Undercarboxylated Osteocalcin: A Promising Target for Early Diagnosis of Cardiovascular and Glycemic Disorders in Patients with Metabolic Syndrome: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sambrook, P.N.; Chen, C.J.; March, L.; Cameron, I.D.; Cumming, R.G.; Lord, S.R.; Simpson, J.M.; Seibel, M.J. High Bone Turnover Is an Independent Predictor of Mortality in the Frail Elderly. J. Bone Miner Res. 2006, 21, 549–555. Available online: http://doi.wiley.com/10.1359/jbmr.060104 (accessed on 11 January 2021). [CrossRef] [PubMed]
- Van Der Klift, M.; Pols, H.A.P.; Geleijnse, J.M.; Van Der Kuip, D.A.M.; Hofman, A.; De Laet, C.E.D.H. Bone mineral density and mortality in elderly men and women: The Rotterdam Study. Bone 2002, 30, 643–648. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11934659 (accessed on 11 January 2021). [CrossRef]
- Ghorabi, S.; Shab-Bidar, S.; Sadeghi, O.; Nasiri, M.; Khatibi, S.R.; Djafarian, K. Lipid Profile and Risk of Bone Fracture: A Systematic Review and Meta-Analysis of Observational Studies. Endocr. Res. 2019, 44, 168–184. Available online: https://www.tandfonline.com/doi/full/10.1080/07435800.2019.1625057 (accessed on 20 April 2021). [CrossRef] [PubMed]
- Beamer, B.; Hettrich, C.; Lane, J. Vascular Endothelial Growth Factor: An Essential Component of Angiogenesis and Fracture Healing. HSS J. 2010, 6, 85–94. Available online: http://link.springer.com/10.1007/s11420-009-9129-4 (accessed on 20 May 2021). [CrossRef] [Green Version]
- Carulli, C.; Innocenti, M.; Brandi, M.L. Bone Vascularization in Normal and Disease Conditions. Front. Endocrinol 2013, 4. Available online: http://journal.frontiersin.org/article/10.3389/fendo.2013.00106/abstract (accessed on 2 May 2021). [CrossRef] [Green Version]
- Adami, S.; Braga, V.; Zamboni, M.; Gatti, D.; Rossini, M.; Bakri, J.; Battaglia, E. Relationship between lipids and bone mass in 2 cohorts of healthy women and men. Calcif Tissue Int. 2004, 74, 136–142. Available online: http://www.ncbi.nlm.nih.gov/pubmed/14668965 (accessed on 20 May 2021). [CrossRef]
- García-Martín, A.; Rozas-Moreno, P.; Reyes-García, R.; Morales-Santana, S.; García-Fontana, B.; García-Salcedo, J.A.; Muñoz-Torres, M. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J. Clin. Endocrinol Metab. 2012, 97, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Denova-Gutiérrez, E.; Méndez-Sánchez, L.; Muñoz-Aguirre, P.; Tucker, K.; Clark, P. Dietary Patterns, Bone Mineral Density, and Risk of Fractures: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1922. Available online: https://www.mdpi.com/2072-6643/10/12/1922 (accessed on 3 June 2021). [CrossRef] [Green Version]
- Tian, L.; Yu, X. Fat, Sugar, and Bone Health: A Complex Relationship. Nutrients 2017, 9, 506. Available online: https://www.mdpi.com/2072-6643/9/5/506 (accessed on 5 June 2021). [CrossRef] [Green Version]
- Dreher, M. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, 10, 1833. Available online: https://www.mdpi.com/2072-6643/10/12/1833 (accessed on 25 June 2021). [CrossRef] [Green Version]
- Trichopoulou, A.; Georgiou, E.; Bassiakos, Y.; Lipworth, L.; Lagiou, P.; Proukakis, C.; Trichopoulos, D. Energy Intake and Monounsaturated Fat in Relation to Bone Mineral Density among Women and Men in Greece. Prev. Med. 1997, 26, 395–400. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0091743597901602 (accessed on 20 January 2021). [CrossRef]
