Key Nutrients for Optimal Blood Glucose Control and Mental Health in Individuals with Diabetes: A Review of the Evidence
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Carbohydrates, Fibers, and Fats
3.2. Polyunsaturated Fatty Acids
3.3. Vitamin B
3.4. Vitamin D
3.5. Vitamin E
3.6. Zinc
3.7. Magnesium
3.8. Chromium
3.9. Selenium
3.10. Iron
Micronutrient | Recommended Dosage | Effects on Diabetes | Effects on Depression and Anxiety |
---|---|---|---|
Polyunsaturated | 1250 mg/day for | Improved fasting blood | |
Fatty acid [55] | for 12 wk | glucose and reduced insulin | |
resistance | |||
Vitamin B6 [71] | 25 mg twice daily | Improved anxiety | |
For six months | and depression | ||
vitamin B12 [73] | 4.79 μg/day for me | Lowered incidence of | |
depression | |||
Vitamin E [113] | 15 mg/day | Reduced depression | |
symptoms | |||
Vitamin E [107] | 300 mg/day | Reduces lipid peroxide thereby | |
lowering diabetes symptoms | |||
Magnesium [138] | 125–300 mg/day | Reduced severe depression | |
for one week | |||
Chromium [148] | 200 µg/day | Improved anxiety and | |
depression symptoms |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zimmet, P.Z.; Magliano, D.J.; Herman, W.H.; Shaw, J.E. Diabetes: A 21st Century Challenge. Lancet Diabetes Endocrinol. 2014, 2, 56–64. [Google Scholar] [CrossRef]
- Magliano, D.J.; Boyko, E.J.; IDF Diabetes Atlas 10th Edition Scientific Committee. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 978-2-930229-98-0. [Google Scholar]
- Tao, Z.; Shi, A.; Zhao, J. Epidemiological Perspectives of Diabetes. Cell Biochem. Biophys. 2015, 73, 181–185. [Google Scholar] [CrossRef]
- Leslie, R.D.G. United Kingdom Prospective Diabetes Study (UKPDS): What Now or so What? Diabetes/Metab. Res. Rev. 1999, 15, 65–71. [Google Scholar] [CrossRef]
- Hilliard, M.E.; Yi-Frazier, J.P.; Hessler, D.; Butler, A.M.; Anderson, B.J.; Jaser, S. Stress and A1c Among People with Diabetes Across the Lifespan. Curr. Diabetes Rep. 2016, 16, 67. [Google Scholar] [CrossRef]
- CDC Diabetes and Mental Health. Available online: https://www.cdc.gov/diabetes/managing/mental-health.html (accessed on 8 April 2023).
- Ludman, E.J.; Katon, W.; Russo, J.; Von Korff, M.; Simon, G.; Ciechanowski, P.; Lin, E.; Bush, T.; Walker, E.; Young, B. Depression and Diabetes Symptom Burden. Gen. Hosp. Psychiatry 2004, 26, 430–436. [Google Scholar] [CrossRef]
- Palizgir, M.; Bakhtiari, M.; Esteghamati, A. Association of Depression and Anxiety With Diabetes Mellitus Type 2 Concerning Some Sociological Factors. Iran. Red. Crescent Med. J. 2013, 15, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Campayo, A.; de Jonge, P.; Roy, J.F.; Saz, P.; de la Cámara, C.; Quintanilla, M.A.; Marcos, G.; Santabárbara, J.; Lobo, A. Depressive Disorder and Incident Diabetes Mellitus: The Effect of Characteristics of Depression. Am. J. Psychiatry 2010, 167, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Tabák, A.G.; Akbaraly, T.N.; Batty, G.D.; Kivimäki, M. Depression and Type 2 Diabetes: A Causal Association? Lancet Diabetes Endocrinol. 2014, 2, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Crockett, A.C.; Myhre, S.K.; Rokke, P.D. Boredom Proneness and Emotion Regulation Predict Emotional Eating. J. Health Psychol. 2015, 20, 670–680. [Google Scholar] [CrossRef]
- Lindekilde, N.; Rutters, F.; Erik Henriksen, J.; Lasgaard, M.; Schram, M.T.; Rubin, K.H.; Kivimäki, M.; Nefs, G.; Pouwer, F. Psychiatric Disorders as Risk Factors for Type 2 Diabetes: An Umbrella Review of Systematic Reviews with and without Meta-Analyses. Diabetes Res. Clin. Pract. 2021, 176, 108855. [Google Scholar] [CrossRef] [PubMed]
- Randler, C.; Desch, I.H.; Otte im Kampe, V.; Wüst-Ackermann, P.; Wilde, M.; Prokop, P. Anxiety, Disgust and Negative Emotions Influence Food Intake in Humans. Int. J. Gastron. Food Sci. 2017, 7, 11–15. [Google Scholar] [CrossRef]
- Fisher, L.; Hessler, D.M.; Polonsky, W.H.; Mullan, J. When Is Diabetes Distress Clinically Meaningful?: Establishing Cut Points for the Diabetes Distress Scale. Diabetes Care 2012, 35, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Egede, L.E.; Dismuke, C.E. Serious Psychological Distress and Diabetes: A Review of the Literature. Curr. Psychiatry Rep. 2012, 14, 15–22. [Google Scholar] [CrossRef]
- Bădescu, S.; Tătaru, C.; Kobylinska, L.; Georgescu, E.; Zahiu, D.; Zăgrean, A.; Zăgrean, L. The Association between Diabetes Mellitus and Depression. J. Med. Life 2016, 9, 120–125. [Google Scholar]
