Bean Leaves Ameliorate Lipotoxicity in Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Design
- (1)
- S: Rodent Laboratory Chow 5001® (RLC), 3.4 kcal/g;
- (2)
- SBL: mixture of 90% RLC+ 10% dry bean leaves, 3.6 kcal/g;
- (3)
- H: high fat (lard) and high fructose diet, 4.4 kcal/g;
- (4)
- HBL: H was supplemented with 10% of dry bean leaves, 4.6 kcal/g [7].
2.2. Experimental Design
2.3. Body Measurements and Body Composition
2.4. Analysis of Biochemical Parameters
2.5. Macroscopic and Microscopic Liver Examination
2.6. Liver Triglyceride and Antioxidant Enzyme Determination
2.7. Expression Analysis
2.8. Statistical Analysis
3. Results
3.1. Effect of Bean Leaves on Body Fat Accumulation
3.2. Effect of Bean Leaves on Insulin Resistance, Impaired Glucose Tolerance, and Dyslipidemia
3.3. Effect of Bean Leaves on the Silent Stage of NAFLD, Steatosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Li, J.; Feng, J.; Ji, J.; Yu, Q.; Li, Y.; Zheng, Y.; Dai, W.; Wu, J.; Guo, C. Crosstalk between PPARs and Gut Microbiota in NAFLD. Biomed. Pharmacother. 2021, 136, 111255. [Google Scholar] [CrossRef] [PubMed]
- Pola, A.; Sadananthan, S.A.; Gopalan, V.; Tan, M.-L.S.; Keong, T.Y.; Zhou, Z.; Ishino, S.; Nakano, Y.; Watanabe, M.; Horiguchi, T.; et al. Investigation of Fat Metabolism during Antiobesity Interventions by Magnetic Resonance Imaging and Spectroscopy. Magn. Reson. Insights 2014, 7, MRI.S19362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.-Y.; Gan, R.-Y.; Shang, A.; Mao, Q.-Q.; Sun, Q.-C.; Wu, D.-T.; Geng, F.; He, X.-Q.; Li, H.-B. Plant-Based Foods and Their Bioactive Compounds on Fatty Liver Disease: Effects, Mechanisms, and Clinical Application. Oxid. Med. Cell. Longev. 2021, 2021, 6621644. [Google Scholar] [CrossRef] [PubMed]
- Jones, A. PHASEOLUS BEAN: Post-Harvest Operations Organisation: Centro Internacional de Agricultura Tropical (CIAT); Montpellier, France. 1999. Available online: https://www.fao.org/documents/card/es/c/f961bcd6-85db-405e-af70-3ed044f1b1d7/ (accessed on 26 November 2022).
- Martínez-Zavala, M.; Mora-Avilés, M.A.; Anaya-Loyola, M.A.; Guzmán-Maldonado, H.; Aguilera-Barreyro, A.; Blanco-Labra, A.; García-Gasca, T. Common Bean Leaves as a Source of Dietary Iron: Functional Test in an Iron-Deficient Rat Model. Plant Foods Hum. Nutr. 2016, 71, 259–264. [Google Scholar] [CrossRef]
- Becerril-Campos, A.A.; Ocampo-Anguiano, P.V.; Mondragón-Jacobo, C.; Escobar-García, K.; Camacho-Barrón, M.; Anaya-Loyola, M.A.; Feregrino-Perez, A.A.; García-Gasca, T.; Ahumada-Solórzano, S.M. Phaseolus vulgaris L. Leaves Increase Short-Chain Fatty Acid (SCFA) Production, Ameliorating Early Metabolic Alterations. Plant Foods Hum. Nutr. 2022, 77, 421–426. [Google Scholar] [CrossRef]
- Ramírez-Venegas, G.; De Ita-Pérez, D.L.; Díaz-Muñoz, M.; Méndez, I.; García-Gasca, T.; Ahumada-Solórzano, M.; Zambrano-Estrada, X.; Vázquez-Martínez, O.; Guzmán-Maldonado, H.; Luna-Moreno, D. Supplementation with Phaseolus Vulgaris Leaves Improves Metabolic Alterations Induced by High-Fat/Fructose Diet in Rats under Time-Restricted Feeding. Plant Foods Hum. Nutr. 2021, 76, 297–303. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, Q.; Chen, Z. The Nrf2 Pathway in Liver Diseases. Front. Cell Dev. Biol. 2022, 10, 826204. [Google Scholar] [CrossRef]
