Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Antioxidant Activity
3.2. Anti-Inflammatory Activity
3.3. Antihypertensive Activity
3.4. Hypocholesterolemic Activity
3.5. Antitumoral Activity
3.6. Other Biological Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreno-Fernandez, S.; Garces-Rimon, M.; Uranga, J.A.; Astier, J.; Landrier, J.F.; Miguel, M. Expression enhancement in brown adipose tissue of genes related to thermogenesis and mitochondrial dynamics after administration of pepsin egg white hydrolysate. Food Funct. 2018, 9, 6599–6607. [Google Scholar] [CrossRef] [PubMed]
- Malaguti, M.; Dinelli, G.; Leoncini, E.; Bregola, V.; Bosi, S.; Cicero, A.F.G.; Hrelia, S. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. Int. J. Mol. Sci. 2014, 15, 21120–21135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.C.; Puchalska, P.; Esteve, C.; Marina, M.L. Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant and other less occurrence bioactivities. Talanta 2013, 106, 328–349. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, R.J.; Murray, B.A. Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 2006, 59, 118–125. [Google Scholar] [CrossRef]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Moughan, P.J.; Rutherfurd, S.M.; Montoya, C.A.; Dave, L.A. Food-derived bioactive peptides—A new paradigm. Nutr. Res. Rev. 2014, 27, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [Green Version]
- Tavano, O.L. Protein hydrolysis using proteases: An important tool for biotechnology. J. Mol. Catal. B Ezymatic 2013, 90, 1–11. [Google Scholar] [CrossRef]
- Chen, W.; Qiu, Y. Leaf protein’s utilization status and its prospect. Food Sci. 2003, 24, 158–161. [Google Scholar]
- FAO (Food and Agriculture Organization). Dietary Protein Quality Evaluation in Human Nutrition: Report of a FAO Expert Consultation; Food and Nutrition paper 92; FAO: Rome, Italy, 2011. [Google Scholar]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.X.; Liu, R.; Ramdath, D.D.; Liu, Q.; Hernandez, M.; Tsao, R. Bioaccesibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris). J. Funct. Foods 2017, 32, 248–255. [Google Scholar] [CrossRef]
- Navarro del Hierro, J.; Herrera, T.; Garcia-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res. Int. 2018, 109, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Lai, H.M. Bioactive compounds in legumes and their germinated products. J. Agric. Food Chem. 2006, 54, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- Muzquiz, M.; Varela, A.; Burbano, C.; Cuadrado, C.; Guillamon, E.; Pedrosa, M.M. Bioactive compounds in legumes: Pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem. Rev. 2012, 11, 227–244. [Google Scholar] [CrossRef]
- Lopez-Martinez, L.X.; Leyva-Lopez, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Effect of cooking and germination on bioactive compounds in pulses and their health benefits. J. Funct. Foods 2017, 38, 624–634. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Omoba, O.S.; Enujiugha, V.N.; Aluko, R.E. Development of value-added nutritious crackers with high antidiabetic properties from blends of Acha (Digitaria exilis) and blanched Pigeon pea (Cajanus cajan). Food Sci. Nutr. 2018, 6, 1791–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasler, C.M. The cardiovascular effects of soy products. J. Cardiovasc. Nurs. 2002, 16, 50–63. [Google Scholar] [CrossRef]
- Aluko, R.E.; Monu, E. Functional and bioactive properties of quinoa seed protein hydrolysates. J. Food Sci. 2003, 68, 1254–1258. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, B.; Zhang, T.; Mu, W.; Liu, J. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem. 2007, 106, 444–450. [Google Scholar] [CrossRef]