- Hasan, S.S.; Clavarino, A.M.; Dingle, K.; Mamun, A.A.; Kairuz, T. Diabetes Mellitus and the Risk of Depressive and Anxiety Disorders in Australian Women: A Longitudinal Study. J. Women’s Health 2015, 24, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.; Lloyd, C.E. Epidemiology of Depression and Diabetes: A Systematic Review. J. Affect. Disord. 2012, 142, S8–S21. [Google Scholar] [CrossRef]
- Lim, S.Y.; Kim, E.J.; Kim, A.; Lee, H.J.; Choi, H.J.; Yang, S.J. Nutritional Factors Affecting Mental Health. Clin. Nutr. Res. 2016, 5, 143–152. [Google Scholar] [CrossRef]
- Young, L.M.; Pipingas, A.; White, D.J.; Gauci, S.; Scholey, A. A Systematic Review and Meta-Analysis of B Vitamin Supplementation on Depressive Symptoms, Anxiety, and Stress: Effects on Healthy and ‘At-Risk’ Individuals. Nutrients 2019, 11, 2232. [Google Scholar] [CrossRef]
- Dyson, P.A.; Kelly, T.; Deakin, T.; Duncan, A.; Frost, G.; Harrison, Z.; Khatri, D.; Kunka, D.; McArdle, P.; Mellor, D.; et al. Diabetes UK Evidence-Based Nutrition Guidelines for the Prevention and Management of Diabetes. Diabet. Med. 2011, 28, 1282–1288. [Google Scholar] [CrossRef]
- Basiri, R.; Spicer, M.; Munoz, J.; Arjmandi, B. Nutritional Intervention Improves the Dietary Intake of Essential Micronutrients in Patients with Diabetic Foot Ulcers. Curr. Dev. Nutr. 2020, 4, 8. [Google Scholar] [CrossRef]
- Basiri, R.; Spicer, M.; Levenson, C.; Ledermann, T.; Akhavan, N.; Arjmandi, B. Improving Dietary Intake of Essential Nutrients Can Ameliorate Inflammation in Patients with Diabetic Foot Ulcers. Nutrients 2022, 14, 2393. [Google Scholar] [CrossRef] [PubMed]
- Basiri, R.; Spicer, M.T.; Ledermann, T.; Arjmandi, B.H. Effects of Nutrition Intervention on Blood Glucose, Body Composition, and Phase Angle in Obese and Overweight Patients with Diabetic Foot Ulcers. Nutrients 2022, 14, 3564. [Google Scholar] [CrossRef] [PubMed]
- Basiri, R.; Spicer, M.T.; Levenson, C.W.; Ormsbee, M.J.; Ledermann, T.; Arjmandi, B.H. Nutritional Supplementation Concurrent with Nutrition Education Accelerates the Wound Healing Process in Patients with Diabetic Foot Ulcers. Biomedicines 2020, 8, 263. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, N.S.; Pourafshar, S.; Johnson, S.A.; Foley, E.M.; George, K.S.; Munoz, J.; Siebert, S.; Clark, E.A.; Basiri, R.; Hickner, R.C.; et al. The Relationship between Protein Intake and Source on Factors Associated with Glycemic Control in Individuals with Prediabetes and Type 2 Diabetes. Nutrients 2020, 12, 2031. [Google Scholar] [CrossRef]
- Basiri, R.; Spicer, M.; Arjmandi, B. Nutrition Supplementation and Education May Increase the Healing Rate in Diabetic Patients with Foot Ulcers (P19-005-19). Curr. Dev. Nutr. 2019, 3, nzz049-P19. [Google Scholar] [CrossRef]
- Basiri, R.; Spicer, M. The Effects of Nutritional Supplementation and Education on the Healing of Diabetic Foot Ulcer. Ann. Case Rep. 2018, 3, 34. [Google Scholar]
- Sun, J.; Wang, F.; Hu, X.; Yang, C.; Xu, H.; Yao, Y.; Liu, J. Clostridium butyricum Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-like Behavior in Mice via the Gut-Brain Axis. J. Agric. Food Chem. 2018, 66, 8415–8421. [Google Scholar] [CrossRef]
- Su, K.-P. Biological Mechanism of Antidepressant Effect of Omega-3 Fatty Acids: How Does Fish Oil Act as a “Mind-Body Interface”? Neurosignals 2009, 17, 144–152. [Google Scholar] [CrossRef]
- Virtanen, J.K.; Mursu, J.; Voutilainen, S.; Uusitupa, M.; Tuomainen, T.-P. Serum Omega-3 Polyunsaturated Fatty Acids and Risk of Incident Type 2 Diabetes in Men: The Kuopio Ischemic Heart Disease Risk Factor Study. Diabetes Care 2013, 37, 189–196. [Google Scholar] [CrossRef]
- Duan, J.; Song, Y.; Zhang, X.; Wang, C. Effect of ω-3 Polyunsaturated Fatty Acids-Derived Bioactive Lipids on Metabolic Disorders. Front. Physiol. 2021, 12, 646491. [Google Scholar] [CrossRef]
- Lamon-Fava, S.; So, J.; Mischoulon, D.; Ziegler, T.R.; Dunlop, B.W.; Kinkead, B.; Schettler, P.J.; Nierenberg, A.A.; Felger, J.C.; Maddipati, K.R.; et al. Dose- and Time-Dependent Increase in Circulating Anti-Inflammatory and pro-Resolving Lipid Mediators Following Eicosapentaenoic Acid Supplementation in Patients with Major Depressive Disorder and Chronic Inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2021, 164, 102219. [Google Scholar] [CrossRef]
- Hernandez, T.L.; Mande, A.; Barbour, L.A. Nutrition Therapy within and beyond Gestational Diabetes. Diabetes Res. Clin. Pract. 2018, 145, 39–50. [Google Scholar] [CrossRef]
- Overview of Glucose Regulation—ProQuest. Available online: https://www.proquest.com/openview/5560cd0a592f45c737f613ea96488d9a/1?pq-origsite=gscholar&cbl=47185 (accessed on 12 January 2023).