- Li, L.; Fu, J.; Sun, J.; Liu, D.; Chen, C.; Wang, H.; Hou, Y.; Xu, Y.; Pi, J. Is Nrf2-ARE a Potential Target in NAFLD Mitigation? Curr. Opin. Toxicol. 2019, 13, 35–44. [Google Scholar] [CrossRef]
- Cave, M.C.; Clair, H.B.; Hardesty, J.E.; Falkner, K.C.; Feng, W.; Clark, B.J.; Sidey, J.; Shi, H.; Aqel, B.A.; McClain, C.J.; et al. Nuclear Receptors and Nonalcoholic Fatty Liver Disease. Biochim. Biophys. Acta Gene Regul. Mech. 2016, 1859, 1083–1099. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M.Á.; Ortiz, M.; Hernandez-Rodas, M.C.; Valenzuela, A.; Videla, L.A. Molecular Adaptations Underlying the Beneficial Effects of Hydroxytyrosol in the Pathogenic Alterations Induced by a High-Fat Diet in Mouse Liver: PPAR-α and Nrf2 Activation, and NF-ΚB down-Regulation. Food Funct. 2017, 8, 1526–1537. [Google Scholar] [CrossRef]
- National Centre for the Replacement Refinement & Reduction of Animal in Research. Training on the 3Rs Principles. Available online: https://www.nc3rs.org.uk/3rs-resources/training-3rs (accessed on 16 November 2022).
- Novelli, E.L.B.; Diniz, Y.S.; Galhardi, C.M.; Ebaid, G.M.X.; Rodrigues, H.G.; Mani, F.; Fernandes, A.A.H.; Cicogna, A.C.; Novelli Filho, J.L.V.B. Anthropometrical Parameters and Markers of Obesity in Rats. Lab. Anim. 2007, 41, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [Green Version]
- 3D Slicer Image Computing Platform. Available online: https://www.slicer.org/ (accessed on 18 November 2022).
- Lozano, I.; van der Werf, R.; Bietiger, W.; Seyfritz, E.; Peronet, C.; Pinget, M.; Jeandidier, N.; Maillard, E.; Marchioni, E.; Sigrist, S.; et al. High-Fructose and High-Fat Diet-Induced Disorders in Rats: Impact on Diabetes Risk, Hepatic and Vascular Complications. Nutr. Metab. 2016, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Kuate, D.; Kengne, A.P.N.; Biapa, C.P.N.; Azantsa, B.G.K.; Abdul Manan Bin Wan Muda, W. Tetrapleura Tetraptera Spice Attenuates High-Carbohydrate, High-Fat Diet-Induced Obese and Type 2 Diabetic Rats with Metabolic Syndrome Features. Lipids Health Dis. 2015, 14, 50. [Google Scholar] [CrossRef] [Green Version]
- Alnami, A.; Bima, A.; Alamoudi, A.; Eldakhakhny, B.; Sakr, H.; Elsamanoudy, A. Modulation of Dyslipidemia Markers Apo B/Apo A and Triglycerides/HDL-Cholesterol Ratios by Low-Carbohydrate High-Fat Diet in a Rat Model of Metabolic Syndrome. Nutrients 2022, 14, 1903. [Google Scholar] [CrossRef]
- Yeh, M.M.; Brunt, E.M. Pathological Features of Fatty Liver Disease. Gastroenterology 2014, 147, 754–764. [Google Scholar] [CrossRef]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic Steatohepatitis: A Proposal for Grading and Staging the Histological Lesions. Am. J. Gastroenterol. 1999, 94, 2467–2474. [Google Scholar] [CrossRef]