- Coscueta, E.R.; Amorim, M.M.; Voss, G.B.; Nerli, B.B.; Pico, G.A.; Pintado, M.E. Bioactive properties of peptides obtained from Argentinian defatted soy flour protein by Corolase PP hydrolysis. Food Chem. 2016, 198, 36–44. [Google Scholar] [CrossRef]
- Ajibola, C.F.; Fashakin, J.B.; Fagbemi, T.N.; Aluko, R.E. Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int. J. Mol. Sci. 2011, 12, 6685–6702. [Google Scholar] [CrossRef] [Green Version]
- Al-Ruwaih, N.; Ahmed, J.; Mulla, M.F.; Arfat, Y.A. High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. LWT Food Sci. Technol. 2019, 100, 231–236. [Google Scholar] [CrossRef]
- Garcia-Mora, P.; Frias, J.; Peñas, E.; Zielinski, H.; Gimenez-Bastida, J.A.; Wiczkowski, W.; Zielinska, D.; Martinez-Villaluenga, C. Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by sutilisins. J. Funct. Foods 2015, 18, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chang, S.K.C. Comparative studies on ACE inhibition, degree of hydrolysis, antioxidant property and phenolic acid composition of hydrolysates derived from simulated in vitro gastrointestinal proteolysis of three thermally treated legumes. Food Chem. 2019, 281, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Segura-Campos, M.R.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A. Angiotensin- I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. J. Sci. Food. Agric. 2010, 90, 2512–2518. [Google Scholar] [CrossRef]
- Dia, V.P.; Wang, W.; Oh, V.L.; de Lumen, B.O.; Gonzalez de Mejia, E. Isolation, purification and characterization of lunasin from defatted soybean flour and in vitro evaluation of ist anti-inflammatory activity. Food Chem. 2009, 114, 108–115. [Google Scholar] [CrossRef]
- Ndiaye, F.; Vuong, T.; Duarte, J.; Aluko, R.E.; Matar, C. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds. Eur. J. Nutr. 2012, 51, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Leite, J.F.; Assreuy, A.M.; Mota, M.R.; Bringel, P.H.; Lacerda, R.R.; Gomes, V.d.M.; Cajazeiras, J.B.; Nascimento, K.S.; Pessôa, H.d.L.F.; Gadelha, C.A.; et al. Antinociceptive and anti-inflammatory effects of a lectin-like substance from Clitoria fairchildiana R. Howard seeds. Molecules 2012, 17, 3277–3290. [Google Scholar] [CrossRef]
- Vernaza, M.G.; Dia, V.P.; de Mejia, E.G.; Chang, Y.K. Antioxidant and anti-inflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chem. 2012, 134, 2217–2225. [Google Scholar] [CrossRef]
- De Mejia, E.G.; Dia, V.P. Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κβ pathway in the macrophage. Peptides 2009, 30, 2388–2398. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Matsui, T.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim. Biophys. Acta 2012, 1820, 1753–1763. [Google Scholar] [CrossRef]
- Li, G.H.; Wan, J.Z.; Lea, G.W.; Shi, Y.H. Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein. J. Peptide Sci. 2006, 12, 509–514. [Google Scholar] [CrossRef]
- Rui, X.; Boye, J.; Simpson, B.K.; Prasher, S.O. Purification and characterization of angiotensin I-converting enzyme inhibitory peptides of small red bean (Phaseolus vulgaris) hydrolysates. J. Funct. Foods 2013, 5, 1116–1124. [Google Scholar] [CrossRef]
- Yust, M.M.; Pedroche, J.; Giron-Calle, J.; Alaiz, M.; Millan, F.; Vioque, J. Production of ACE inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chem. 2003, 81, 363–369. [Google Scholar] [CrossRef]
- Garcia-Mora, P.; Peñas, E.; Frias, J.; Gomez, R.; Martinez-Villaluenga, C. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chem. 2015, 171, 224–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.H.; Le, G.W.; Liu, H.; Shi, Y.H. Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Sci. Technol. Int. 2005, 11, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Du, M.; Shen, M.; Wu, T.; Lin, L. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from mung bean (Vigna radiate). Food Chem. 2019, 270, 243–250. [Google Scholar] [CrossRef]
