Therapeutic Potential of Bioactive Compounds from Brugmansia suaveolens Bercht. & J. Presl
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Medicinal Plants and Their Bioactive Compounds
3.2. Brugmansia Suaveolens Bercht. & J. Presl
3.3. Tropane Alkaloids
3.4. Therapeutic Applications of Tropane Alkaloids from Brugmansia spp.
3.4.1. Anti-Inflammatory Activity
3.4.2. Cytotoxic Activity
3.4.3. Antispasmodic Activity
3.4.4. Antibacterial Activity
3.4.5. Anti-Asthmatic Activity
3.4.6. Antinociceptive Effects
3.4.7. Antiprotozoal Activity
3.5. Toxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elisabetsky, E. From indigenous disease concepts to laboratory working hypothesis: The case of “Nerve Tonics” from the Brazilian Amazon. Intern. Found. Sci. Prov. Rep. Series 1987, 19, S11438. [Google Scholar]
- Singh, M.; Govindarajan, R.; Nath, V.; Rawat, A.K.; Mehrotra, S. Antimicrobial, wound healing and antioxidant activity of Plagiochasma ppendiculatum Lehm. et Lind. J. Ethnopharmacol. 2006, 107, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Tanksley, S.D. Chromosomal evolution in the plant Family Solanaceae. BMC Genom. 2010, 11, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa, S.P.; Schuenck-Rodrigues, R.A.; Da Cardoso, V.S.; Valverde, S.S.; Vermelho, A.B.; Ricci-Júnior, E. Antimicrobial activity of endophytic fungi isolated from Brugmansia suaveolens Bercht. & J. Presl. Res. Soc. Dev. 2021, 10, e113101421646. [Google Scholar] [CrossRef]
- Saroya, A.S.; Singh, J. Psychoactive Medicinal Plants and Fungal Neurotoxins; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Marín-Saez, J.; Romero-Gonzalez, R.; Frenich, A.G. Effect of tea making and boiling processes on the degradation of tropane alkaloids in tea and pasta samples contaminated with Solanaceae seeds and coca leaf. Food Chem. 2019, 287, 265–272. [Google Scholar] [CrossRef]
- Anthony, S.J.; Zuchowski, W.; Setzer, W.N. Composition of the floral essential oil of Brugmansia suaveolens. J. Chem. Inf. Model. 2009, 3, 76. [Google Scholar] [CrossRef]
- Da Costa, S.P.; Schuenck-Rodrigues, R.A.; Cardoso, V.S.; Valverde, S.S.; Vermelho, A.B.; Ricci-Júnior, E. Phytochemical analysis of Brugmansia suaveolens Bercht. & J. Presl and its therapeutic potential for topical use. Nat. Prod. Res. 2022, 1–7. [Google Scholar] [CrossRef]
- Carlini, E.A.; Lucas, O.M. Plant and fungal hallucinogens as toxic and therapeutic agents. In Plant Toxins, Toxinology; Gopalakrishnakone, P., Carlini, C.R., Ligabue-Braun, R., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands, 2015; pp. 1–44. [Google Scholar] [CrossRef]
- Júnior, W.S.F.; Cruz, M.P.; Albuquerque, U.P.; de Vieira, F.J. TT-son eficaces las sustancias alucinogenas en la curacion de enfermedades? [Revision]. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2010, 9, 292–301. [Google Scholar]
- Goldfarb, J.; Pesin, N.; Margolin, E. Gardening and dilated pupils: An interesting case of anisocoria from Brugmansia versicolor. Can. J. Ophthalmol. 2019, 54, e59–e61. [Google Scholar] [CrossRef] [Green Version]
- Geller, F.; Murillo, R.; Steinhauser, L.; Heinzmann, B.; Albert, K.; Merfort, I.; Laufer, S. Four new flavonol glycosides from the leaves of Brugmansia suaveolens. Molecules 2014, 19, 6727–6736. [Google Scholar] [CrossRef] [Green Version]
- Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M.; Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 2008, 359, 2619–2620. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, S.J. Synthesis of Exotic Soaps in the Chemistry Laboratory Chem. Eng. News 1996, 74, 35. [Google Scholar] [CrossRef]
- Reigosa, M.; Pedrol, N. Allelopa: From Molecules to Ecosystems; Science Publishers: Plymouth, UK, 2002; p. 316. [Google Scholar]
- Masurekar, P.S. Em Biotechnology of Filamentous Fungi: Technology and Products; Finkelstein, D.B., Ball, C., Eds.; Butterworth-Heinemann: Boston, MA, USA, 1992; p. 241. [Google Scholar]
- Miller, J.D.; Trenholm, H.L. (Eds.) Mycotoxins in Grain: Compounds Other Than Aflatoxin; Eagan Press: Michigan, MI, USA, 1994; p. 552. [Google Scholar]
- Seigler, D.S. Plant Secondary Metabolism; Chapman and Hall (Kluwer Academic Publishers): Boston, MA, USA, 1998; p. 711. [Google Scholar]
- Tuteja, N.; Sopory, S.K. Chemical signaling under abiotic stress environment in plants. Plant Signal. Behav. 2008, 3, 525–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Zhou, G.; Shimizu, H. Plant responses to drought and rewatering. Plant Signal. Behav. 2010, 5, 649–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szakiel, A.; Paczkowski, C.; Henry, M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochem. Rev. 2011, 10, 471–491. [Google Scholar] [CrossRef]