- Eggers, L.F.; Schwudke, D. Liquid Extraction: Folch. In Encyclopedia of Lipidomics; Springer: Dordrecht, The Netherlands, 2016; pp. 1–6. ISBN 978-94-007-7864-1. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G. A Simple Method for the Isolation and Purification of Total Lipides From Animal Tissues—PubMed. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Yagi, K. Simple Assay for the Level of Total Lipid Peroxides in Serum or Plasma. In Free Radical and Antioxidant Protocols; Armstrong, D., Ed.; Humana Press: Totowa, NJ, USA, 1998; pp. 101–106. ISBN 978-1-59259-254-8. [Google Scholar]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Paglia, D.E.; Valentine, W.N. Studies on the Quantitative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [PubMed]
- Chomczynski, P.; Sacchi, N. The Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate–Phenol–Chloroform Extraction: Twenty-Something Years On. Nat. Protoc. 2006, 1, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Nadeau, K.; Abbasi, M.; Lachance, C.; Nguyen, M.; Fenrich, J. The Ultimate QPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends Biotechnol. 2019, 37, 761–774. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zaqout, S.; Becker, L.L.; Kaindl, A.M. Immunofluorescence Staining of Paraffin Sections Step by Step. Front. Neuroanat. 2020, 14, 582218. [Google Scholar] [CrossRef]
- Qin, W.; Luo, M.; Wang, K.; Yang, M.; Sheng, H.; He, G. A Combined Treatment with Erythrocyte Lysis Solution and Sudan Black B Reduces Tissue Autofluorescence in Double-Labeling Immunofluorescence. Microscopy 2018, 67, 345–355. [Google Scholar] [CrossRef]
- Mcdonald, J.H.; Dunn, K.W. Statistical Tests for Measures of Colocalization in Biological Microscopy. J. Microsc. 2013, 252, 295. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Harkness, J.E.; Turner, P.V.; VandeWoude, S.; Wheler, C.L. Harkness and Wagner’s Biology and Medicine of Rabbits and Rodents, 5th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; ISBN 978-0-813-81531-2. [Google Scholar]
- 12—Food and Water Intake. In Techniques in the Behavioral and Neural Sciences; Claassen, V. (Ed.) Elsevier: Amsterdam, The Netherlands, 1994; Volume 12, pp. 267–287. ISBN 0921-0709. [Google Scholar]
- Dilek, Y.; Sezer, H. Insulin Resistance, Obesity and Lipotoxicity. In Obesity and Lipotoxicity; Engin, A.B., Engin, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 277–304. ISBN 978-3-319-48382-5. [Google Scholar]
- Giknis, M.; Clifford, C. Clinical Laboratory Parameters for Crl:WI (Han) Rats; Charles River Laboratories International: Wilmington, MA, USA, 2008; Available online: http://www.criver.com/files/pdfs/rms/wistarhan/rm_rm_r_wistar_han_clin_lab_parameters_08.aspx (accessed on 19 November 2022).
- De Andrade Mesquita, L.; Pavan Antoniolli, L.; Cittolin-Santos, G.F.; Gerchman, F. Distinct Metabolic Profile According to the Shape of the Oral Glucose Tolerance Test Curve Is Related to Whole Glucose Excursion: A Cross-Sectional Study. BMC Endocr. Disord. 2018, 18, 56. [Google Scholar] [CrossRef]