- Jacques, A.; Chaaya, N.; Beecher, K.; Ali, S.A.; Belmer, A.; Bartlett, S. The Impact of Sugar Consumption on Stress Driven, Emotional and Addictive Behaviors. Neurosci. Biobehav. Rev. 2019, 103, 178–199. [Google Scholar] [CrossRef]
- Umegaki, H.; Iimuro, S.; Araki, A.; Sakurai, T.; Iguchi, A.; Yoshimura, Y.; Ohashi, Y.; Ito, H. Association of Higher Carbohydrate Intake with Depressive Mood in Elderly Diabetic Women. Nutr. Neurosci. 2009, 12, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Mwamburi, D.M.; Liebson, E.; Folstein, M.; Bungay, K.; Tucker, K.L.; Qiu, W.Q. Depression and Glycemic Intake in the Homebound Elderly. J. Affect. Disord. 2011, 132, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Louie, J.C.Y.; Buyken, A.E.; Brand-Miller, J.C.; Flood, V.M. The Link between Dietary Glycemic Index and Nutrient Adequacy. Am. J. Clin. Nutr. 2012, 95, 694–702. [Google Scholar] [CrossRef]
- Barakatun Nisak, M.Y.; Ruzita, A.T.; Norimah, A.K.; Gilbertson, H.; Nor Azmi, K. Improvement of Dietary Quality with the Aid of a Low Glycemic Index Diet in Asian Patients with Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2010, 29, 161–170. [Google Scholar] [CrossRef]
- Tietyen, J. Dietary Fiber in Foods: Options for Diabetes Education. Diabetes Educ. 1989, 15, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.M.; Holscher, H.D. A Review of Dietary and Microbial Connections to Depression, Anxiety, and Stress. Nutr. Neurosci. 2020, 23, 237–250. [Google Scholar] [CrossRef]
- Bessesen, D.H. The Role of Carbohydrates in Insulin Resistance. J. Nutr. 2001, 131, 2782S–2786S. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarczyk, M.M.; Miller, M.J.; Freund, G.G. The Health Benefits of Dietary Fiber: Beyond the Usual Suspects of Type 2 Diabetes Mellitus, Cardiovascular Disease and Colon Cancer. Metabolism 2012, 61, 1058–1066. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L. The Gut Microbiota and Obesity: From Correlation to Causality. Nat. Rev. Microbiol. 2013, 11, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Järbrink-Sehgal, E.; Andreasson, A. The Gut Microbiota and Mental Health in Adults. Curr. Opin. Neurobiol. 2020, 62, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, J.; Ling, Z. Short-Chain Fatty Acids-Producing Probiotics: A Novel Source of Psychobiotics. Crit. Rev. Food Sci. Nutr. 2022, 62, 7929–7959. [Google Scholar] [CrossRef]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Role of Probiotics and Diet in the Management of Neurological Diseases and Mood States: A Review. Microorganisms 2022, 10, 2268. [Google Scholar] [CrossRef] [PubMed]
- Serini, S.; Bizzarro, A.; Piccioni, E.; Fasano, E.; Rossi, C.; Lauria, A.; Cittadini, A.R.; Masullo, C.; Calviello, G. EPA and DHA Differentially Affect In Vitro Inflammatory Cytokine Release by Peripheral Blood Mononuclear Cells from Alzheimer’s Patients. Curr. Alzheimer Res. 2012, 9, 913–923. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Honda, K.L.; Lamon-Fava, S.; Matthan, N.R.; Wu, D.; Lichtenstein, A.H. Docosahexaenoic Acid Differentially Affects TNFα and IL-6 Expression in LPS-Stimulated RAW 264.7 Murine Macrophages. Prostaglandins Leukot. Essent. Fat. Acids 2015, 97, 27–34. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; da Silva, B.G.C.; da Silva, T.G.; Mintem, G.C.; Bielemann, R.M.; Gigante, D.P. Omega-3 Supplementation and Diabetes: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 4435–4448. [Google Scholar] [CrossRef]
- Asemi, Z.; Soleimani, A.; Bahmani, F.; Shakeri, H.; Mazroii, N.; Abedi, F.; Fallah, M.; Mohammadi, A.A.; Esmaillzadeh, A. Effect of the Omega-3 Fatty Acid plus Vitamin E Supplementation on Subjective Global Assessment Score, Glucose Metabolism, and Lipid Concentrations in Chronic Hemodialysis Patients. Mol. Nutr. Food Res. 2016, 60, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Hommelberg, P.P.H.; Langen, R.C.J.; Schols, A.M.W.J.; Mensink, R.P.; Plat, J. Inflammatory Signaling in Skeletal Muscle Insulin Resistance: Green Signal for Nutritional Intervention? Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary Polyphenols as Potential Nutraceuticals in Management of Diabetes: A Review. J. Diabetes Metab. Disord. 2013, 12, 43. [Google Scholar] [CrossRef]
- Su, K.-P.; Matsuoka, Y.; Pae, C.-U. Omega-3 Polyunsaturated Fatty Acids in Prevention of Mood and Anxiety Disorders. Clin. Psychopharmacol. Neurosci. 2015, 13, 129–137. [Google Scholar] [CrossRef]
- Herbison, C.E.; Hickling, S.; Allen, K.L.; O’Sullivan, T.A.; Robinson, M.; Bremner, A.P.; Huang, R.-C.; Beilin, L.J.; Mori, T.A.; Oddy, W.H. Low Intake of B-Vitamins Is Associated with Poor Adolescent Mental Health and Behaviour. Prev. Med. 2012, 55, 634–638. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.P. Omega-3 Fatty Acids in Psychiatry: A Review. Ann. Clin. Psychiatry 2000, 12, 159–165. [Google Scholar] [CrossRef]
- Balk, E.; Chung, M.; Lichtenstein, A.; Chew, P.; Kupelnick, B.; Lawrence, A.; DeVine, D.; Lau, J. Effects of Omega-3 Fatty Acids on Cardiovascular Risk Factors and Intermediate Markers of Cardiovascular Disease: Summary. In AHRQ Evidence Report Summaries; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2004. [Google Scholar]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N. Global Survey of the Omega-3 Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid in the Blood Stream of Healthy Adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef]
- Dyall, S.C. Long-Chain Omega-3 Fatty Acids and the Brain: A Review of the Independent and Shared Effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef]
- Peet, M.; Stokes, C. Omega-3 Fatty Acids in the Treatment of Psychiatric Disorders. Drugs 2005, 65, 1051–1059. [Google Scholar] [CrossRef]
- Blondeau, N.; Lipsky, R.H.; Bourourou, M.; Duncan, M.W.; Gorelick, P.B.; Marini, A.M. Alpha-Linolenic Acid: An Omega-3 Fatty Acid with Neuroprotective Properties—Ready for Use in the Stroke Clinic? BioMed Res. Int. 2015, 2015, e519830. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.W. Omega-3 Fatty Acids and Mental Health. Glob. Health J. 2020, 4, 18–30. [Google Scholar] [CrossRef]