- Aluko, R.E.; Girgih, A.T.; He, R.; Malomo, S.; Li, H.; Offengenden, M.; Wu, J. Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Res. Int. 2015, 77, 10–16. [Google Scholar] [CrossRef]
- Li, H.; Aluko, R.E. Identification and inhibitory properties of multifunctional peptides from pea protein hydroloysate. J. Agric. Food Chem. 2010, 58, 11471–11476. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karas, M.; Baraniak, B.; Pertzak, M. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem. 2013, 141, 3774–3780. [Google Scholar] [CrossRef]
- Farzamirad, V.; Aluko, R.E. Angiontensin-converting enzyme inhibition and free-radical scavenging properties of cationic peptides derived from soybean protein hydrolysates. Int. J. Food Sci. Nutr. 2008, 59, 428–437. [Google Scholar] [CrossRef]
- Mallikarjun-Gouda, K.G.; Gowda, L.R.; Rao, A.G.; Prakash, V. Angiotensin I-converting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max). J. Agric. Food Chem. 2006, 54, 4568–4573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Tatsumi, E.; Ding, C.H.; Li, L.T. Angiotensin I converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chem. 2006, 98, 551–557. [Google Scholar] [CrossRef]
- Marques, M.R.; Fontanari, G.G.; Pimenta, D.C.; Soares-Freitas, R.M.; Areas, J.A.G. Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity. Food Res. Int. 2015, 77, 43–48. [Google Scholar] [CrossRef]
- Sirtori, C.R.; Lovati, M.R.; Manzoni, C.; Castiglioni, S.; Duranti, M.; Magni, C.; Morandi, S.; D’Agostina, A.; Arnoldi, A. Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. J. Nutr. 2004, 134, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Lammi, C.; Zanoni, C.; Ferruza, S.; Ranaldi, G.; Sambuy, Y.; Arnoldi, A. Hypocholesterolaemic activity of lupin peptides: Investigation on the crosstalk between human enterocytes and hepatocytes using a co-culture system including Caco-2 and HepG2 cell. Nutrients 2016, 8, 437. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, E.S.; Silva, M.A.; Demonte, A.; Neves, V.A. Soy β-conglycinin (7S globulin) reduces plasma and liver cholesterol in rats fed hypercholesterolemic diet. J. Med. Food 2011, 14, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Duranti, M.; Lovati, M.R.; Dani, V.; Barbiroli, A.; Scafaroni, A.; Castiglioni, S.; Ponzone, C.; Morazzoni, P. The alpha’ subunit from soybean 7S globulin lowers plasma lipids and upregulates liver beta-VLDL receptors in rats fed a hypercholesterolemic diet. J. Nutr. 2004, 134, 1334–1339. [Google Scholar] [CrossRef] [Green Version]
- Pak, V.V.; Koo, M.S.; Kasymova, T.D.; Kwon, D.Y. Isolation and identification of peptides from soy 11S-globulin with hypocholesterolemic activity. Chem. Nat. Compd. 2005, 41, 710–714. [Google Scholar] [CrossRef]
- Xue, Z.; Hou, X.; Yu, W.; Wen, H.; Zhang, Q.; Li, D.; Kou, X. Lipid metabolism potential and mechanism of CPe-III from chickpea (Cicer arietinum L.). Food Res. Int. 2018, 104, 126–133. [Google Scholar] [CrossRef]
- Gomes, M.J.C.; Lima, S.L.S.; Alves, N.E.G.; Assis, A.; Moreira, M.E.C.; Toledo, R.C.L.; Rosa, C.O.B.; Teixieria, O.R.; Bassinello, P.Z.; De Mejía, E.G.; et al. Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gasca, T.; Garcia-Cruz, M.; Hernandez-Rivera, E.; Lopez-Martinez, J.; Castañeda-Cuevas, A.L.; Yllescas-Gasca, L.; Rodriguez-Mendez, A.J.; Mendiola-Olaya, E.; Castro-Guillen, J.L.; Blanco-Labra, A. Effects of Tepary bean (Phaseolus acutifolius) protease inhibitor and semipure lectin fractions on cancer cells. Nutr. Cancer 2012, 64, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Gao, J.; Zhang, Z.; Yu, W.; Wang, H.; Kou, X. Antihyperlipidemic and antitumor effects of chickpea albumin hydrolysate. Plants Foods Hum. Nutr. 2012, 67, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Mehdad, A.; Brumana, G.; Souza, A.A.; Barbosa, J.A.R.G.; Ventura, M.M.; de Freitas, S.M. A Bowman-Birk inhibtor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition. Cell Death Discov. 