- Pawlak, M.; Lefebvre, P.; Staels, B. Molecular Mechanism of PPARα Action and Its Impact on Lipid Metabolism, Inflammation and Fibrosis in Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2015, 62, 720–733. [Google Scholar] [CrossRef] [Green Version]
- Todisco, S.; Santarsiero, A.; Convertini, P.; De Stefano, G.; Gilio, M.; Iacobazzi, V.; Infantino, V. PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). Biology 2022, 11, 792. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose Translation from Animal to Human Studies Revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases (Report of a Joint WHO and FAO Expert Consulation); WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2003; Volume 916, pp. 1–160. [Google Scholar]
- You, Y.; Han, X.; Guo, J.; Guo, Y.; Yin, M.; Liu, G.; Huang, W.; Zhan, J. Cyanidin-3-Glucoside Attenuates High-Fat and High-Fructose Diet-Induced Obesity by Promoting the Thermogenic Capacity of Brown Adipose Tissue. J. Funct. Foods 2018, 41, 62–71. [Google Scholar] [CrossRef]
- Songtrai, S.; Pratchayasakul, W.; Arunsak, B.; Chunchai, T.; Kongkaew, A.; Chattipakorn, N.; Chattipakorn, S.C.; Kaewsuwan, S. Cyclosorus Terminans Extract Ameliorates Insulin Resistance and Non-Alcoholic Fatty Liver Disease (NAFLD) in High-Fat Diet (HFD)-Induced Obese Rats. Nutrients 2022, 14, 4895. [Google Scholar] [CrossRef]
- Jansson, J.O.; Palsdottir, V.; Hägg, D.A.; Schéle, E.; Dickson, S.L.; Anesten, F.; Bake, T.; Montelius, M.; Bellman, J.; Johansson, M.E.; et al. Body Weight Homeostat That Regulates Fat Mass Independently of Leptin in Rats and Mice. Proc. Natl. Acad. Sci. USA 2017, 115, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.H.; Vasselli, J.R.; Zhang, Y.; Mechanick, J.I.; Korner, J.; Peterli, R. Metabolic vs. Hedonic Obesity: A Conceptual Distinction and Its Clinical Implications. Obes. Rev. 2015, 16, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, G. Insulin and Insulin Resistance. Clin. Biochem. Rev. 2005, 26, 19–39. [Google Scholar]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Galicia-Moreno, M.; Lucano-Landeros, S.; Monroy-Ramirez, H.C.; Silva-Gomez, J.; Gutierrez-Cuevas, J.; Santos, A.; Armendariz-Borunda, J. Roles of Nrf2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants 2020, 9, 980. [Google Scholar] [CrossRef]
- Pant, V.; Gautam, K.; Pradhan, S. Postprandial Blood Glucose Can Be Less than Fasting Blood Glucose and This Is Not a Laboratory Error. JNMA J. Nepal. Med. Assoc. 2019, 57, 67–68. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 508738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, S.; Avagliano, C.; Calignano, A.; Berni Canani, R. The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules 2021, 26, 682. [Google Scholar] [CrossRef] [PubMed]
- Adeli, K.; Xiao, C.; Higgins, V.; Taher, J.; Farr, S.; Lewis, G.F. Diabetic Dyslipidaemia. In Biochemistry of Lipids, Lipoproteins and Membranes; Ridgway, N.D., McLeod, R.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 667–693. ISBN 978-0-12-824048-9. [Google Scholar]