- Parletta, N.; Milte, C.M.; Meyer, B.J. Nutritional Modulation of Cognitive Function and Mental Health. J. Nutr. Biochem. 2013, 24, 725–743. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Mahdavifar, B.; Hosseinzadeh, M.; Salehi-Abargouei, A.; Mirzaei, M.; Vafa, M. Dietary Intake of B Vitamins and Their Association with Depression, Anxiety, and Stress Symptoms: A Cross-Sectional, Population-Based Survey. J. Affect. Disord. 2021, 288, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.C.; Downey, L.A.; Simpson, T.; McPhee, G.; Oliver, C.; Stough, C. The Effect of a High-Dose Vitamin B Multivitamin Supplement on the Relationship between Brain Metabolism and Blood Biomarkers of Oxidative Stress: A Randomized Control Trial. Nutrients 2018, 10, 1860. [Google Scholar] [CrossRef]
- Durrani, D.; Idrees, R.; Idrees, H.; Ellahi, A. Vitamin B6: A New Approach to Lowering Anxiety, and Depression? Ann. Med. Surg. 2022, 82, 104663. [Google Scholar] [CrossRef]
- Gougeon, L.; Payette, H.; Morais, J.A.; Gaudreau, P.; Shatenstein, B.; Gray-Donald, K. Intakes of Folate, Vitamin B6 and B12 and Risk of Depression in Community-Dwelling Older Adults: The Quebec Longitudinal Study on Nutrition and Aging. Eur. J. Clin. Nutr. 2016, 70, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Kanyal Butola, L.; Kanyal, D.; Ambad, R.; Jha, R. Role of Omega 3 Fatty Acids, Vitamin D, Vitamin B12, Vitamin B6 and Folate in Mental Wellbeing-A Short Review of Literature. Indian J. Forensic Med. Toxicol. 2021, 15, 283–288. [Google Scholar]
- Lai, J.S.; Pang, W.W.; Cai, S.; Lee, Y.S.; Chan, J.K.Y.; Shek, L.P.C.; Yap, F.K.P.; Tan, K.H.; Godfrey, K.M.; van Dam, R.M.; et al. High Folate and Low Vitamin B12 Status during Pregnancy Is Associated with Gestational Diabetes Mellitus. Clin. Nutr. 2018, 37, 940–947. [Google Scholar] [CrossRef]
- Spellacy, W.N.; Buhi, W.C.; Birk, S.A. Vitamin B6 Treatment of Gestational Diabetes Mellitus: Studies of Blood Glucose and Plasma Insulin. Am. J. Obstet. Gynecol. 1977, 127, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Kang, Y.-R.; Lee, J.-Y.; Chang, H.-B.; Lee, K.W.; Apostolidis, E.; Kwon, Y.-I. The Postprandial Anti-Hyperglycemic Effect of Pyridoxine and Its Derivatives Using In Vitro and In Vivo Animal Models. Nutrients 2018, 10, 285. [Google Scholar] [CrossRef] [PubMed]
- Elbarbary, N.S.; Ismail, E.A.R.; Zaki, M.A.; Darwish, Y.W.; Ibrahim, M.Z.; El-Hamamsy, M. Vitamin B Complex Supplementation as a Homocysteine-Lowering Therapy for Early Stage Diabetic Nephropathy in Pediatric Patients with Type 1 Diabetes: A Randomized Controlled Trial. Clin. Nutr. 2020, 39, 49–56. [Google Scholar] [CrossRef]
- Paul Cherniack, E.; Troen, B.R.; Florez, H.J.; Roos, B.A.; Levis, S. Some New Food for Thought: The Role of Vitamin D in the Mental Health of Older Adults. Curr. Psychiatry Rep. 2009, 11, 12–19. [Google Scholar] [CrossRef]
- Martin, T.; Campbell, R.K. Vitamin D and Diabetes. Diabetes Spectr. 2011, 24, 113–118. [Google Scholar] [CrossRef]
- Al-Shoumer, K.A.; Al-Essa, T.M. Is There a Relationship between Vitamin D with Insulin Resistance and Diabetes Mellitus? World J. Diabetes 2015, 6, 1057–1064. [Google Scholar] [CrossRef]
- Teegarden, D.; Donkin, S.S. Vitamin D: Emerging New Roles in Insulin Sensitivity. Nutr. Res. Rev. 2009, 22, 82–92. [Google Scholar] [CrossRef]
- Sung, C.-C.; Liao, M.-T.; Lu, K.-C.; Wu, C.-C. Role of Vitamin D in Insulin Resistance. J. Biomed. Biotechnol. 2012, 2012, 634195. [Google Scholar] [CrossRef]
- Talaei, A.; Mohamadi, M.; Adgi, Z. The Effect of Vitamin D on Insulin Resistance in Patients with Type 2 Diabetes. Diabetol. Metab. Syndr. 2013, 5, 8. [Google Scholar] [CrossRef]
- Czarny, P.; Wigner, P.; Galecki, P.; Sliwinski, T. The Interplay between Inflammation, Oxidative Stress, DNA Damage, DNA Repair and Mitochondrial Dysfunction in Depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a Link between Obesity, Metabolic Syndrome and Type 2 Diabetes. Diabetes Res. Clin. Pr. 2014, 105, 141–150. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory Mechanisms Linking Obesity and Metabolic Disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef]
- Ježek, P.; Jabůrek, M.; Plecitá-Hlavatá, L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid. Redox Signal. 2019, 31, 722–751. [Google Scholar] [CrossRef]
- Riachy, R.; Vandewalle, B.; Kerr Conte, J.; Moerman, E.; Sacchetti, P.; Lukowiak, B.; Gmyr, V.; Bouckenooghe, T.; Dubois, M.; Pattou, F. 1,25-Dihydroxyvitamin D3 Protects RINm5F and Human Islet Cells against Cytokine-Induced Apoptosis: Implication of the Antiapoptotic Protein A20. Endocrinology 2002, 143, 4809–4819. [Google Scholar] [CrossRef]
- van Etten, E.; Mathieu, C. Immunoregulation by 1,25-Dihydroxyvitamin D3: Basic Concepts. J. Steroid Biochem. Mol. Biol. 2005, 97, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Moylan, S.; Maes, M.; Wray, N.R.; Berk, M. The Neuroprogressive Nature of Major Depressive Disorder: Pathways to Disease Evolution and Resistance, and Therapeutic Implications. Mol. Psychiatry 2013, 18, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Yirmyia, R.; Noraberg, J.; Brene, S.; Hibbeln, J.; Perini, G.; Kubera, M.; Bob, P.; Lerer, B.; Maj, M. The Inflammatory & Neurodegenerative (I&ND) Hypothesis of Depression: Leads for Future Research and New Drug Developments in Depression. Metab. Brain Dis. 2009, 24, 27–53. [Google Scholar] [CrossRef] [PubMed]
- Shelton, R.; Claiborne, J.; Sidoryk-Wegrzynowicz, M.; Reddy, R.; Aschner, M.; Lewis, D.; Mirnics, K. Altered Expression of Genes Involved in Inflammation and Apoptosis in Frontal Cortex in Major Depression. Mol. Psychiatry 2011, 16, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Kubera, M.; Mihaylova, I.; Geffard, M.; Galecki, P.; Leunis, J.-C.; Berk, M. Increased Autoimmune Responses against Auto-Epitopes Modified by Oxidative and Nitrosative Damage in Depression: Implications for the Pathways to Chronic Depression and Neuroprogression. J. Affect. Disord. 2013, 149, 23–29. [Google Scholar] [CrossRef]