- Mozaffari, H.; Djafarian, K.; Mofrad, M.D.; Shab-Bidar, S. Dietary fat, saturated fatty acid, and monounsaturated fatty acid intakes and risk of bone fracture: A systematic review and meta-analysis of observational studies. Osteoporos Int. 2018, 29, 1949–1961. Available online: http://link.springer.com/10.1007/s00198-018-4540-7 (accessed on 4 June 2021). [CrossRef]
- Ginty, F. Dietary protein and bone health. Proc. Nutr. Soc. 2003, 62, 867–876. Available online: https://www.cambridge.org/core/product/identifier/S0029665103001149/type/journal_article (accessed on 7 June 2021). [CrossRef]
- García-Martín, A.; Reyes-García, R.; Avila-Rubio, V.; Muñoz-Torres, M. Osteocalcin: A link between bone homeostasis and energy metabolism. Endocrinol Nutr. 2013, 60, 260–263. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23218238 (accessed on 17 June 2021). [CrossRef]
- Guedes, J.A.C.; Esteves, J.V.; Morais, M.R.; Zorn, T.M.; Furuya, D.T. Osteocalcin improves insulin resistance and inflammation in obese mice: Participation of white adipose tissue and bone. Bone 2018, 115, 68–82. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29183784 (accessed on 20 July 2021). [CrossRef]
- Farhat, G.N.; Newman, A.B.; Sutton-Tyrrell, K.; Matthews, K.A.; Boudreau, R.; Schwartz, A.V.; Harris, T.; Tylavsky, F.; Visser, M.; Cauley, J.A.; et al. The association of bone mineral density measures with incident cardiovascular disease in older adults. Osteoporos Int. 2007, 18, 999–1008. Available online: http://link.springer.com/10.1007/s00198-007-0338-8 (accessed on 20 March 2021). [CrossRef] [Green Version]
- Kanazawa, I.; Yamaguchi, T.; Yamamoto, M.; Yamauchi, M.; Kurioka, S.; Yano, S.; Sugimoto, T. Serum Osteocalcin Level Is Associated with Glucose Metabolism and Atherosclerosis Parameters in Type 2 Diabetes Mellitus. J. Clin. Endocrinol Metab. 2009, 94, 45–49. Available online: https://academic.oup.com/jcem/article/94/1/45/2597641 (accessed on 20 May 2021). [CrossRef] [Green Version]
- Reyes-Garcia, R.; Rozas-Moreno, P.; Jimenez-Moleon, J.J.; Villoslada, M.J.L.; Garcia-Salcedo, J.A.; Santana-Morales, S.; Muñoz-Torres, M. Relationship between serum levels of osteocalcin and atherosclerotic disease in type 2 diabetes. Diabetes Metab. 2012, 38, 76–81. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, X.; Guo, J.; Roberts, C.K.; McKenzie, S.; Wu, W.; Liu, S.; Song, Y. Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta—Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2015, 4. Available online: https://www.ahajournals.org/doi/10.1161/JAHA.115.002014 (accessed on 2 April 2021). [CrossRef] [Green Version]
- Movahed, A.; Larijani, B.; Nabipour, I.; Kalantarhormozi, M.; Asadipooya, K.; Vahdat, K.; Akbarzadeh, S.; Farrokhnia, M.; Assadi, M.; Amirinejad, R.; et al. Reduced serum osteocalcin concentrations are associated with type 2 diabetes mellitus and the metabolic syndrome components in postmenopausal women: The crosstalk between bone and energy metabolism. J. Bone Miner Metab. 2012, 30, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Ferron, M.; Hinoi, E.; Karsenty, G.; Ducy, P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl. Acad Sci. USA 2008, 105, 5266–5270. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18362359 (accessed on 22 April 2021). [CrossRef] [Green Version]
- Kanavos, P.; Van Den Aardweg, S.; Schurer, W.; LSE Health, London School of Economics. Diabetes Expenditure, Burden of Disease and Management in 5 EU Countries. 2012. Available online: http://www.lse.ac.uk/lsehealthandsocialcare (accessed on 22 April 2021).