- Ferdowsian, H.R.; Barnard, N.D. Effects of Plant-Based Diets on Plasma Lipids. Am. J. Cardiol. 2009, 104, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.; Borlak, J. Molecular Mechanisms and Therapeutic Targets in Steatosis and Steatohepatitis. Pharmacol. Rev. 2008, 60, 311–357. [Google Scholar] [CrossRef] [Green Version]
- Blüher, M. Adipose Tissue Inflammation: A Cause or Consequence of Obesity-Related Insulin Resistance? Clin. Sci. 2016, 130, 1603–1614. [Google Scholar] [CrossRef]
- Qin, S.; Yin, J.; Huang, K. Free Fatty Acids Increase Intracellular Lipid Accumulation and Oxidative Stress by Modulating PPARα and SREBP-1c in L-02 Cells. Lipids 2016, 51, 797–805. [Google Scholar] [CrossRef]
- Trauner, M.; Arrese, M.; Wagner, M. Fatty Liver and Lipotoxicity. Biochim. Biophys. Acta 2010, 1801, 299–310. [Google Scholar] [CrossRef]
- Yan, T.; Yan, N.; Wang, P.; Xia, Y.; Hao, H.; Wang, G.; Gonzalez, F.J. Herbal Drug Discovery for the Treatment of Nonalcoholic Fatty Liver Disease. Acta Pharm. Sin. B 2020, 10, 3–18. [Google Scholar] [CrossRef]
- Poloczek, J.; Kazura, W.; Chełmecka, E.; Michalczyk, K.; Jochem, J.; Gumprecht, J.; Stygar, D. Duodenojejunal Omega Switch Surgery Reduces Oxidative Stress Induced by Cafeteria Diet in Sprague-Dawley Rats. Nutrients 2022, 14, 4097. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [Green Version]
- Canesin, G.; Feldbrügge, L.; Wei, G.; Janovicova, L.; Janikova, M.; Csizmadia, E.; Ariffin, J.; Hedblom, A.; Herbert, Z.T.; Robson, S.C.; et al. Heme Oxygenase-1 Mitigates Liver Injury and Fibrosis via Modulation of LNX1/Notch1 Pathway in Myeloid Cells. iScience 2022, 25, 104983. [Google Scholar] [CrossRef]
- Funes, S.C.; Rios, M.; Fernández-Fierro, A.; Covián, C.; Bueno, S.M.; Riedel, C.A.; Mackern-Oberti, J.P.; Kalergis, A.M. Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases. Front. Immunol. 2020, 11, 1467. [Google Scholar] [CrossRef]
- Diniz, T.A.; de Lima Junior, E.A.; Teixeira, A.A.; Biondo, L.A.; da Rocha, L.A.F.; Valadão, I.C.; Silveira, L.S.; Cabral-Santos, C.; de Souza, C.O.; Rosa Neto, J.C. Aerobic Training Improves NAFLD Markers and Insulin Resistance through AMPK-PPAR-α Signaling in Obese Mice. Life Sci. 2021, 266, 118868. [Google Scholar] [CrossRef]
- Liu, P.; Dodson, M.; Li, H.; Schmidlin, C.J.; Shakya, A.; Wei, Y.; Garcia, J.G.N.; Chapman, E.; Kiela, P.R.; Zhang, Q.-Y.; et al. Non-Canonical NRF2 Activation Promotes a pro-Diabetic Shift in Hepatic Glucose Metabolism. Mol. Metab. 2021, 51, 101243. [Google Scholar] [CrossRef]
- Dodson, M.; Zhang, D.D. Non-Canonical Activation of NRF2: New Insights and Its Relevance to Disease. Curr. Pathobiol. Rep. 2017, 5, 171–176. [Google Scholar] [CrossRef]
- Vairetti, M.; Di Pasqua, L.G.; Cagna, M.; Richelmi, P.; Ferrigno, A.; Berardo, C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants 2021, 10, 364. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Luo, F. Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. Oxid. Med. Cell. Longev. 2021, 2021, 5542342. [Google Scholar] [CrossRef]
