 1.4 | 1.0 ± 1.5 | <0.01 c | |
(min, max) | (−1.6, 5.7) | (−1.4, 3.2) | (−1.5, 5.5) | (−1.6, 5.7) | (−1.5, 5.2) | ||
IGF-1 levels group, n (%) | |||||||
Low levels | 422 (13.1) | 27 (32.1) | 333 (14.2) | 44 (8.4) | 18 (6.5) | <0.01 | |
Nonlow levels | 2805 (86.9) | 57 (67.9) | 2013 (85.8) | 478 (91.6) | 257 (93.5) |
BMI Categories | OR (95% CI) | ||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
Underweight (BMISDS < −2) | 2.86 (1.79, 4.59) | 2.20 (1.33, 3.65) | 2.25 (1.36, 3.71) |
Normal-weight (−2 ≤ BMISDS ≤ 1) | Reference | Reference | Reference |
Overweight (1< BMISDS ≤ 2) | 0.56 (0.40, 0.77) | 1.12 (0.78, 1.59) | 1.15 (0.81, 1.65) |
Obese (BMISDS > 2) | 0.42 (0.26, 0.69) | 1.43 (0.82, 2.47) | 1.52 (0.88, 2.65) |
Threshold Point of BMISDS | β (95% CI) | p |
---|---|---|
<1.71 (P95.8) | 0.174 (0.141, 0.208) | <0.01 |
≥1.71 (P95.8) | −0.358 (−0.474, −0.241) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zong, X.; Zhang, Y.; Guo, J.; Li, H. Association of Body Mass Index with Insulin-like Growth Factor-1 Levels among 3227 Chinese Children Aged 2–18 Years. Nutrients 2023, 15, 1849. https://doi.org/10.3390/nu15081849
Li Y, Zong X, Zhang Y, Guo J, Li H. Association of Body Mass Index with Insulin-like Growth Factor-1 Levels among 3227 Chinese Children Aged 2–18 Years. Nutrients. 2023; 15(8):1849. https://doi.org/10.3390/nu15081849
Chicago/Turabian StyleLi, Yang, Xinnan Zong, Yaqin Zhang, Jiayun Guo, and Hui Li. 2023. "Association of Body Mass Index with Insulin-like Growth Factor-1 Levels among 3227 Chinese Children Aged 2–18 Years" Nutrients 15, no. 8: 1849. https://doi.org/10.3390/nu15081849
APA StyleLi, Y., Zong, X., Zhang, Y., Guo, J., & Li, H. (2023). Association of Body Mass Index with Insulin-like Growth Factor-1 Levels among 3227 Chinese Children Aged 2–18 Years. Nutrients, 15(8), 1849. https://doi.org/10.3390/nu15081849