- Venugopal, R.; Liu, R.H. Phytochemicals in diets for breast cancer prevention: The importance of resveratrol and ursolic acid. Food Sci. Hum. Wellness 2012, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011, 19, 64–73. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [Green Version]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109 (Suppl. S1), 69–75. [Google Scholar]
- Klayman, D.L.; Lin, A.J.; Acton, N.; Scovill, J.P.; Hoch, J.M.; Milhous, W.K.; Theoharides, A.D.; Dobek, A.S. Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States. J. Nat. Prod. 1984, 47, 715–717. [Google Scholar] [CrossRef]
- Diallo, M.A.; Yade, M.S.; Ndiaye, Y.D.; Diallo, I.; Diongue, K.; Sy, S.A.; Sy, M.; Seck, M.C.; Ndiaye, M.; Dieye, B.; et al. Efficacy and safety of artemisinin-based combination therapy and the implications of Pfkelch13 and Pfcoronin molecular markers in treatment failure in Senegal. Sci. Rep. 2020, 10, 8907. [Google Scholar] [CrossRef] [PubMed]
- Adekenov, S.M.; Muchametzhanov, M.N.; Kagarlitskii, A.D.; Kuprianov, A.N. Arglabin—A new sesquiterpene lactone from Artemisia glabella. Chem. Nat. Compd. 1982, 18, 655–656. [Google Scholar] [CrossRef]
- He, W.; Lai, R.; Lin, Q.; Huang, Y.; Wang, L. Arglabin is a plant sesquiterpene lactone that exerts potent anticancer effects on human oral squamous cancer cells via mitochondrial apoptosis and downregulation of the mTOR/PI3K/Akt signaling pathway to inhibit tumor growth in vivo. J. Buon 2018, 23, 1679–1685. [Google Scholar] [PubMed]
- Toh, C.; Lee, T.; Kiang, A. The pharmacological actions of capsaicin and analogues. Br. J. Pharmacol. Chemother. 1955, 10, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Ausín-Crespo, M.D.; Martín-de Castro, E.; Roldán-Cuartero, J.; de la Beldad-Diez, M.L.; Salcedo-Gámez, M.Á.; Tong, H. Capsaicin 8% Dermal Patch for Neuropathic Pain in a Pain Unit. Pain Manag. Nurs. 2022, 23, 452–457. [Google Scholar] [CrossRef]
- Dasgeb, B.; Kornreich, D.; McGuinn, K.; Okon, L.; Brownell, I.; Sackett, D.L. Colchicine: An ancient drug with novel applications. Br. J. Dermatol. 2018, 178, 350–356. [Google Scholar] [CrossRef]
- Wang, Z.; Zu, X.; Xiong, S.; Mao, R.; Qiu, Y.; Chen, B.; Zeng, Z.; Chen, M.; He, Y. The Role of Colchicine in Different Clinical Phenotypes of Behcet Disease. Clin. Ther. 2023, 45, 162–176. [Google Scholar] [CrossRef]
- Vree, T.B.; Breimer, D.D.; Van Ginneken, C.A.M.; Van Rossum, J.M. Identification in hashish of tetrahydrocannabinol, cannabidiol and cannabinol analogues with a methyl side-chain. J. Pharm. Pharmacol. 1972, 24, 7–12. [Google Scholar] [CrossRef]
- Mitchell, V.A.; Harley, J.; Casey, S.L.; Vaughan, A.C.; Winters, B.L.; Vaughan, C.W. Oral efficacy of Δ(9)-tetrahydrocannabinol and cannabidiol in a mouse neuropathic pain model. Neuropharmacology 2021, 189, 108529. [Google Scholar] [CrossRef]
- Tsakadze, D.; Abdusamatov, A.; Yunusov, S.Y. Alkaloids of Galanthus caucasicus. Chem. Nat. Compd. 1969, 5, 281–282. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.U. Pharmacological aspects of galantamine for the treatment of Alzheimer’s disease. EXCLI J. 2017, 16, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, J.; Evanics, F.; Berta, L.; Bartock, T. Diterpenoids from Euphorbia peplus. Planta Med. 2000, 66, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-C.; Wong, T.-W.; Lee, C.-H.; Hong, C.-H.; Chang, C.-H.; Lai, F.-J.; Lin, S.-H.; Chi, C.-C.; Lin, T.-K.; Yen, H.; et al. Efficacy and safety of topical SR-t100 gel in treating actinic keratosis in taiwan: A phase III randomized double-blind vehicle-controlled parallel trial. J. Dermatol. Sci. 2018, 90, 295–302. [Google Scholar] [CrossRef]
- Luo, J.; Chuang, T.; Cheung, J.; Quan, J.; Tsai, J.; Sullivan, C.; Hector, R.F.; Reed, M.J.; Meszaros, K.; King, S.R.; et al. Masoprocol (nordihydroguaiaretic acid): A new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata). Eur. J. Pharmacol. 1998, 346, 77–79. [Google Scholar] [CrossRef]
- Pereira, J.; Miguel Castro, M.; Santos, F.; Rita Jesus, A.; Paiva, A.; Oliveira, F.; Duarte, A.R.C. Selective terpene based therapeutic deep eutectic systems against colorectal cancer. Eur. J. Pharm. Biopharm. 2022, 175, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Powell, R.G.; Rogovin, S.P.; Smith, C.R., Jr. Isolation of antitumor alkaloids from Cephalotaxus harringtonia. Ind. Eng. Chem. Prod. Res. Dev. 1974, 13, 129–132. [Google Scholar] [CrossRef]
- Gandhi, V.; Plunkett, W.; Cortes, J.E. Omacetaxine: A protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin. Cancer Res. 2014, 20, 1735–1740. [Google Scholar] [CrossRef] [Green Version]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; Mcphail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; et al. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. Oxidative Med. Cell. Longev. 2021, 2021, 3687700. [Google Scholar] [CrossRef]