2016, 2, 15067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, T.; Sato, H.; Virgona, N.; Hagiwara, H.; Kashiwagi, K.; Suzuki, K.; Asano, R.; Yano, T. Negative growth control of osteosarcoma cell by Bowman-Birk protease inhibitor from soybean: Involvement of conexxin 43. Cancer Lett. 2007, 253, 249–257. [Google Scholar] [CrossRef]
- Souza, L.C.; Camargo, R.; Demasi, M.; Santana, J.M.; de Sa, C.M.; de Freitas, S.M. Effects of an anticarcinogenic Bowman-Birk protease inhibitor on purified 20S proteasome and MCF-7 breast cancer cells. PLoS ONE 2014, 9, e86600. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ng, T.B.; Ooi, V.E.C.; Liu, W.K. Effects of lectins with different carbohydrate-binding specificities on hepatoma, choriocarcinoma, melanoma and osteosarcoma cell lines. Int. J. Biochem. Cell Biol. 2000, 32, 365–372. [Google Scholar] [CrossRef]
- Wang, W.; Rupasinghe, S.G.; Schuler, M.A.; de Mejia, E.G. Identification and characterization of topoisomerase II inhibitory peptides from soy protein hydrolysates. J. Agric. Food Chem. 2008, 56, 6267–6277. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Santhanam, R.K.; Wang, C.; Gao, X.; Chen, Y.; Wang, C.; Xu, L.; Chen, H. Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) Merr.] byproduct: Isolation, identification and molecular docking study. Eur. Food Res. Technol. 2019, 245, 677–689. [Google Scholar] [CrossRef]
- Seber, L.E.; Barnett, B.W.; McConnell, E.J.; Hume, S.D.; Cai, J.; Boles, K.; Davis, K.R. Scalable purification and characterization of the anticancer lunasin peptide from soybean. PLoS ONE 2012, 7, e35409. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Montoya, M.; Hernandez-Ledesma, B.; Silvan, J.M.; Mora-Escobedo, R.; Martinez-Villaluenga, C. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem. 2018, 242, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Castilla, J.; Hernandez-Alvarez, A.I.; Jimenez-Martinez, C.; Jacinto-Hernandez, C.; Alaiz, M.; Giron-Calle, J.; Vioque, J.; Davila-Ortiz, G. Antioxidant and metal chelating activities of Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates. Food Chem. 2012, 131, 1157–1164. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Miao, M.; Jiang, B. Purification and characterization of a new antioxidant peptide from chickpea (Cicer arietinum L.) protein hydrolysates. Food Chem. 2011, 128, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Torres-Fuentes, C.; Alaiz, M.; Vioque, J. Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chem. 2012, 134, 1585–1588. [Google Scholar] [CrossRef] [PubMed]
- Megias, C.; Pedroche, J.; Yust, M.M.; Giron-Calle, J.; Alaiz, M.; Millan, F.; Vioque, J. Affinity purification of copper chelating peptides from chickpea protein hydrolysates. J. Agric. Food Chem. 2007, 55, 3949–3954. [Google Scholar] [CrossRef]
- Bao, X.L.; Lv, Y.; Yang, B.C.; Ren, C.G.; Guo, S.T. A study of the soluble complexes formed during calcium binding of soybean protein hydrolysates. J. Food Sci. 2008, 73, C117–C121. [Google Scholar] [CrossRef]
- Lv, Y.; Bao, X.; Liu, H.; Ren, J.; Guo, S. Purification and characterization of calcium-binding soybean protein hydrolysates by Ca2+/Fe3+ immobilized metal affinity chromatography (IMAC). Food Chem 2013, 141, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lv, Y.; Xu, J.; Guo, S. Soybean peptide aggregates improved calcium binding capacity. LWT—Food Sci. Technol. 2016, 67, 174–180. [Google Scholar] [CrossRef]