- Irie, M.; Sohda, T.; Anan, A.; Fukunaga, A.; Takata, K.; Tanaka, T.; Yokoyama, K.; Morihara, D.; Takeyama, Y.; Shakado, S.; et al. Reduced Glutathione Suppresses Oxidative Stress in Nonalcoholic Fatty Liver Disease. Euroasian J. Hepatogastroenterol. 2016, 6, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Bian, H.; Wang, L.; Sun, X.; Xu, X.; Yan, H.; Xia, M.; Chang, X.; Lu, Y.; Li, Y.; et al. Berberine Attenuates Nonalcoholic Hepatic Steatosis through the AMPK-SREBP-1c-SCD1 Pathway. Free Radic. Biol. Med. 2019, 141, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Kersten, S.; Stienstra, R. The Role and Regulation of the Peroxisome Proliferator Activated Receptor Alpha in Human Liver. Biochimie 2017, 136, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, F.; Cui, B.; Gao, J.; Yu, Z.; Lu, Z. Inhibition of GCN2 Alleviates Cardiomyopathy in Type 2 Diabetic Mice via Attenuating Lipotoxicity and Oxidative Stress. Antioxidants 2022, 11, 1379. [Google Scholar] [CrossRef] [PubMed]
Diet | Energy (kcal/g) | Protein (g/100 g) | Fat (g/100 g) | Carbohydrate (g/100 g) | Fiber (g/100 g) | Ingredients |
---|---|---|---|---|---|---|
S | 3.4 | 25.3 | 11.4 | 48.2 | 5.3 | RLC 5001® |
SBL | 3.6 | 26.4 | 11.9 | 51.8 | 5.1 | RLC 5001®, bean leaves, calcium caseinate, soy oil |
H | 4.6 | 22.3 | 43.2 | 44.4 | 3.6 | RLC 5001®, lard, fructose, calcium caseinate, wheat bran |
HBL | 4.8 | 22.1 | 43.4 | 49.6 | 3.7 | RLC 5001®, lard, fructose, calcium caseinate, bean leaves |
Gene (Bank Number) | Primer Sequence 5′ to 3′ |
---|---|
Sod2 (NM_017051.2) | Fwd: TGGACAAACCTGAGGCCTAA Rev: GACCCAAAGTCACGCTTGATA |
Ywhaz (NM_013011.4) | Fwd: TTGAGCAGAAGACGGAAGGT Rev: GAAGCATTGGGGATCAAGAA |
Tnfa (AY427675.1) | Fwd: TGGGCTGTACCTTATCTACTCC Rev: GGCTGACTTTCTCCTGGTATG |
Nfe2l2 (BC061724.1) | Fwd: CAGAAGGAACAGGAGAAGGC Rev: TCAACGTGGCTGGGAATATC |
Ppara (NM_013196.2) | Fwd: GGGTCATACTCGCAGGAAAG Rev: ACCTGGTCATTCAAGTCCAAG |
Hmox1 (NM_012580.2) | Fwd: ACAGAGGAACACAAAGACCAG Rev: GAGAAGGCTACATGAGACAGAG |
S | SBL | H | HBL | |
---|---|---|---|---|
Total body weight gain (g) | 293.31 ± 10.67 | 275.39 ± 12.7 | 344.61 ± 15.3 * | 315.83 ± 19.11 |
Body length (cm) | 24.74 ± 0.85 | 23.68 ± 0.61 | 24.6 ± 0.27 | 23.38 ± 0.44 # |
Abdominal circumference (cm) | 21.67 ± 0.47 | 20.93 ± 0.57 | 22.98 ± 0.54 | 21.36 ± 0.65 |
Thoracic circumference (cm) | 19.39 ± 0.26 | 18.59 ± 0.46 | 20.00 ± 0.48 | 18.61 ± 0.39 # |
AC/TC ratio | 1.12 ± 0.03 | 1.13 ± 0.05 | 1.16 ± 0.04 | 1.15 ± 0.01 |
BMI (g/cm2) | 0.80 ± 0.04 | 0.86 ± 0.04 | 0.90 ± 0.02 | 0.89 ± 0.04 |
S | SBL | H | HBL | |
---|---|---|---|---|
Food intake (g/day) | 38.0 ± 2.0 | 37.9 ± 1.7 | 38.8 ± 1.4 | 38.7 ± 2.2 |
Total food intake (g) | 494.7 ± 26.1 | 492.3 ± 22.1 | 503.9 ± 18.7 | 503.0 ± 28.0 |
Energy intake (kcal/day) | 129.4 ± 6.8 | 136.3 ± 6.1 | 170.6 ± 6.3 * | 178.0 ± 9.9 * |
Total energy intake (kcal) | 1681.9 ± 88.9 | 1772.2 ± 79.4 | 2191.6 ± 77.1 * | 2313.8 ± 129.0 * |
Water intake (mL/day) | 55.7 ± 2.8 | 55.2 ± 3.2 | 44.8 ± 4.2 | 41.0 ± 2.6 * |
Total water intake (mL) | 723.7 ± 36.7 | 717.8 ± 41.5 | 583.5 ± 55.3 | 533.4 ± 34.8 * |
S | SBL | H | HBL | |
---|---|---|---|---|
Glucose (mg/dL) | 130.67 ± 6.69 | 126.38 ± 5.60 | 129.91 ± 9.17 | 125.02 ± 9.10 |