- Hsu, P.; Tien, H. Studies on the components of Formosan Solanum species. Part I Alkaloids of Solanum incanum. Tai-wan Yao Hsueh. Tsa. Chih. 1974, 26, 102338t. [Google Scholar] [CrossRef]
- Liljegren, D. Glucosylation of solasodine by extracts from Solanum laciniatum. Phytochemistry 1971, 10, 3061–3064. [Google Scholar] [CrossRef]
- Burger, T.; Mokoka, T.; Fouché, G.; Steenkamp, P.; Steenkamp, V.; Cordier, W. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition. BMC Complement. Altern. Med. 2018, 18, 137. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, W.L.R.; Nascimento, M.S.D.; Pinto, L.D.N.; Maia, F.L.C.; Sousa, A.J.A.; Júnior, J.O.C.S.; Melo, M.; De Oliveir, D.R. Selecting Medicinal Plants for Development of Phytomedicine and Use in Primary Health Care, Bioactive Compounds in Phytomedicine. In Rasooli; Iraj, Ed.; InTech: London, UK, 2010. [Google Scholar]
- Henrich, C.J.; Beutler, J.A. Matching the power of high throughput screening to the chemical diversity of natural products. Nat. Prod. Rep. 2013, 30, 1284–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, M. Ethnopharmacology in the 21st century—Grand challenges. Front. Pharmacol. 2010, 1, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonti, M. The future is written: Impact of scripts on the cognition, selection, knowledge and transmission of medicinal plant use and its implications for ethnobotany and ethnopharmacology. J. Ethnopharmacol. 2011, 134, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Schultes, R.E.; Hofmann, A. Plantas de los Dioses: San Pedro de los Pinos; Solar Servicios Editoriales: Ciudad de México, México, 2000; p. 208. [Google Scholar]
- Martínez-Flórez, S.; González-Gallego, J.; Culabres, J.M.; Tuñón, M.J. Flavonoids: Properties and anti-oxidizing action. Nutr. Hosp. 2002, 17, 271–278. [Google Scholar]
- Alagille, D.; Baldwin, R.M.; Roth, B.L.; Wroblewski, J.T.; Grajkowska, E.; Tamagnan, G.D. Functionalization at position 3 of the phenyl ring of the potent mGluR5noncompetitive antagonists MPEP. Bioorganic Med. Chem. Lett. 2005, 15, 945–949. [Google Scholar] [CrossRef]
- Bruce, N.C. Alkaloids. In Biotechnology: Biotransformations I, 2nd ed.; Rehm, H.J., Reed, G., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; Volume 8a. [Google Scholar]
- Christen, P. Tropane alkaloids: Old drugs used in modern medicine. In Studies in Natural Products Chemistry, Bioactive Natural Products, Part C; Rahman, A., Ed.; Elsevier Science and Technology: Amsterdam, The Netherlands, 2000; Volume 22, pp. 717–749. [Google Scholar] [CrossRef]
- Gyermek, L. Tropane alkaloids. In Pharmacology of Antimuscarinic Agents; Gyermek, L., Ed.; CRC Press: Boca Raton, FL, USA, 1997; pp. 47–160. [Google Scholar]
- Lounasmaa, M.; Tamminen, T. The tropane alkaloids. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, NY, USA, 1993; Volume 44, pp. 1–114. [Google Scholar] [CrossRef]
- Geller, C.F. Isolation, Structure Elucidation and Biological Investigation of Active Compounds in Cordia Americana and Brugmansia Suaveolens; University of Tübingen: Tübingen, Germany, 2010. [Google Scholar]
- Nandakumar, A.; Vaganan, M.; Sundararaju, P.; Udayakumar, R. Phytochemical analysis and nematicidal activity of ethanolic leaf extracts of Datura metel, Datura innoxia and Brugmansia suaveolens against Meloidogyne incognita. Asian J. Biol. 2017, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Cheng, X.; Wang, C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. J. Ethnopharmacol. 2017, 203, 127–162. [Google Scholar] [CrossRef]
- Doncheva, T.; Berkov, S.; Philipov, S. Comparative study of the alkaloids in tribe Datureae and their chemosystematic significance. Biochem. Systemat. Ecol. 2006, 34, 478–488. [Google Scholar] [CrossRef]
- Mattioli, L.; Bracci, A.; Titomanlio, F.; Perfumi, M.; De Feo, V. Effects of Brugmansia arborea extract and its secondary metabolites on morphine tolerance and dependence in mice. Evid.-Based Complement. Altern. Med. 2012, 2012, 741925. [Google Scholar] [CrossRef] [Green Version]
- Capasso, A.; Feo, V.; De Simone, F.; De Sorrentino, L.; Farmacia, F.; Emanuele, P.V. Activity—Directed Isolation of Spasmolytic (Anti-cholinergic). Int. J. Pharmacogn. 1997, 35, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, U.P.; De Medeiros, P.M.; Casas, A. Evolutionary ethnobiology. Evol. Ethnobiol. 2015, 1, 1–197. [Google Scholar] [CrossRef]
- Evans, W.C.; Lampard, J.F. Alkaloids of Datura suaveolens. Phytochemistry 1972, 11, 3293–3298. [Google Scholar] [CrossRef]
- Roses, O.E.; Lopez, C.M.; Fernandez, J.C.G. Isolation and identification of tropane alkaloids in species of the genus Brugmansia (Solanaceae). Acta Farm. Bonaerense 1987, 6, 167–174. [Google Scholar]
- Fodor, G. Chapter 5 the tropane alkaloids. Alkaloids Chem. Physiol. 1960, 6, 145–177. [Google Scholar] [CrossRef]