- Bakunina, N.; Pariante, C.M.; Zunszain, P.A. Immune Mechanisms Linked to Depression via Oxidative Stress and Neuroprogression. Immunology 2015, 144, 365. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging. Biology 2019, 8, 30. [Google Scholar] [CrossRef]
- Holmes, S.; Abbassi, B.; Su, C.; Singh, M.; Cunningham, R.L. Oxidative Stress Defines the Neuroprotective or Neurotoxic Properties of Androgens in Immortalized Female Rat Dopaminergic Neuronal Cells. Endocrinology 2013, 154, 4281–4292. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.H.H.; Shieh, S.-S.; Wang, D.L. SIRT3 Deacetylates FOXO3 to Protect Mitochondria against Oxidative Damage. Free Radic. Biol. Med. 2013, 63, 222–234. [Google Scholar] [CrossRef]
- Wang, L.; Lewis, T.; Zhang, Y.-L.; Khodier, C.; Magesh, S.; Chen, L.; Inoyama, D.; Chen, Y.; Zhen, J.; Hu, L.; et al. The Identification and Characterization of Non-Reactive Inhibitor of Keap1-Nrf2 Interaction through HTS Using a Fluorescence Polarization Assay. In Probe Reports from the NIH Molecular Libraries Program; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2010. [Google Scholar]
- Berridge, M.J. Vitamin D Deficiency: Infertility and Neurodevelopmental Diseases (Attention Deficit Hyperactivity Disorder, Autism, and Schizophrenia). Am. J. Physiol.-Cell Physiol. 2018, 314, C135–C151. [Google Scholar] [CrossRef]
- Liang, F.; Quan, Y.; Wu, A.; Chen, Y.; Xu, R.; Zhu, Y.; Xiong, J. Insulin-Resistance and Depression Cohort Data Mining to Identify Nutraceutical Related DNA Methylation Biomarker for Type 2 Diabetes. Genes. Dis. 2020, 8, 669–676. [Google Scholar] [CrossRef]
- Guzek, D.; Kołota, A.; Lachowicz, K.; Skolmowska, D.; Stachoń, M.; Głąbska, D. Influence of Vitamin D Supplementation on Mental Health in Diabetic Patients: A Systematic Review. Nutrients 2021, 13, 3678. [Google Scholar] [CrossRef]
- Pazdro, R.; Burgess, J.R. The Role of Vitamin E and Oxidative Stress in Diabetes Complications. Mech. Ageing Dev. 2010, 131, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Pekmezci, D. Chapter Eight—Vitamin E and Immunity. In Vitamins & Hormones; Litwack, G., Ed.; Vitamins and the Immune System; Academic Press: Cambridge, MA, USA, 2011; Volume 86, pp. 179–215. [Google Scholar]
- Rajendiran, D.; Packirisamy, S.; Gunasekaran, K. A Review on Role of Antioxidants in Diabetes. Asian J. Pharm. Clin. Res. 2018, 11, 48–53. [Google Scholar] [CrossRef]
- Rahimi, R.; Nikfar, S.; Larijani, B.; Abdollahi, M. A Review on the Role of Antioxidants in the Management of Diabetes and Its Complications. Biomed. Pharmacother. 2005, 59, 365–373. [Google Scholar] [CrossRef]
- Iuliano, L.; Micheletta, F.; Maranghi, M.; Frati, G.; Diczfalusy, U.; Violi, F. Bioavailability of Vitamin E as Function of Food Intake in Healthy Subjects. Arterioscler. Thromb. Vasc. Biol. 2001, 21, e34–e37. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.R.; Abbatecola, A.M.; Barbieri, M.; Vietri, M.T.; Cioffi, M.; Grella, R.; Molinari, A.; Forsey, R.; Powell, J.; Paolisso, G. Evidence for Anti-Inflammatory Effects of Combined Administration of Vitamin E and C in Older Persons with Impaired Fasting Glucose: Impact on Insulin Action. J. Am. Coll. Nutr. 2008, 27, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Tabaei, B.S.; Mousavi, S.N.; Rahimian, A.; Rostamkhani, H.; Mellati, A.A.; Jameshorani, M. Co-Administration of Vitamin E and Atorvastatin Improves Insulin Sensitivity and Peroxisome Proliferator-Activated Receptor-γ Expression in Type 2 Diabetic Patients: A Randomized Double-Blind Clinical Trial. Iran. J. Med. Sci. 2022, 47, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Rafighi, Z.; Shiva, A.; Arab, S.; Mohd Yousof, R. Association of Dietary Vitamin C and e Intake and Antioxidant Enzymes in Type 2 Diabetes Mellitus Patients. Glob. J. Health Sci. 2013, 5, 183–187. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Lee, A.R.Y.B.; Tariq, A.; Lau, G.; Tok, N.W.K.; Tam, W.W.S.; Ho, C.S.H. Vitamin E, Alpha-Tocopherol, and Its Effects on Depression and Anxiety: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 656. [Google Scholar] [CrossRef]
- Huang, A.A.; Huang, S.Y. Quantification of the Effect of Vitamin E Intake on Depressive Symptoms in United States Adults Using Restricted Cubic Splines. Curr. Dev. Nutr. 2023, 7, 100038. [Google Scholar] [CrossRef]
- Raederstorff, D.; Wyss, A.; Calder, P.C.; Weber, P.; Eggersdorfer, M. Vitamin E Function and Requirements in Relation to PUFA. Br. J. Nutr. 2015, 114, 1113–1122. [Google Scholar] [CrossRef]
- Valk; Hornstra, G. Relationship Between Vitamin E Requirement and Polyunsaturated Fatty Acid Intake in Man: A Review. Int. J. Vitam. Nutr. Res. 2000, 70, 31–42. [Google Scholar] [CrossRef]
- Jansen, J.; Karges, W.; Rink, L. Zinc and Diabetes—Clinical Links and Molecular Mechanisms. J. Nutr. Biochem. 2009, 20, 399–417. [Google Scholar] [CrossRef]
- de Carvalho, G.B.; Brandão-Lima, P.N.; Maia, C.S.C.; Barbosa, K.B.F.; Pires, L.V. Zinc’s Role in the Glycemic Control of Patients with Type 2 Diabetes: A Systematic Review. Biometals 2017, 30, 151–162. [Google Scholar] [CrossRef]
- Capdor, J.; Foster, M.; Petocz, P.; Samman, S. Zinc and Glycemic Control: A Meta-Analysis of Randomised Placebo Controlled Supplementation Trials in Humans. J. Trace Elem. Med. Biol. 2013, 27, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Sun, W.; Miao, L.; Fu, Y.; Wang, Y.; Su, G.; Liu, Q. Zinc and Diabetic Retinopathy. J. Diabetes Res. 2013, 2013, e425854. [Google Scholar] [CrossRef]
- Powell, S.R. The Antioxidant Properties of Zinc. J. Nutr. 2000, 130, 1447S–1454S. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, S.A. Zinc Might Protect Oxidative Changes in the Retina and Pancreas at the Early Stage of Diabetic Rats. Toxicol. Appl. Pharmacol. 2004, 201, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Roussel, A.-M.; Kerkeni, A.; Zouari, N.; Mahjoub, S.; Matheau, J.-M.; Anderson, R.A. Antioxidant Effects of Zinc Supplementation in Tunisians with Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2003, 22, 316–321. [Google Scholar] [CrossRef]