- Ariza-Orteaga, T.J.; Zenon-Briones, E.Y.; Castrejon-Flores, J.L.; Yañez-Fernandez, J.; Gomez-Gomez, Y.M.; Oliver-Salvador, M.C. Angiotensin-I-converting enzyme inhibitory, antimicrobial, and antioxidant effect of bioactive peptides obtained from different varieties of common beans (Phaseolus vulgaris L.) with in vivo antihypertensive activity in spontaneously hypertensive rats. Eur. Food Res. Technol. 2014, 239, 785–794. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Rani, N.F.A.; Hussin, A.S.M. Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation proceses. LWT—Food Sci. Technol. 2020, 131, 109776. [Google Scholar] [CrossRef]
- Ee, K.Y.; Khoo, L.Y.; Ng, W.J.; Wong, F.C.; Chai, T.T. Effects of bromelain and trypsin hydrolysis on the phytochemical content, antioxidant activity, and antibacterial activity of roasted butterfly pea seeds. Processes 2019, 7, 534. [Google Scholar] [CrossRef] [Green Version]
- Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Samperi, R.; Ventura, S.; Chiozzi, R.Z.; Lagana, A. Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Compost. Anal. 2015, 44, 205–213. [Google Scholar] [CrossRef]
- Cheng, A.C.; Lin, H.L.; Shiu, Y.L.; Tyan, T.C.; Liu, C.H. Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. Fish Shellfish Immunol. 2017, 67, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Mojica, L.; Chenard, K.; de Mejia, E.G. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV. J. Food Sci. 2015, 80, H188–H198. [Google Scholar] [CrossRef] [PubMed]
- Mojica, L.; de Mejia, E.G. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct. 2016, 7, 713–727. [Google Scholar] [CrossRef]
- Tsuruki, T.; Kishi, K.; Takahashi, M.; Tanaka, M.; Matsukawa, T.; Yoshikawa, M. Soymetide, an immunostimulating peptide derived from soybean beta-conglycinin, is an fMLP agonist. FEBS Lett. 2003, 540, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Montoya, M.; Hernandez-Ledesma, B.; Mora-Escobedo, R.; Martinez-Villaluenga, C. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. Int. J. Mol. Sci. 2018, 19, 2883. [Google Scholar] [CrossRef] [Green Version]
- Mojica, L.; Luna-Vital, D.A.; Gonzalez de Mejia, E. Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. J. Sci. Food Agric. 2017, 97, 2401–2410. [Google Scholar] [CrossRef]
- Babini, E.; Tagliazucchi, D.; Martini, S.; Dei Piu, L.; Gianotti, A. LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food Chem. 2017, 228, 186–196. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef]
- Aiello, G.; Ferruza, S.; Ranaldi, G.; Sambuy, Y.; Amoldi, A.; Vistoli, G.; Lammi, C. Behavior of three hypocholesterolemic peptides from soy protein is an intestinal model based on differentiated Caco-2 cell. J. Funct. Foods 2018, 45, 363–370. [Google Scholar] [CrossRef]
- Zhong, F.; Zhang, X.; Ma, J.; Shoemaker, C.F. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalase hydrolysates. Food Res. Int. 2007, 40, 756–762. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Samaranayaka, A.G.P.; Li-Chan, E.C.Y. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J. Funct. Foods 2011, 3, 229–254. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, S.; Huang, Y. Antioxidant function of tea dregs protein hydrolysates in liposome-meat system and its possible action mechanism. Int. J. Food Sci. Technol. 2014, 49, 2299–2306. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, D.; Sun, J.; Luo, X.; Li, H.; Sun, X.; Zheng, F. Analysis of antioxidant effect of two tripeptides isolated from fermented grains (Jiupei) and the antioxidative interaction with 4-methylguaiacol, 4-ethylguaiacol, and vanillin. Food Sci. Nutr. 2019, 7, 2391–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, F.C.; Xiao, J.; Wang, S.; Ee, K.Y.; Chai, T.T. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol. 2020, 99, 44–57. [Google Scholar] [CrossRef]