- Stashenko, E.E.; Martínez, J.R. Sampling flower scent for chromatographic analysis. J. Separ. Sci. 2008, 31, 2022–2031. [Google Scholar] [CrossRef]
- Kite, G.C.; Leon, C. Volatile compounds emitted from flowers and leaves of Brugmansia × Candida (Solanaceae). Phytochemistry 1995, 40, 1093–1095. [Google Scholar] [CrossRef]
- Kim, H.G.; Ko, J.H.; Oh, H.J.; Kwon, J.H.; Oh, E.J.; Oh, S.M.; Lee, Y.G.; Lee, D.Y.; Baek, N.I. Tyrosinase inhibition activity of monoterpene glucosides from Brugmansia arborea flowers. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Shah, C.; Saoji, A. Alkaloidal estimation of aerial parts of Datura arborea Linn 1. Planta Med. 1966, 14, 465–467. [Google Scholar] [CrossRef]
- Thomas, B. The psychoactive flora of Papua New Guinea. J. Psychoact. Drugs 2003, 35, 285–293. [Google Scholar] [CrossRef]
- Kerchner, A.; Darok, J.; Bacskay, I.; Felinger, A.; Jakab, G.; Farkas, A. Protein and alkaloid patterns of the floral nectar in some solanaceous species. Acta Biol. Hung. 2015, 66, 304–315. [Google Scholar] [CrossRef]
- Bhatt, I.D.; Chang, J.I.; Hiraoka, N. In vitro propagation and storage of Brugmansia versicolor Lagerheim. Plant Biotechnol. 2004, 21, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Zayed, R.; Wink, M. Induction of tropane alkaloid formation in transformed root cultures of Brugmansia suaveolens (Solanaceae). Z. Nat. 2004, 59, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Begum, A.S.; Sahai, M.; Fujimoto, Y.; Asai, K.; Schneider, K.; Nicholson, G.; Suessmuth, R. A new kaempferol diglycoside from Datura suaveolens Humb. & Bonpl. ex. Willd. Nat. Prod. Res. 2006, 20, 1231–1236. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, A.; Saini, R.V.; Kumar, A.; Dhar, K.L.; Mahindroo, N. Immunomodulation-mediated anticancer activity of a novel compound from Brugmansia suaveolens leaves. Bioorg. Med. Chem. 2020, 28, 115552. [Google Scholar] [CrossRef]
- Ribeiro, B.; Lopes, R.; Andrade, P.B.; Seabra, R.M.; Gonçalves, R.F.; Baptista, P.; Quelhas, I.; Valentão, P.C. Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chem. 2008, 110, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armijos, C.; Cota, I.; González, S. Traditional medicine applied by the Saraguro yachakkuna: A preliminary approach to the use of sacred and psychoactive plant species in the southern region of Ecuador. J. Ethnobiol. Ethnomed. 2014, 10, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, B.C. Hallucinogenic plants of the Shuar and related indigenous groups in Amazonian Ecuador and Peru. Brittonia 1992, 44, 483–493. [Google Scholar] [CrossRef]
- Bennett, B.C.; Alarcon, R. Hunting and hallucinogens: The use psychoactive and other plants to improve the hunting ability of dogs. J. Ethnopharmacol. 2015, 171, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Biset, J.; Campos-de-la-Cruz, J.; Epiqui´en-Rivera, M.A.; Canigueral, S. A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). J. Ethnopharmacol. 2009, 122, 333–362. [Google Scholar] [CrossRef] [PubMed]
- De Feo, V. Ethnomedical field study in northern Peruvian Andes with particular reference to divination practices. J. Ethnopharmacol. 2003, 85, 243–256. [Google Scholar] [CrossRef]
- De Feo, V. The ritual use of Brugmansia species in traditional andean medicine in Northern Peru. Econ. Bot. 2004, 58, 221–229. [Google Scholar] [CrossRef]
- Lucinda, N.; Inoue-Nagata, A.K.; Kitajima, E.W.; Nagata, T. Complete genome sequence of Brugmansia suaveolens mottle virus, a potyvirus from an ornamental shrub. Arch. Virol. 2010, 155, 1729–1732. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M.; Hilgert, N.I. Phytotherapy of polish migrants in Misiones, Argentina: Legacy and acquired plant species. J. Ethnopharmacol. 2014, 153, 810–830. [Google Scholar] [CrossRef]
- DeFilipps, R.A.; Krupnick, G.A. The medicinal plants of Myanmar. PhytoKeys 2018, 102, 1–341. [Google Scholar] [CrossRef] [Green Version]
- Suroowan, S.; Mahomoodally, M.F. A comparative ethnopharmacological analysis of traditional medicine used against respiratory tract diseases in Mauritius. J. Ethnopharmacol. 2016, 177, 61–80. [Google Scholar] [CrossRef]
- Balangcod, T.D.; Balangcod, A.K.D. Ethnomedical knowledge of plants and healthcare practices among the Kalanguya tribe in Tinoc, Ifugao, Luzon, Philippines. Indian J. Tradit. Knowl. 2011, 10, 227–238. [Google Scholar]
- Rohman, F.; Juma, Y.; Utomo, D.H.; Lestari, S.R.; Arifah, S.N.; Putra, W.E. Plants diversity as a medicinal plants by the tengger tribe, bromo tengger semeru national park, east java, Indonesia. EurAsian J. Biosci. 2019, 13, 2293–2298. [Google Scholar]
- Batoro, J.; Siswanto, D. Ethnomedicinal survey of plants used by local society in Poncokusumo district, Malang, East Java Province, Indonesia. Asian J. Med. Biol. Res. 2017, 3, 158–167. [Google Scholar] [CrossRef]