- Lopez-Bastida, J.; Boronat, M.; Moreno, J.O.; Schurer, W. Costs, outcomes and challenges for diabetes care in Spain. Global Health 2013, 9, 17. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23635075 (accessed on 23 January 2021). [CrossRef] [Green Version]
- Dunbar, S.B.; Khavjou, O.A.; Bakas, T.; Hunt, G.; Kirch, R.A.; Leib, A.R.; Morrison, S.; Poehler, D.C.; Roger, V.L.; Whitsel, L.P.; et al. Projected Costs of Informal Caregiving for Cardiovascular Disease: 2015 to 2035: A Policy Statement From the American Heart Association. Circulation 2018, 137, e558–e577. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29632217 (accessed on 12 January 2021). [CrossRef]
- Berrington de Gonzalez, A.; Hartge, P.; Cerhan, J.R.; Flint, A.J.; Hannan, L.; MacInnis, R.J.; Moore, S.C.; Tobias, G.S.; Anton-Culver, H.; Freeman, L.B.; et al. Body-Mass Index and Mortality among 1.46 Million White Adults. N. Engl. J. Med. 2010, 363, 2211–2219. Available online: http://www.nejm.org/doi/abs/10.1056/NEJMoa1000367 (accessed on 6 January 2021). [CrossRef] [Green Version]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The Metabolic Syndrome and Cardiovascular Risk. J. Am. Coll. Cardiol 2010, 56, 1113–1132. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0735109710026380 (accessed on 25 January 2021). [CrossRef] [Green Version]
- Ford, E.S.; Li, C.; Sattar, N. Metabolic syndrome and incident diabetes: Current state of the evidence. Diabetes Care 2008, 31, 1898–1904. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18591398 (accessed on 25 February 2021). [CrossRef] [Green Version]
- Kane, A.E.; Gregson, E.; Theou, O.; Rockwood, K.; Howlett, S.E. The association between frailty, the metabolic syndrome, and mortality over the lifespan. GeroScience 2017, 39, 221–229. Available online: http://link.springer.com/10.1007/s11357-017-9967-9 (accessed on 25 May 2021). [CrossRef] [Green Version]
- Von Muhlen, D.; Safii, S.; Jassal, S.K.; Svartberg, J.; Barrett-Connor, E. Associations between the metabolic syndrome and bone health in older men and women: The Rancho Bernardo Study. Osteoporos Int. 2007, 18, 1337–1344. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17492393 (accessed on 21 June 2021). [CrossRef] [Green Version]
- Garcia-Martin, A.; Cortes-Berdonces, M.; Luque-Fernandez, I.; Rozas-Moreno, P.; Quesada-Charneco, M.; Munoz-Torres, M. Osteocalcin as a marker of metabolic risk in healthy postmenopausal women. Menopause 2011, 18, 537–541. [Google Scholar] [CrossRef]
- Hwang, Y.-C.; Jeong, I.-K.; Ahn, K.J.; Chung, H.Y. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects. Diabetes Metab Res Rev. 2009, 25, 768–772. [Google Scholar] [CrossRef]
- Bullo, M.; Moreno-Navarrete, J.M.; Fernandez-Real, J.M.; Salas-Salvado, J. Total and undercarboxylated osteocalcin predict changes in insulin sensitivity and beta cell function in elderly men at high cardiovascular risk. Am. J. Clin. Nutr. 2012, 95, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prats-Puig, A.; Osiniri, I.; Soriano-Rodríguez, P.; Carreras-Badosa, G.; Buñuel-Álvarez, J.C.; Vila-Pablos, C.; de Zegher, F.; Ibáez, L.; Bassols, J.; López-Bermejo, A. Undercarboxylated osteocalcin relates to cardiovascular risk markers in offspring of families with metabolic syndrome. Atherosclerosis 2014, 233, 272–277. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0021915014000185 (accessed on 11 February 2021). [CrossRef] [PubMed]
- Liu, J.-J.; Toy, W.C.; Wong, M.D.S.; Tan, C.S.H.; Tavintharan, S.; Wong, M.S.; Sum, C.F.; Lim, S.C. Elevated undercarboxylated and reduced carboxylated osteocalcin are associated with metabolic syndrome in middle age Asian females. Exp. Clin. Endocrinol Diabetes 2013, 121, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, L.C.B.; Boguszewski, C.L.; Borba, V.Z.C.; Moreira, C.A. Association between undercarboxylated osteocalcin, bone mineral density, and metabolic parameters in postmenopausal women. Arch. Endocrinol Metab. 2018, 62, 446–451. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2359-39972018000400446&lng=en&nrm=iso (accessed on 29 March 2021). [CrossRef] [Green Version]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11368702 (accessed on 29 May 2021). [CrossRef]