- Erdmann, K.; Grosser, N.; Schipporeit, K.; Schroder, H. The ACE inhibitory dipeptide Met-Tyr diminishes free radical formation in human endothelial cells via induction of heme oxygenase-1 and ferritin. J. Nutr. 2006, 134, 980–988. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.S.; Huang, G.J.; Lu, Y.H.; Chang, L.W. Anti-inflammatory effects of an aqueous extract of Welsh onion green leaves in mice. Food Chem. 2013, 138, 751–756. [Google Scholar] [CrossRef]
- Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From Chemistry to Medicine. Pharmacol. Res. 2015, 99, 1–10. [Google Scholar] [CrossRef]
- Mueller, M.; Hobiger, S.; Jungbauer, A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010, 122, 987–996. [Google Scholar] [CrossRef]
- Hernandez-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 2009, 390, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Cam, A.; de Mejia, E.G. RGD-peptide lunasin inhibits Akt-mediated NF-κβ activation in human macrophages through interaction with the αVβ3 integrin. Mol. Nutr. Food Res. 2012, 56, 1569–1581. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2017, 58, 1260–1270. [Google Scholar] [CrossRef]
- Huang, W.Y.; Davidge, S.T.; Wu, J. Bioactive natural constituents from food sources—Potential use in hypertension prevention treatment. Crit. Rev. Food Sci. Nutr. 2013, 53, 615–630. [Google Scholar] [CrossRef]
- Jensen, I.J.; Eystruskaro, J.; Madetoja, M.; Eilertsen, K.E. The potential of cod hydrolysate to inhibit blood pressure in spontaneously hypertensive rats. Nutr. Res. 2014, 34, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lv, S.; Li, S. Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chem. 2012, 131, 225–230. [Google Scholar] [CrossRef]
- Gil-Ramirez, A.; Morales, D.; Soler-Rivas, C. Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct. 2018, 9, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Galvez, A.F. Methods for using soy peptides to inhibit H3 acetylation, reduce expression of HMG CoA reductase, and increase LDL receptor and Sp1 expression in a mammal. U.S. Patent 7731995, 8 June 2010. [Google Scholar]
- Lule, V.K.; Garg, S.; Pophaly, S.D.; Tomar, S.K. Potential health benefits of lunasin: A multifaceted soy-derived bioactive peptide. J. Food Sci. 2015, 80, R485–R494. [Google Scholar] [CrossRef]
- Bautista-Exposito, S.; Peñas, E.; Dueñas, M.; Silvan, J.M.; Frias, J.; Martinez-Villaluenga, C. Individual contributions of Savinase and Lactobacillus plantarum to lentil functionalization during alkaline pH-controlled fermentation. Food Chem. 2018, 257, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Valdespino, C.A.; Luna-Vital, D.; Camacho-Ruiz, R.M.; Mojica, L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res. Int. 2020, 130, 108905. [Google Scholar] [CrossRef] [PubMed]
- Oseguera-Toledo, M.E.; Gonazlez de Mejia, E.; Sivaguru, M.; Amaya-Llano, S.L. Common bean (Phaseolus vulgaris L.) protein-derived peptides increased insulin secretion, inhibited lipid accumulation, increased glucose uptake and reduced the phosphatase and tensin homologue activation in vitro. J. Funct. Foods 2016, 27, 160–177. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.E.; Kim, H.H.; Kim, J.Y.; Kang, Y.I.; Woo, H.J.; Lee, H.J. Anticancer activity of hydrophobic peptides from soy proteins. BioFactors 2000, 12, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Giron-Calle, J.; Alaiz, M.; Vioque, J. Effect of chickpea protein hydrolysates on cell proliferation and in vitro bioavailability. Food Res. Int. 2010, 43, 1365–1370. [Google Scholar] [CrossRef]