- Hajianfar, H.; Mollaghasemi, N.; Tavakoly, R.; Campbell, M.S.; Mohtashamrad, M.; Arab, A. The Association Between Dietary Zinc Intake and Health Status, Including Mental Health and Sleep Quality, Among Iranian Female Students. Biol. Trace Elem. Res. 2021, 199, 1754–1761. [Google Scholar] [CrossRef]
- Swardfager, W.; Herrmann, N.; McIntyre, R.S.; Mazereeuw, G.; Goldberger, K.; Cha, D.S.; Schwartz, Y.; Lanctôt, K.L. Potential Roles of Zinc in the Pathophysiology and Treatment of Major Depressive Disorder. Neurosci. Biobehav. Rev. 2013, 37, 911–929. [Google Scholar] [CrossRef]
- Grønli, O.; Kvamme, J.M.; Friborg, O.; Wynn, R. Zinc Deficiency Is Common in Several Psychiatric Disorders. PLoS ONE 2013, 8, e82793. [Google Scholar] [CrossRef]
- Evangelopoulos, A.A.; Vallianou, N.G.; Panagiotakos, D.B.; Georgiou, A.; Zacharias, G.A.; Alevra, A.N.; Zalokosta, G.J.; Vogiatzakis, E.D.; Avgerinos, P.C. An Inverse Relationship between Cumulating Components of the Metabolic Syndrome and Serum Magnesium Levels. Nutr. Res. 2008, 28, 659–663. [Google Scholar] [CrossRef]
- Sales, C.H.; Pedrosa, L.d.F.C. Magnesium and Diabetes Mellitus: Their Relation. Clin. Nutr. 2006, 25, 554–562. [Google Scholar] [CrossRef]
- Gommers, L.M.M.; Hoenderop, J.G.J.; Bindels, R.J.M.; de Baaij, J.H.F. Hypomagnesemia in Type 2 Diabetes: A Vicious Circle? Diabetes 2015, 65, 3–13. [Google Scholar] [CrossRef]
- Oost, L.J.; Tack, C.J.; de Baaij, J.H.F. Hypomagnesemia and Cardiovascular Risk in Type 2 Diabetes. Endocr. Rev. 2023, 44, 357–378. [Google Scholar] [CrossRef]
- Humphries, S.; Kushner, H.; Falkner, B. Low Dietary Magnesium Is Associated with Insulin Resistance in a Sample of Young, Nondiabetic Black Americans. Am. J. Hypertens. 1999, 12, 747–756. [Google Scholar] [CrossRef]
- de Lourdes Lima, M.; Cruz, T.; Rodrigues, L.E.; Bomfim, O.; Melo, J.; Correia, R.; Porto, M.; Cedro, A.; Vicente, E. Serum and Intracellular Magnesium Deficiency in Patients with Metabolic Syndrome—Evidences for Its Relation to Insulin Resistance. Diabetes Res. Clin. Pr. 2009, 83, 257–262. [Google Scholar] [CrossRef]
- de Valk, H.W. Magnesium in Diabetes Mellitus. Neth. J. Med. 1999, 54, 139–146. [Google Scholar] [CrossRef]
- Hatwal, A.; Gujral, A.S.; Bhatia, R.P.S.; Agrawal, J.K.; Bajpai, H.S. Association of Hypomagnesemia with Diabetic Retinopathy. Acta Ophthalmol. 1989, 67, 714–716. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ridaura, R.; Willett, W.C.; Rimm, E.B.; Liu, S.; Stampfer, M.J.; Manson, J.E.; Hu, F.B. Magnesium Intake and Risk of Type 2 Diabetes in Men and Women. Diabetes Care 2004, 27, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Jacka, F.N.; Maes, M.; Pasco, J.A.; Williams, L.J.; Berk, M. Nutrient Intakes and the Common Mental Disorders in Women. J. Affect. Disord. 2012, 141, 79–85. [Google Scholar] [CrossRef]
- Mah, J.; Pitre, T. Oral Magnesium Supplementation for Insomnia in Older Adults: A Systematic Review & Meta-Analysis. BMC Complement. Med. Ther. 2021, 21, 125. [Google Scholar] [CrossRef]
- Sylvia, L.G.; Peters, A.T.; Deckersbach, T.; Nierenberg, A.A. Nutrient-Based Therapies for Bipolar Disorder: A Systematic Review. Psychother. Psychosom. 2012, 82, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Eby, G.A.; Eby, K.L. Rapid Recovery from Major Depression Using Magnesium Treatment. Med. Hypotheses 2006, 67, 362–370. [Google Scholar] [CrossRef]
- Suksomboon, N.; Poolsup, N.; Yuwanakorn, A. Systematic Review and Meta-Analysis of the Efficacy and Safety of Chromium Supplementation in Diabetes. J. Clin. Pharm. Ther. 2014, 39, 292–306. [Google Scholar] [CrossRef]
- Eby, G.A.; Eby, K.L. Magnesium for Treatment-Resistant Depression: A Review and Hypothesis. Med. Hypotheses 2010, 74, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Albarracin, C.; Fuqua, B.; Geohas, J.; Juturu, V.; Finch, M.R.; Komorowski, J.R. Combination of Chromium and Biotin Improves Coronary Risk Factors in Hypercholesterolemic Type 2 Diabetes Mellitus: A Placebo-Controlled, Double-Blind Randomized Clinical Trial. J. Cardiometab. Syndr. 2007, 2, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Moradi, F.; Maleki, V.; Saleh-Ghadimi, S.; Kooshki, F.; Pourghassem Gargari, B. Potential Roles of Chromium on Inflammatory Biomarkers in Diabetes: A Systematic. Clin. Exp. Pharmacol. Physiol. 2019, 46, 975–983. [Google Scholar] [CrossRef]
- Ghosh, D.; Bhattacharya, B.; Mukherjee, B.; Manna, B.; Sinha, M.; Chowdhury, J.; Chowdhury, S. Role of Chromium Supplementation in Indians with Type 2 Diabetes Mellitus. J. Nutr. Biochem. 2002, 13, 690–697. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, X.; Wang, Z.; Xu, Y.; Liu, X.; Cao, L.; Wang, X.; Li, Z.; Feng, B. Chromium-Containing Traditional Chinese Medicine, Tianmai Xiaoke Tablet, for Newly Diagnosed Type 2 Diabetes Mellitus: A Meta-Analysis and Systematic Review of Randomized Clinical Trials. Evid.-Based Complement. Altern. Med. 2018, 2018, e3708637. [Google Scholar] [CrossRef]
- Asbaghi, O.; Fatemeh, N.; Mahnaz, R.K.; Ehsan, G.; Elham, E.; Behzad, N.; Damoon, A.-L.; Amirmansour, A.N. Effects of Chromium Supplementation on Glycemic Control in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmacol. Res. 2020, 161, 105098. [Google Scholar] [CrossRef]
- Cefalu, W.T.; Hu, F.B. Role of Chromium in Human Health and in Diabetes. Diabetes Care 2004, 27, 2741–2751. [Google Scholar] [CrossRef]
- Chen, J.; Kan, M.; Ratnasekera, P.; Deol, L.K.; Thakkar, V.; Davison, K.M. Blood Chromium Levels and Their Association with Cardiovascular Diseases, Diabetes, and Depression: National Health and Nutrition Examination Survey (NHANES) 2015–2016. Nutrients 2022, 14, 2687. [Google Scholar] [CrossRef]
- Jamilian, M.; Foroozanfard, F.; Kavossian, E.; Aghadavod, E.; Amirani, E.; Mahdavinia, M.; Mafi, A.; Asemi, Z. Carnitine and Chromium Co-Supplementation Affects Mental Health, Hormonal, Inflammatory, Genetic, and Oxidative Stress Parameters in Women with Polycystic Ovary Syndrome. J. Psychosom. Obstet. Gynecol. 2019, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chromium: An Element Essential to Health. Available online: https://chiro.org/Graphics_Box_NUTRITION/FULL/Chromium_An_Element_Essential_to_Health.shtml (accessed on 3 March 2023).