- Nuraeni, H.; Rustaman, N.Y. Traditional knowledge of medicinal plants for health of women in Cibodas Village Lembang Subdistrict West Bandung Regency and their potency to development of biodiversity education. J. Phys. Conf. Ser. 2019, 1157, 022115. [Google Scholar] [CrossRef]
- Oktavia, A.I.; Indriani, S.; Batoro, J. Ethnobotanical study of toxic plants in ngadiwono village, tosari district, pasuruan regency, east java. J. Pembang. 2017, 8, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Chetri, B.K.; Wangdi, P.; Penjor, T. Ethnomedicinal practices in kilikhar, mongar. Asian Plant Res. J. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Ijaz, F.; Iqbal, Z.; Rahman, I.U.; Alam, J.; Khan, S.M.; Shah, G.M.; Khan, K.; Afzal, A. Investigation of traditional medicinal floral knowledge of Sarban Hills, Abbottabad, KP, Pakistan. J. Ethnopharmacol. 2016, 179, 208–233. [Google Scholar] [CrossRef]
- Lokho, K.; Narasimhan, D. Ethnobotany of Mao-Naga Tribe of Manipur, India. Pleione 2013, 7, 314–324. [Google Scholar]
- Shankar, R.; Tripathi, A.K.; Neyaz, S.; Anku, G. Distribution and conservation of medicinal plants in, kohima mokokchung, tuenseng and zunheboto districts of Nagaland. World J. Pharmaceut. Res. 2016, 5, 1225–1237. [Google Scholar]
- Shahid, M.; Singh, M. Ethnomedicinal use of plants by bhutia tribe in Sikkim himalaya. In Proceedings of the 1st Himalayan Researchers Consortium, Dehradun, India, 26–27 April 2018; Volume 1, pp. 71–78. [Google Scholar]
- Radha, B.; Dinesh, S.; Tiwari, J.K.; Tiwari, P. Diversity and availability status of ethno-medicinal plants in the Lohba range of Kedarnath forest division, Garhwal Himalaya. Glob. J. Res. Med. Plants Indig. Med. 2013, 2, 198–212. [Google Scholar]
- Lalzarzovi, S.T.; Lalramnghinglova, H. Traditional use of medicinal plants found within Aizawl city in Mizoram, India. Pleione 2016, 10, 269–277. [Google Scholar]
- Ningthoujam, S.S.; Talukdar ADas Potsangbam, K.S.; Choudhury, M.D. Traditional uses of herbal vapour therapy in Manipur, North East India: An ethnobotanical survey. J. Ethnopharmacol. 2013, 147, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chand, G.; Sankhyan, P. Herbal folk remedies for curing various ailments in Lug valley of district Kullu, Himachal Pradesh (N. W. Himalaya). Int. J. Ayurvedic Med. 2013, 3, 1308–1314. [Google Scholar]
- Schmidt, C.; Fronza, M.; Goettert, M.; Geller, F.; Luik, S.; Flores, E.M.M.; Bittencourt, C.F.; Zanetti, G.D.; Heinzmann, B.M.; Laufer, S.; et al. Biological studies on Brazilian plants used in wound healing. J. Ethnopharmacol. 2009, 122, 523–532. [Google Scholar] [CrossRef]
- Encarnacion-Dimayuga, R.; Altamirano, L.; Aoki Maki, K. Screening of medicinal plants from Baja California Sur (Mexico) by their effects on smooth muscle contractility. Pharm. Biol. 1998, 36, 124–130. [Google Scholar] [CrossRef] [Green Version]
- San Luis, G.D.; Balangcod, T.D.; Abucay, J.B.; Wong, F.M.; Balangcod, K.D.; Afifi, N.I.G.; Apostol, O.G. Phytochemical and antimicrobial screening of indigenous species that have potential for revegetation of landslides in atok, benguet, Philippines. Indian J. Tradit. Knowl. 2014, 13, 56–62. [Google Scholar]
- Anisa, I.N.; Soedarmadji, A.A.; Djuliana, D. Uji efek bronkodilator ekstrak air bunga kecubung gunung (Brugmansia suaveolens bercht & presl). Kartika J. Ilm. Farm. 2016, 4, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.G.; Peraza, G.G.; Sena, J.; Silva, E.S.; Soares, M.C.F.; Vaz, M.R.C.; Furlong, E.B.; Muccillo-Baisch, A.L. Antinociceptive effects of the aqueous extract of Brugmansia suaveolens flowers in Mice. Biol. Res. Nurs. 2007, 8, 234–239. [Google Scholar] [CrossRef]
- Akram, M.; Asif, H.; Usmanghani, K. Anti-nociceptive activities of medicinal plants: A Review. J. Biol. Res. Appl. Sci. 2013, 4, 50–58. [Google Scholar]
- Muccillo-Baisch, A.L.; Parker, A.G.; Cardoso, G.P.; Cezar-Vaz, M.R.; Soares, M.C.F. Evaluation of the analgesic effect of aqueous extract of Brugmansia suaveolens flower in mice: Possible mechanism involved. Biol. Res. Nurs. 2010, 11, 345–350. [Google Scholar] [CrossRef]
- Monzote, L.; Jimenez, J.; Cuesta-Rubio, O.; Marquez, I.; Gutierrez, Y.; da Rocha, C.Q.; Marchi, M.; Setzer, W.N.; Vilegas, W. In vitro assessment of plants growing in Cuba belonging to solanaceae family against Leishmania amazonensis. Phyther. Res. 2016, 30, 1785–1793. [Google Scholar] [CrossRef]
- Pinto, C.F.; Salinas, S.; Flores-Prado, L.; Echeverría, J.; Niemeyer, H.M. Sequestration of tropane alkaloids from Brugmansia suaveolens (Solanaceae) by the treehopper Alchisme grossa (Hemiptera: Membracidae). Biochem. Syst. Ecol. 2016, 66, 161–165. [Google Scholar] [CrossRef]