- Odani, S.; Koide, T.; Ono, T. Amino acid sequence of a soybean (Glycine max) seed polypeptide having a poly (L-aspartic acid) structure. J. Biol. Chem. 1987, 262, 10502–10505. [Google Scholar] [CrossRef]
- De Lumen, B.O. Lunasin: A novel cancer preventive seed peptide that modifies chromatin. J. AOAC Int. 2008, 91, 932–935. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Zhu, Y.; Shi, Z.; Li, J. Detection of lunasin in quinoa (Chenopodium quinoa Willd.) and the in vitro evaluation of its antioxidant and anti-inflammatory activities. J. Sci. Food Agric. 2017, 97, 4110–4116. [Google Scholar] [CrossRef] [PubMed]
- Morales, D.; Miguel, M.; Garces-Rimon, M. Pseudocerals: A novel source of biologically active peptides. Crit. Rev. Food Sci. Nutr. 2020, 61, 1537–1544. [Google Scholar] [CrossRef]
- Wan, X.; Liu, H.; Sun, Y.; Zhang, J.; Chen, X.; Chen, N. Lunasin: A promising polypeptide for the prevention and treatment of cancer (review). Oncol. Lett. 2017, 13, 3997–4001. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Tome, S.; Sanchon, J.; Recio, I.; Hernandez-Ledesma, B. Transepithelial transport of lunasin and derived peptides: Inhibitory effects on the gastrointestinal cancer cells viability. J. Food Compost. Anal. 2018, 68, 101–110. [Google Scholar] [CrossRef]
- Hernandez-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Lunasin and Bowman-Birk protease inhibitor (BBI) in US commercial soy foods. Food Chem. 2009, 115, 574–580. [Google Scholar] [CrossRef]
- Price, S.J.; Pangloli, P.; Krishnan, H.B.; Dia, V.P. Kunitz trypsin inhibitor in addition to Bowman-Birk inhibitor influence stability of lunasin against pepsin-pancreatin hydrolysis. Food Res. Int. 2016, 90, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Mejia, E.G.; Dia, V.P. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev. 2010, 29, 511–528. [Google Scholar] [CrossRef] [PubMed]
- de Mejia, E.; Prisecaru, V.I. Lectins as bioactive plant proteins: A potential in cancer treatment. Crit. Rev. Food Sci. Nutr. 2005, 45, 425–445. [Google Scholar] [CrossRef]
- Souza, M.A.; Carvalho, F.C.; Ruas, L.P.; Ricci-Azevedo, R.; Roque-Barreira, M.C. The immunomodulatory effect of plant lectins: A review with emphasis of ArinM properties. Glycoconj. J. 2013, 30, 641–657. [Google Scholar] [CrossRef]
Activity | Leguminous Source | Obtention of Bioactive Fraction | Experimental Model | Reference |
---|---|---|---|---|
Antioxidant | Bean | Alcalase hydrolysis | In vitro | [21,22] |
Alcalase/Savinase hydrolysis | In vitro | [23] | ||
In vitro digestion | In vitro | [24] | ||
Chickpea | Alcalase hydrolysis | In vitro | [19] | |
Cowpea | Alcalase/Flavourzyme/pepsin-pancreatin | In vitro | [25] | |
Lentil | In vitro digestion | In vitro | [24] | |
Lupin | Bacterial and Alcalase/Neutrase/Flavourzyme hydrolysis | In vitro In vitro | [26] | |
Pea | ||||
Soybean | Corolase PP hydrolysis | In vitro | [20] | |
In vitro digestion | In vitro | [24] | ||
Anti-inflammatory | Bean | Alcalase/Savinase hydrolysis | In vitro | [23] |
Pea | Thermolysin hydrolysis | In vitro/in vivo (mice)/ex vivo | [27] | |
Lectin isolation | In vivo (rats) | [28] | ||
Soybean | Alcalase hydrolysis | In vitro | [29] | |
Lunasin isolation | In vitro | [26] | ||
In vitro | [30] | |||
Specific peptides isolation | In vivo (mice) | [31] | ||
Antihypertensive | Bean | Alcalase hydrolysis | In vitro | [32] |
In vitro digestion | In vitro | [33] | ||
Ckickpea | Alcalase hydrolysis | In vitro | [34] | |
Lentil | Alcalase/Protamex/Savinase/Corolase 7089 hydrolysis | In vitro | [35] | |
Mung bean | Alcalase hydrolysis | In vitro | [36] | |
In vitro | [37] | |||
Pea | Thermolysin hydrolysis | In vitro/in vivo (rats) | [38] | |
Alcalase hydrolysis | In vitro | [39] | ||
In vitro digestion/fermentation | In vitro | [40] | ||
Soybean | Pepsin/pancreatin hydrolysis | In vitro | [41] | |