- Docherty, J.P.; Sack, D.A.; Roffman, M.; Finch, M.; Komorowski, J.R. A Double-Blind, Placebo-Controlled, Exploratory Trial of Chromium Picolinate in Atypical Depression: Effect on Carbohydrate Craving. J. Psychiatr. Pr. 2005, 11, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.S.; Mueller, K.; Wolf, N.M.; Pallauf, J. Selenium and Diabetes: An Enigma? Free Radic. Res. 2009, 43, 1029–1059. [Google Scholar] [CrossRef] [PubMed]
- Bleys, J.; Navas-Acien, A.; Guallar, E. Serum Selenium and Diabetes in U.S. Adults. Diabetes Care 2007, 30, 829–834. [Google Scholar] [CrossRef]
- Raygan, F.; Ostadmohammadi, V.; Asemi, Z. The Effects of Probiotic and Selenium Co-Supplementation on Mental Health Parameters and Metabolic Profiles in Type 2 Diabetic Patients with Coronary Heart Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2019, 38, 1594–1598. [Google Scholar] [CrossRef]
- El-Bayoumy, K. The Protective Role of Selenium on Genetic Damage and on Cancer. Mutat. Res. 2001, 475, 123–139. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Jeong, D. Bimodal Actions of Selenium Essential for Antioxidant and Toxic Pro-Oxidant Activities: The Selenium Paradox (Review). Mol. Med. Rep. 2012, 5, 299–304. [Google Scholar] [CrossRef]
- Tinggi, U. Selenium: Its Role as Antioxidant in Human Health. Env. Health Prev. Med. 2008, 13, 102–108. [Google Scholar] [CrossRef]
- Fridlyand, E.; Philipson, L.H. Oxidative Reactive Species in Cell Injury: Mechanisms in Diabetes Mellitus and Therapeutic Approaches; Annals of the New York Academy of Sciences; Wiley Online Library: Hoboken, NJ, USA, 2006; Available online: https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1196/annals.1363.019 (accessed on 15 March 2023).
- Aronson, D. Hyperglycemia and the Pathobiology of Diabetic Complications. Adv. Cardiol. 2008, 45, 1–16. [Google Scholar] [CrossRef]
- Afonso, V.; Champy, R.; Mitrovic, D.; Collin, P.; Lomri, A. Reactive Oxygen Species and Superoxide Dismutases: Role in Joint Diseases. Jt. Bone Spine 2007, 74, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Xu, P.; Gong, C.; Zhu, Y.; Zhang, H.; Nie, W.; Zhou, X.; Liang, X.; Xu, Y.; Huang, C.; et al. High Serum Concentration of Selenium, but Not Calcium, Cobalt, Copper, Iron, and Magnesium, Increased the Risk of Both Hyperglycemia and Dyslipidemia in Adults: A Health Examination Center Based Cross-Sectional Study. J. Trace Elem. Med. Biol. 2020, 59, 126470. [Google Scholar] [CrossRef] [PubMed]
- Kornhauser, C.; Garcia-Ramirez, J.R.; Wrobel, K.; Pérez-Luque, E.-L.; Garay-Sevilla, M.-E.; Wrobel, K. Serum Selenium and Glutathione Peroxidase Concentrations in Type 2 Diabetes Mellitus Patients. Prim. Care Diabetes 2008, 2, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rijntjes, E.; Wu, Q.; Lv, H.; Gao, C.; Shi, B.; Schomburg, L. Selenium Deficiency Is Linearly Associated with Hypoglycemia in Healthy Adults. Redox Biol. 2020, 37, 101709. [Google Scholar] [CrossRef] [PubMed]
- Ferreira de Almeida, T.L.; Petarli, G.B.; Cattafesta, M.; Zandonade, E.; Bezerra, O.M.D.P.A.; Tristão, K.G.; Salaroli, L.B. Association of Selenium Intake and Development of Depression in Brazilian Farmers. Front. Nutr. 2021, 8, 671377. [Google Scholar] [CrossRef]
- Sher, L. Role of Selenium Depletion in the Effects of Dialysis on Mood and Behavior. Med. Hypotheses 2002, 59, 89–91. [Google Scholar] [CrossRef]
- Portnoy, J.; Wang, J.; Wang, F.; Um, P.; Irving, S.Y.; Hackl, L.; Liu, J. Lower Serum Selenium Concentration Associated with Anxiety in Children. J. Pediatr. Nurs. 2022, 63, e121–e126. [Google Scholar] [CrossRef]
- Shabbir, M.A.; Mehak, F.; Khan, Z.M.; Ahmed, W.; Haq, S.M.A.U.; Khan, M.R.; Bhat, Z.F.; Aadil, R.M. Delving the Role of Nutritional Psychiatry to Mitigate the COVID-19 Pandemic Induced Stress, Anxiety and Depression. Trends Food Sci. Technol. 2022, 120, 25–35. [Google Scholar] [CrossRef]
- Rajkumar, R.P. Selenium and Its Compounds in the Treatment of Anxiety and Related Disorders: A Scoping Review of Translational and Clinical Research. Future Pharmacol. 2022, 2, 608–624. [Google Scholar] [CrossRef]
- Torres, D.J.; Alfulaij, N.; Berry, M.J. Stress and the Brain: An Emerging Role for Selenium. Front. Neurosci. 2021, 15, 666601. [Google Scholar] [CrossRef]
- Kim, J.; Wessling-Resnick, M. Iron and Mechanisms of Emotional Behavior. J. Nutr. Biochem. 2014, 25, 1101–1107. [Google Scholar] [CrossRef]
- Dziembowska, I.; Kwapisz, J.; Izdebski, P.; Żekanowska, E. Mild Iron Deficiency May Affect Female Endurance and Behavior. Physiol. Behav. 2019, 205, 44–50. [Google Scholar] [CrossRef]