Insulin (pM) | 93.97 ± 9.62 | 112.51 ± 10.98 | 227.19 ± 38.03 * | 177.47 ± 20.74 * |
HOMA-IR | 4.29 ± 0.47 | 4.81 ± 0.40 | 9.29 ± 1.63 * | 7.71 ± 1.07 |
HOMA-β | 32.1 ± 4.0 | 47.0 ± 6.9 | 115.1 ± 26.4 * | 81.7 ± 13.4 |
S | SBL | H | HBL | |
---|---|---|---|---|
Total cholesterol (mg/dL) | 69.95 ± 2.93 | 64.87 ± 2.31 | 87.88 ± 2.82 * | 78.64 ± 2.99 # |
Triglycerides (mg/dL) | 104.61 ± 6.55 | 99.97 ± 9.17 | 165.00 ± 12.03 * | 147.99 ± 9.59 * |
VLDL-c (mg/dL) | 20.92 ± 1.31 | 19.99 ± 1.83 | 33.00 ± 2.41 * | 29.60 ± 1.92 * |
LDL-c (mg/dL) | 13.33 ± 2.05 | 14.25 ± 1.72 | 12.80 ± 1.18 | 9.90 ± 1.00 |
OxLDL (ng/mL) | 28.48 ± 1.71 | 30.43 ± 1.42 | 32.03 ± 1.74 | 32.83 ± 1.40 |
HDL-c (mg/dl) | 46.31 ± 1.93 | 43.82 ± 1.00 | 54.43 ± 1.94 * | 49.46 ± 2.03 |
Triglycerides/ HDL-c ratio | 4.17 ± 0.70 | 3.24 ± 0.57 | 5.26 ± 1.06 | 5.04 ± 0.92 |
Steatosis Grade | |||
---|---|---|---|
Group | 0 (%) | I (%) | Findings |
S | 100 | 0 | Adequate histoarchitecture without damage |
SBL | 100 | 0 | Adequate histoarchitecture without damage |
H | 0 | 100 * | Macrovesicular steatosis < 33%, centrilobular |
HBL | 100 | 0 | Microvesicular steatosis < 5%, centrilobular |
S | SBL | H | HBL | |
---|---|---|---|---|
AST (U/L) | 189.62 ± 11.89 | 180.57 ± 10.73 | 179.25 ± 12.50 | 185.36 ± 13.14 |
ALT (U/L) | 87.62 ± 5.88 | 83.00 ± 4.59 | 73.06 ± 5.38 | 80.36 ± 3.78 |
AST/ALT ratio | 4.34 ± 0.91 | 4.09 ± 0.82 | 5.79 ± 1.58 | 4.36 ± 0.91 |
Total protein (g/dL) | 6.34 ± 0.08 | 6.29 ± 0.10 | 6.52 ± 0.08 | 6.59 ± 0.15 |
Albumin (g/dL) | 4.23 ± 0.23 | 4.16 ± 0.24 | 4.28 ± 0.22 | 4.25 ± 0.24 |
Globulin (g/dL) | 2.11 ± 0.26 | 2.13 ± 0.19 | 2.24 ± 0.20 | 2.34 ± 0.20 |
A/G ratio | 9.09 ± 4.09 | 5.52 ± 1.61 | 6.19 ± 1.99 | 5.07 ± 1.53 |
CRP (mg/mL) | 0.32 ± 0.05 | 0.30 ± 0.04 | 0.35 ± 0.02 | 0.34 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerril-Campos, A.A.; Ramos-Gómez, M.; De Los Ríos-Arellano, E.A.; Ocampo-Anguiano, P.V.; González-Gallardo, A.; Macotela, Y.; García-Gasca, T.; Ahumada-Solórzano, S.M. Bean Leaves Ameliorate Lipotoxicity in Fatty Liver Disease. Nutrients 2023, 15, 2928. https://doi.org/10.3390/nu15132928
Becerril-Campos AA, Ramos-Gómez M, De Los Ríos-Arellano EA, Ocampo-Anguiano PV, González-Gallardo A, Macotela Y, García-Gasca T, Ahumada-Solórzano SM. Bean Leaves Ameliorate Lipotoxicity in Fatty Liver Disease. Nutrients. 2023; 15(13):2928. https://doi.org/10.3390/nu15132928
Chicago/Turabian StyleBecerril-Campos, Adriana Araceli, Minerva Ramos-Gómez, Ericka Alejandra De Los Ríos-Arellano, Perla Viridiana Ocampo-Anguiano, Adriana González-Gallardo, Yazmín Macotela, Teresa García-Gasca, and Santiaga Marisela Ahumada-Solórzano. 2023. "Bean Leaves Ameliorate Lipotoxicity in Fatty Liver Disease" Nutrients 15, no. 13: 2928. https://doi.org/10.3390/nu15132928
APA StyleBecerril-Campos, A. A., Ramos-Gómez, M., De Los Ríos-Arellano, E. A., Ocampo-Anguiano, P. V., González-Gallardo, A., Macotela, Y., García-Gasca, T., & Ahumada-Solórzano, S. M. (2023). Bean Leaves Ameliorate Lipotoxicity in Fatty Liver Disease. Nutrients, 15(13), 2928. https://doi.org/10.3390/nu15132928