- Reis, R.B.; Bragagnolo, F.S.; Gianeti, T.M.R.; Rodrigues, S.A.; Funari, C.S.; Gonçalves, G.G.; Ming, L.C. Brugmansia suaveolens leaf productivity and alkaloid contents under different doses of organic fertilizer. J. Agric. Sci. 2019, 11, 341. [Google Scholar] [CrossRef]
- Doan, U.V.; Wu, M.L.; Phua, D.H.; Mendez Rojas, B.; Yang, C.C. Datura and Brugmansia plants related antimuscarinic toxicity: An analysis of poisoning cases reported to the Taiwan poison control center. Clin. Toxicol. 2019, 57, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Baltar, S. Características Epidemiológicas e Clínicas das Intoxicações Provocadas por Espécies Vegetais em Seres Humanos no Estado de Pernambuco—Brasil; Tese (Doutorado em Inovação Terapêutica); Universidade Federal de Pernambuco: Recife, Brazil, 2013; p. 198. [Google Scholar]
- Baltar, S.; de Araújo, L.S.M.; Franco, E.S.; Amorim, L.P.; Pedrosa, H.; Paixão, T.N.; Pereira, R.C.; Maia, M. Aspectos botânicos e clínicos das intoxicações por plantas das famílias Araceae, Euphorbiaceae e Solanaceae no estado de Pernambuco. Revista Fitos 2017, 11, 119–249. [Google Scholar] [CrossRef] [Green Version]
- Dickell, O.E. Efeitos Comportamentais e Neurotóxicos em Ratos Wistar Sob Efeito do Extrato Aquoso Bruto de Flores da Brugmansia Suaveolens (Solanaceae); Dissertação (Mestrado em Fisiologia Animal Comparada); Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 2006; p. 17. [Google Scholar]
Compound Name/Commercial Name | Chemical Structure | Chemical Class | Species | Botanical Family | Indication | Mechanism | Year | Refs |
---|---|---|---|---|---|---|---|---|
Artemisinin | Sesquiterpene lactone | Artemisia tenuisecta Artemisia annua L. | Asteraceae | Malaria treatment | Radical formation | 1987 | [26,27] | |
Arglabin® | Sesquiterpene | Artemisia myriantha Artemisia obtusiloba var. glabra Leeb | Asteraceae | Cancer, colon, ovarian and lung cancer | Farnesyl transferase inhibition | 1999 | [28,29] | |
Capsaicin Qutenza® | Capsaicinoid | Capsicum annum L., C.mill mínimo Capsicum pubescens | Solanaceae | Neuropathic pain (topical analgesic) | TRPV1 agonist. Na-channel blocker. | 2010 | [30,31] | |
Colchicine Colcrys® | Alkaloid | Colchicum spp. | Colchicaceae | Calcific tendinitis, gout, arthritis | Tubulin binding. CYT P450 3A4 inhibitor p-glycoprotein interaction. | 2009 | [32,33] | |
Dronabinol Cannabidol Dronabinol Sativex® | Dronabinol (delta9-THC) Cannabidol (CBD) | Cannabinoids (diterpenoid) | Cannabis sativa L. | Cannabaceae | Chronic neuropathic pain, chemotherapy-associated nausea and anorexia nervosa cachexia | Activation of CB1 and CB2 receivers | 2005 | [34,35] |
Galantamine Razadyne® | Alkaloid | Galanthus caucasicus (Baker) Grossh. Galanthus nivalis | Amaryllidaceae | Dementia associated with Alzheimer’s disease, mild to moderate | Acetylcholinesterase inhibitor. Ligand of human nicotinic acetylcholine receptors (nAChRs) | 2001 | [36,37] | |
Ingenol Mebutate Picato® | Alkaloid | Euphorbia peplus L. | Euphorbiaceae | Actinic keratosis | Cell death inducer | 2012 | [38,39] | |
Masoprocol Actinex® | Terpene | Larrea tridentata (Sessé & Moc. Ex DC.) Coville | Zygophyllaceae | Cancer chemotherapy | Lipoxygenase inhibitor | 1992 | [40,41] | |
Omacetaxine Mepesuccinate Synribo® | Alkaloid | Cephalotaxus harringtonia | Cephalotaxaceae | Oncology | Protein transcription inhibitor | 2012 | [42,43] | |
Paclitaxel Taxol® Abraxane® Nanoxel® | Diterpene | Taxus brevifolia Nutt | Taxaceae | Cancer chemotherapy | Mitotic inhibitor | 1971 | [44,45] | |
Solamargine Curaderm® | Flavonoid | Solanum spp. | Solanaceae | Cancer chemotherapy | Triggering Apoptosis | 1989 | [46,47,48] |
No. | Compounds | Formula | Part | References |
---|---|---|---|---|
Tropane alkaloids | ||||
01 | 3-(3′-Acetoxytropoyloxy)-tropane | C19H25NO4 | Whole plant (root, stem, leaf, fruit, flowers and seeds) | [63] |
02 | Apoatropine | C17H21NO2 | [63,64] | |
03 | Atropine | C17H23NO3 | [5,9,10,11,65,66,67] | |
04 | Hyoscyamine | C17H23NO3 | [11,63,67,68] | |
05 | Littorine | C17H23NO3 | [6,63,67] | |
06 | Noratropine | C16H21NO3 | [67,69] | |
07 | Norhyoscyamine | C16H21NO3 | [69] | |
08 | 3α-Phenylacetoxytropane | C16H21NO2 | [63] | |
09 | 3-(Hydroxyacetoxy)-tropane | C10H17NO3 | ||
10 | 6-Hydroxyacetoxytropane | C10H17NO3 | ||
11 | 3β-Tigloyloxytropane | C13H21NO2 | ||
12 | 3-Tigloyloxynortropane | C12H19NO2 | ||
13 | 3α-Acetoxytropane | C10H17NO2 | [67,70] | |
14 | Pseudotropine | C8H15NO | [63,71] | |
15 | Tropine | C8H15NO | [6,63] | |
16 | 3α-tropanol | C8H15NO | [69,72] | |
17 | 3α-Apotropoyloxy-6β-hydroxytropane | C17H21NO3 | [63] | |
18 | 3,6-Dihydroxytropane | C8H15NO2 | [63,69] | |
19 | 3α,6β-Ditigloyloxytropane | C18H27NO4 | ||
20 | 3β,6β-Ditigloyloxytropane | C18H27NO4 | [63] | |
21 | 3α-Hydroxy-6β-acetoxytropane | C10H17NO3 | ||