- Korkmaz, S.; Yıldız, S.; Korucu, T.; Gundogan, B.; Sunbul, Z.E.; Korkmaz, H.; Atmaca, M. Frequency of Anemia in Chronic Psychiatry Patients. Neuropsychiatr. Dis. Treat. 2015, 11, 2737–2741. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Neves, P.; Gozzelino, R. Multilevel Impacts of Iron in the Brain: The Cross Talk between Neurophysiological Mechanisms, Cognition, and Social Behavior. Pharmaceuticals 2019, 12, 126. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hahn, P.; Iacovelli, J.; Wong, R.; King, C.; Bhisitkul, R.; Massaro-Giordano, M.; Dunaief, J.L. Iron Homeostasis and Toxicity in Retinal Degeneration. Prog. Retin. Eye Res. 2007, 26, 649–673. [Google Scholar] [CrossRef]
- Ciudin, A.; Hernández, C.; Simó, R. Iron Overload in Diabetic Retinopathy: A Cause or a Consequence of Impaired Mechanisms? J. Diabetes Res. 2010, 2010, e714108. [Google Scholar] [CrossRef] [PubMed]
- Puig, S.; Ramos-Alonso, L.; Romero, A.M.; Martínez-Pastor, M.T. The Elemental Role of Iron in DNA Synthesis and Repair. Metallomics 2017, 9, 1483–1500. [Google Scholar] [CrossRef]
- Tomic, D.; Salim, A.; Morton, J.I.; Magliano, D.J.; Shaw, J.E. Reasons for Hospitalisation in Australians with Type 2 Diabetes Compared to the General Population, 2010–2017. Diabetes Res. Clin. Pract. 2022, 194, 110143. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.E.; Bhawnani, N.; Ethirajulu, A.; Alkasabera, A.; Onyali, C.B.; Anim-Koranteng, C.; Mostafa, J.A.; Shah, H.E.; Bhawnani, N.; Ethirajulu, A.; et al. Iron Deficiency-Induced Changes in the Hippocampus, Corpus Striatum, and Monoamines Levels That Lead to Anxiety, Depression, Sleep Disorders, and Psychotic Disorders. Cureus 2021, 13, e18138. [Google Scholar] [CrossRef]
- Chen, M.-H.; Su, T.-P.; Chen, Y.-S.; Hsu, J.-W.; Huang, K.-L.; Chang, W.-H.; Chen, T.-J.; Bai, Y.-M. Association between Psychiatric Disorders and Iron Deficiency Anemia among Children and Adolescents: A Nationwide Population-Based Study. BMC Psychiatry 2013, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.L.; Fothergill, A.; Hackl, L.S.; Haas, J.D.; Mehta, S. Iron Biofortification Interventions to Improve Iron Status and Functional Outcomes. Proc. Nutr. Soc. 2019, 78, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.V.; Fonseca, V.A. Iron and Diabetes Revisited. Diabetes Care 2011, 34, 1676–1677. [Google Scholar] [CrossRef]
- Masini, A.; Ceccarelli, D.; Giovannini, F.; Montosi, G.; Garuti, C.; Pietrangelo, A. Iron-Induced Oxidant Stress Leads to Irreversible Mitochondrial Dysfunctions and Fibrosis in the Liver of Chronic Iron-Dosed Gerbils. The Effect of Silybin. J. Bioenerg. Biomembr. 2000, 32, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Excessive Iron Levels Could Cause Brain Degeneration—Life Extension. Available online: https://www.lifeextension.com/magazine/2012/3/excess-iron-brain-degeneration (accessed on 16 April 2023).
- Fernández-Real, J.M.; Manco, M. Effects of Iron Overload on Chronic Metabolic Diseases. Lancet Diabetes Endocrinol. 2014, 2, 513–526. [Google Scholar] [CrossRef]
- Prá, D.; Franke, S.I.R.; Henriques, J.A.P.; Fenech, M. Iron and Genome Stability: An Update. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2012, 733, 92–99. [Google Scholar] [CrossRef]
- Wilson, J.G.; Maher, J.F.; Lindquist, J.H.; Grambow, S.C.; Crook, E.D. Potential Role of Increased Iron Stores in Diabetes. Am. J. Med. Sci. 2003, 325, 332–339. [Google Scholar] [CrossRef]
- Fernández-Real, J.M.; Peñarroja, G.; Castro, A.; García-Bragado, F.; López-Bermejo, A.; Ricart, W. Blood Letting in High-Ferritin Type 2 Diabetes: Effects on Vascular Reactivity. Diabetes Care 2002, 25, 2249–2255. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basiri, R.; Seidu, B.; Cheskin, L.J. Key Nutrients for Optimal Blood Glucose Control and Mental Health in Individuals with Diabetes: A Review of the Evidence. Nutrients 2023, 15, 3929. https://doi.org/10.3390/nu15183929
Basiri R, Seidu B, Cheskin LJ. Key Nutrients for Optimal Blood Glucose Control and Mental Health in Individuals with Diabetes: A Review of the Evidence. Nutrients. 2023; 15(18):3929. https://doi.org/10.3390/nu15183929
Chicago/Turabian StyleBasiri, Raedeh, Blessing Seidu, and Lawrence J. Cheskin. 2023. "Key Nutrients for Optimal Blood Glucose Control and Mental Health in Individuals with Diabetes: A Review of the Evidence" Nutrients 15, no. 18: 3929. https://doi.org/10.3390/nu15183929
APA StyleBasiri, R., Seidu, B., & Cheskin, L. J. (2023). Key Nutrients for Optimal Blood Glucose Control and Mental Health in Individuals with Diabetes: A Review of the Evidence. Nutrients, 15(18), 3929. https://doi.org/10.3390/nu15183929