Corolase PP hydrolysis | In vitro | [20] | ||
Protease P/trypsin/chymotrpypsin | In vitro | [42] | ||
Fermentation | In vitro | [43] | ||
Hypocholesterolemic | Cowpea | In vitro digestion | In vitro | [44] |
Lupin | Total protein extraction | In vivo (rats) | [45] | |
Pepsin/Trypsin hydrolysis | In vitro | [46] | ||
Soybean | 7S globulin isolation | In vitro/in vivo (rats) | [47] | |
In vivo (rats) | [48] | |||
Pepsin hydrolysis | In vitro | [49] | ||
Chickpea | CPE-III peptide | In vivo (mice) | [50] | |
Pepsin/pancreatin hydrolysis | [51] | |||
Antitumoral | Bean | Lectin isolation | In vitro | [52] |
Chickpea | Flavorzyme hydrolysis | In vivo (mice) | [53] | |
Cowpea | BBI isolation | In vitro | [54,55,56] | |
Lentil | Lectin isolation | In vitro | [57] | |
Soybean | Pepsin/pancreatin hydrolysis | In vitro | [58] | |
Alcalase hydrolysis | In vitro | [59] | ||
Lunasin isolation | In vitro | [60] | ||
In vitro digestion | In vitro | [61] | ||
Mineral-chelating | Bean | Pepsin + pancreatin hydrolysis | In vitro | [62] |
Chickpea | Alcalase hydrolysis | In vitro | [63] | |
Pepsin + pancreatin hydrolysis | In vitro | [64] | ||
Alcalase/flavourzyme hydrolysis | In vitro | [65] | ||
Soybean | Neutrase/flavourzyme hydrolysis | In vitro | [66] | |
Protease M + glutaminase hydrolysis | In vitro | [67] | ||
Protease M + deamidase hydrolysis | In vitro | [68] | ||
Antimicrobial | Bean | Alcalase hydrolysis | In vitro | [69] |
Bitter bean | Boiling + L. fermentum fermentation | In vitro/in silico | [70] | |
Butterfly pea | Bromelain/trypsin hydrolysis | In vitro | [71] | |
Soybean | Gastrointestinal digestion | In vitro | [72] | |
B. subtilis fermentation | In vitro | [73] | ||
Immune-modulatory | Bean | Pepsin/pancreatin/hydrolysis | In vitro | [74] |
Black bean | Alcalase hydrolysis | In vitro | [75] | |
Soybean | Germinated | In vitro | [76] | |
Antidiabetic | Soybean | Pepsin/pancreatin/hydrolysis | In vitro | [77] |
Bean | Pepsin/pancreatin/hydrolysis | In vitro | [78] |
Peptide Sequence | Leguminous Source | Biological Activity | Reference |
---|---|---|---|
HTSKALLDMLKRLGK | Pea | Antioxidant | [79] |
VTSLDLPVLRW | |||
FVPY | Lupin | ||
FVPH | Pinto bean | [23] | |
FVPHYYSK | |||
FYPHYYSKAI | |||
SWN | |||
GHHH | |||
NEGEAH | Anti-inflammatory | ||
DNPIFSDHQ | |||
SGSYFVDGHH | |||
IRHFNEGDVLVIPPGVPY | Soybean | Antihypertensive | [20] |
IRHFNEGDVLVIPPGVPYW | |||
IYNFREGDLIAVPTG | |||
VSIIDTNSLENQLDQMPRR | |||
YRAELSEQDIFVIPAG | |||
IR | Pea | [39] | |
KF | |||
EF | |||
IFENNLQN | |||
FEGTVFENG | [38,39] | ||
LTFPG | [38] | ||
KEDDEEEEQGEEE | [40] | ||
HHL | [80] | ||
PGTAVFK | |||
PVNNPQIH | Small red bean | [33] | |
REQIEELRRL | Lentil | [57] | |
DLAIPVNRPGQLQSF | |||
IAVPGEVA | Soybean | Hypocholesterolemic | [49,81] |
IAVPTGVA | [81] | ||
LPY | [81] | ||
WGAPS | [82] | ||
FEITPEKNPQ | Antitumoral | [58] | |
IETWNPNNKP | [58] | ||
VFDGEL | [58] | ||
NRYHE | Mineral-chelating | [63] | |
DEGEQPRPFPFP | [67] | ||
HTSKALLDMLKRLGK | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcés-Rimón, M.; Morales, D.; Miguel-Castro, M. Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients 2022, 14, 5271. https://doi.org/10.3390/nu14245271
Garcés-Rimón M, Morales D, Miguel-Castro M. Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients. 2022; 14(24):5271. https://doi.org/10.3390/nu14245271
Chicago/Turabian StyleGarcés-Rimón, Marta, Diego Morales, and Marta Miguel-Castro. 2022. "Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome" Nutrients 14, no. 24: 5271. https://doi.org/10.3390/nu14245271
APA StyleGarcés-Rimón, M., Morales, D., & Miguel-Castro, M. (2022). Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients, 14(24), 5271. https://doi.org/10.3390/nu14245271