22 | 3-Hydroxy-6-(2-methylbutyryloxy)-tropane | C13H23NO3 | ||
23 | 3α-Hydroxy-6β-tigloyloxytropane | C13H21NO3 | [63,69] | |
24 | 6-Hydroxyhyoscyamine | C17H23NO4 | [63] | |
25 | 7-Hydroxyhyoscyamine | C17H23NO4 | ||
26 | 3-Hydroxy-6-methylbutyryloxytropane | C13H23NO3 | ||
27 | 3-Isovaleryloxy-6-hydroxytropane | C13H23NO3 | [63,69] | |
28 | 3-Phenylacetoxy-6-hydroxytropane | C16H21NO3 | [63] | |
29 | 3α-Tigloyloxy-6β-hydroxytropane | C13H21NO3 | [63,69] | |
30 | 3-Tigloyloxy-6-propionyloxytropane | C16H25NO4 | [63] | |
31 | 3α-Tigloyloxy-6β-isobutyryloxytropane | C17H27NO4 | ||
32 | 3-Tigloyloxy-6-(2′-methylbutyryloxy)-tropane | C18H29NO4 | ||
33 | 3,7-Dihydroxy-6-tigloyloxytropane | C12H19NO4 | [63,69] | |
34 | 3α,6β-Ditigloyloxy-7β-hydroxytropane | C18H27NO5 | [63,67] | |
35 | 3-Tigloyloxy-6-propionyloxy-7-hydroxytropane | C16H25NO5 | [63] | |
36 | 3α-Tigloyloxy-6β-isovaleryloxy-7β-hydroxytropane | C18H29NO5 | [63,67] | |
37 | 3β-Tigloyloxy-6β-isovaleryloxy-7β-hydroxytropane | C18H29NO5 | [63] | |
38 | Meteloidine | C13H21NO4 | [63,67] | |
39 | Aposcopolamine | C17H19NO3 | [6,63,67] | |
40 | Apohyoscine | C17H19NO3 | [67,69] | |
41 | Hyoscine | C17H21NO4 | [67,68,69,73] | |
42 | Norhyoscine | C16H19NO4 | [65,67,69] | |
43 | Norscopolamine | C16H19NO4 | [67,69] | |
44 | 3-Phenylacetoxy-6,7-epoxynortropane | C15H17NO3 | [63] | |
45 | Scopolamine | C17H21NO7 | [63,65,67,74,75,76] | |
46 | Scopoline | C8H13NO2 | [6,63,77] | |
47 | Scopine | C8H13NO2 | [63,77] | |
Pyrrolidine and indole alkaloids | ||||
01 | Cuscohygrine | C13H24N2O | Roots | [67,77] |
02 | Indole | C8H7N | Roots Flowers | [70,71] |
03 | 3-(3-indolyl) lactic acid | C11H11NO3 | Leaves | [78] |
04 | 3-(3-indolyl) lactic acid methyl ester | C13H15NO2 | ||
Sesquiterpenoids | ||||
01 | trans,trans-Farnesol | C15H26O | Flowers | [70,71] |
02 | Farnesal | C15H24O | [67] | |
03 | (E)-Nerolidol | C15H26O | [7] | |
Monoterpenoids | ||||
01 | Allo-ocimene | C10H16 | Flowers | [70] |
02 | Citronellal | C10H18O | [70,79] | |
03 | Citronellol | C10H20O | ||
04 | Geranial | C10H16O | ||
05 | Geraniol | C10H18O | ||
06 | Geranyl acetate | C12H20O2 | [79] | |
07 | Linalool | C10H18O | [7,79] | |
08 | β-Myrcene | C10H16 | [70,79] | |
09 | Neral | C10H16O | ||
10 | Cis-β-Ocimene | C10H16 | ||
11 | (E)-β-Ocimene | C10H16 | [7] | |
12 | Cis-Ocimenol | C10H18O | [79] | |
13 | trans-Ocimenol | C10H16O | ||
14 | trans-β-Ocimene | C10H16 | [70,79] | |
15 | α-Pinene | C 10H16 | [70] | |
16 | β-Pinene | C10H16 | ||
17 | α-Thujene | C10H16 | ||
18 | Sabinene | C10H16 | ||
19 | trans-Sabinene hydrate | C10H18O | ||
20 | 1,8-Cineole | C10H18O | ||
21 | Limonene | C10H16 | ||
22 | α-Terpineol | C10H18O | ||
23 | Terpinolene | C10H16 | ||
24 | Terpinen-4-ol | C10H18O | [7] | |
25 | γ-Terpinene | C10H16 | ||
26 | SUPH036-022A | C13H14O5 | [80] | |
Flavonoids | ||||
01 | Kaempferol | C15H10O6 | Flowers | [9] |
02 | Kaempferol 3-O-β-D-glucopyranosyl-(1‴ →2″)-O-α-L-arabinopyranoside | C26H28O15 | [12] | |
03 | Kaempferol 3-O-β-D-glucopyranosyl-(1‴ →2″)-O-α-L-arabinopyranoside-7-O-β-D-glucopyranoside | C32H38O20 | Leaves | |
04 | Kaempferol 3-O-β-D-[6‴-O-(E-caffeoyl)]-glucopyranosyl-(1‴ →2″)-O-α-Larabinopyranoside-7-O-β-D-glucopyranoside | C41H44O23 | ||
05 | Kaempferol 3-O-β-D-[2‴-O-(Ecaffeoyl)]-glucopyranosyl-(1‴ →2″)-O-α-L-arabinopyranoside-7-O-β-D-glucopyranoside | C41H44O23 | ||
06 | Kaempferol 3-O-L-arabinopyranoside | C20H18O10 | ||
07 | Kaempferol 3-O-L-arabinopyranosyl-7-O-D-glucopyranoside | C26H28O15 | ||
Carotenoids | ||||
01 | Megastigmatrienone I | C13H18O | Flowers | [7] |
02 | Megastigmatrienone II | C13H18O | ||
03 | Megastigmatrienone III | C13H18O | ||
04 | Megastigmatrienone IV | C13H18O | ||
05 | Theaspirane A | C13H22O | ||
06 | Theaspirane B | C13H22O | ||
Benzenoid compounds | ||||
01 | Benzyl alcohol | C7H8O | Flowers | [70,79] |
02 | Benzaldehyde | C7H6O | ||
03 | Benzyl benzoate | C14H12O2 | ||
04 | Benzyl salicylate | C14H12O3 | ||
05 | 4-Methoxy benzaldehyde | C8H8O2 | ||
06 | Methyl benzoate | C8H8O2 | ||
07 | Methyl salicylate | C8H8O3 | ||
08 | Phenylacetaldehyde | C8H8O | ||
09 | Phenylethyl alcohol | C8H10O | [7,71] | |
10 | 3-phenyllactic acid | C9H10O | Leaves | [78] |
Aldehydes | ||||
01 | Decanal | C10H20O | Flowers | [70] |
02 | Hexanal | C6H12O | ||
03 | Heptanal | C7H14O | [7] | |
04 | Nonanal | C9H18O | ||
05 | Octanal | C8H16O | ||
Alkanes | ||||
01 | Hentriacontane | C31H64 | Flowers | [7] |
02 | Nonacosane | C29H60 | ||
03 | Pentacosane | C25H52 | ||
Other compounds | ||||
01 | Physalindicanol A | C28H46O2 | Leaves | [78] |
02 | Physalindicanol B | C28H46O2 | ||
03 | 20-hydroxyecdysone | C27H44O7 | Flowers | [9] |
04 | Acanthoside B | C28H36O13 | ||
05 | Scopoletin-7-O-β-D-galactopyranoside | C16H18O9 | ||
06 | 2-Isobutyl-3-methoxypyrazine | C9H14N2O | [7] | |
07 | 6-Methyl hept-5-en-2-one | C8H14O | [67,79] | |
08 | Hexanol | C6H14O | [70] | |
09 | (Z)-3-Hexen-1-ol | C6H12O |
Popular Traditional Use | ||||||
---|---|---|---|---|---|---|
Popular Name | Region | Part | Form of Preparation | Traditional Use | References | |
Pink wandug, Maikua | Ecuador | Leaves, stem and root | - | Hallucinogenic | [82,83,84] | |
Toe, Misha colambo | Peru | Leaves | Maceration, decoction, juice and ointment | Gastric disorders, hallucinogenic, menstrual cramps, infections, wounds, ulcers, body pain, rheumatic pain and vaginal antiseptic | [85,86,87] | |
Trombeteira Canudo | Brazil | Flowers | Infusion | Gastric disorders, hallucinogenic, infections, wounds, ulcers, body pain, rheumatic pain | [60,88] | |
Floripon | Argentina and Mexico | Leaves and flowers | Hot oil | Boils, dermatological diseases | [89] | |
- | Dominica | Flowers | Cigarette | Hallucinogenic | [90] | |
Fleur trompete | Mauritius | Flowers | Cigarette and inhalation | Anti-asthmatic and bronchial problem | [91] | |
- | Philippines | Flowers | Infusion and ointment | Cough, anti-asthmatic and wounds | [92] | |
Padaing Kucubung | Indonesia | Leaves, flowers and seeds | - | Sedative and anti-asthmatic, gonorrhea, inflammation, intoxication and loss of appetite | [90,93,94,95,96] | |
Gangmeto | Bhutan | Leaves | Infusion and ointment | Hallucinogenic | [97] | |
Shaitani | Pakistan | Leaves | - | Stomach pain, ulcer, ringworm, body pain, rheumatic pain, skin infection and diarrhea | [98] | |
Bakha tobowo, Dhatura | India | Leaves, flowers and seeds | Decoction, ointment, inhalation and decoction | Wounds, rheumatic pain, body pain, swelling, cough, asthma, nasal congestion, sinusitis | [99,100,101,102,103,104,105] | |
Screening of pharmacological activity | ||||||
Activity | Parts | Preparation | Concentration | Model and assay | Effect | Reference |
Anti-inflammatory | Leaves and flowers | Ethanolic and n-hexanoic extracts | 100 μg/mL | In vitro studies show changes in electrophoretic mobility for NF-kB, p38α, TNF-α and elastase assays | Extracts inhibit NF-kB DNA binding, p38α activity, and directly impair elastase activity | [106] |
Cytotoxicity | Leaves and flowers | Ethanolic and n-hexanoic extracts | 100 μg/mL | Colorimetric assay (in vitro) | Extracts showed cytotoxic activities | |
Patent number 130SUPH036-022A | - | Analysis of cell viability and reactive oxygen species. Study of the cell cycle and levels of IFN-γ and IL-2 | Antitumor activity by immunomodulation | [80] | ||
Antispasmodic | Stem and leaves | Ethanolic extract | 71.5 μg/mL | In vitro analysis and smooth muscle contraction | Antispasmodic activities enhanced by the action of the extract. | [107] |
Antibacterial | Stem, leaves and flowers | Methanolic extract | 5 μL | In vitro analysis by disk diffusion technique | Stem extracts show antibacterial activity | [108] |
Anti-asthmatic | Leaves | Aqueous extract | 40 mg/kg body weight | In vivo, examining the anti-asthmatic action of the extract in the guinea pig | The extract showed considerable anti-asthmatic activity | [109] |
Antinociceptive | Flowers | Aqueous extract | 100 and 300 mg/kg body weight | In vivo, hotplate, abdominal-writhing, sleep, formalin, and tail-flick experiments in mice | The extract presents significant antinociceptive potency | [110,111,112] |
Antileishmanial | Flowers, leaves and stem | Hydroalcoholic extract | 200 μg/mL | In vitro test on L. amazonensis promastigotes | The extract from flowers and leaves presents antileishmanial activity | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, S.P.; Schuenck-Rodrigues, R.A.; Cardoso, V.d.S.; Valverde, S.S.; Vermelho, A.B.; Ricci-Júnior, E. Therapeutic Potential of Bioactive Compounds from Brugmansia suaveolens Bercht. & J. Presl. Nutrients 2023, 15, 2912. https://doi.org/10.3390/nu15132912
da Costa SP, Schuenck-Rodrigues RA, Cardoso VdS, Valverde SS, Vermelho AB, Ricci-Júnior E. Therapeutic Potential of Bioactive Compounds from Brugmansia suaveolens Bercht. & J. Presl. Nutrients. 2023; 15(13):2912. https://doi.org/10.3390/nu15132912
Chicago/Turabian Styleda Costa, Sandro Pinheiro, Raphaela Aparecida Schuenck-Rodrigues, Verônica da Silva Cardoso, Simone Sacramento Valverde, Alane Beatriz Vermelho, and Eduardo Ricci-Júnior. 2023. "Therapeutic Potential of Bioactive Compounds from Brugmansia suaveolens Bercht. & J. Presl" Nutrients 15, no. 13: 2912. https://doi.org/10.3390/nu15132912
APA Styleda Costa, S. P., Schuenck-Rodrigues, R. A., Cardoso, V. d. S., Valverde, S. S., Vermelho, A. B., & Ricci-Júnior, E. (2023). Therapeutic Potential of Bioactive Compounds from Brugmansia suaveolens Bercht. & J. Presl. Nutrients, 15(13), 2912. https://doi.org/10.3390/nu15132912