- Mendelsohn, M.E.; Karas, R.H. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med. 1999, 340, 1801–1811. Available online: http://www.ncbi.nlm.nih.gov/pubmed/10362825 (accessed on 30 May 2021). [CrossRef]
- Pare, G.; Krust, A.; Karas, R.H.; Dupont, S.; Aronovitz, M.; Chambon, P.; Mendelsohn, M.E. Estrogen receptor-alpha mediates the protective effects of estrogen against vascular injury. Circ. Res. 2002, 90, 1087–1092. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12039798 (accessed on 1 February 2021). [CrossRef] [Green Version]
- Benetos, A.; Rudnichi, A.; Safar, M.; Guize, L. Pulse Pressure and Cardiovascular Mortality in Normotensive and Hypertensive Subjects. Hypertension 1998, 32, 560–564. Available online: https://www.ahajournals.org/doi/10.1161/01.HYP.32.3.560 (accessed on 1 March 2021). [CrossRef] [Green Version]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. Available online: https://academic.oup.com/jn/article/141/6/1140/4689036 (accessed on 10 March 2021). [CrossRef] [Green Version]
- Martínez-González, M.A.; López-Fontana, C.; Varo, J.J.; Sánchez-Villegas, A.; Martinez, J.A. Validation of the Spanish version of the physical activity questionnaire used in the Nurses’ Health Study and the Health Professionals’ Follow-up Study. Public Health Nutr. 2005, 8, 920–927. Available online: https://www.cambridge.org/core/product/identifier/S1368980005001230/type/journal_article (accessed on 26 February 2021). [CrossRef]
- Physical activity. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 18 May 2021).
- Riquelme-Gallego, B.; García-Molina, L.; Cano-Ibáñez, N.; Sánchez-Delgado, G.; Andújar-Vera, F.; García-Fontana, C.; González-Salvatierra, S.; García-Recio, E.; Martínez-Ruiz, V.; Bueno-Cavanillas, A.; et al. Circulating Undercarboxylated Osteocalcin as Estimator of Cardiovascular and Type 2 Diabetes Risk in Metabolic Syndrome Patients. Sci. Rep. 2020, 10, 1840. [Google Scholar] [CrossRef]
- Wilson, P.W.F.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation 1998, 97, 1837–1847. Available online: https://www.ahajournals.org/doi/10.1161/01.CIR.97.18.1837 (accessed on 10 March 2021). [CrossRef] [Green Version]
- González, M. Bioestadística Amigable, 3rd ed.; Martínez-Gonzalez, M.Á., Sánchez-Villegas, A., Atucha, T., Estefanía, A., Faulin Fajardo, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; p. 596. [Google Scholar]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998, 15, 539–553. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9686693 (accessed on 13 March 2021). [CrossRef]
- Pergola, G.; Triggiani, V.; Bartolomeo, N.; Nardecchia, A.; Giagulli, V.; Bruno, I.; Caccavo, D.; Silvestris, F. Independent Relationship of Osteocalcin Circulating Levels with Obesity, Type 2 Diabetes, Hypertension, and HDL Cholesterol. Endocr. Metab Immune Disord. Targets 2016, 16, 270–275. Available online: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1871-5303&volume=16&issue=4&spage=270 (accessed on 20 March 2021). [CrossRef]
- Sanchez-Enriquez, S.; Ballesteros-Gonzalez, I.T.; Villafán-Bernal, J.R.; Pascoe-Gonzalez, S.; Rivera-Leon, E.A.; Bastidas-Ramirez, B.E.; Rivas-Carrillo, J.D.; Alcala-Zermeno, J.L.; Armendariz-Borunda, J.; Llamas-Covarrubias, I.M.; et al. Serum levels of undercarboxylated osteocalcin are related to cardiovascular risk factors in patients with type 2 diabetes mellitus and healthy subjects. World J. Diabetes 2017, 8, 11. Available online: http://www.wjgnet.com/1948-9358/full/v8/i1/11.htm (accessed on 20 March 2021). [CrossRef]
- Alfadda, A.A.; Masood, A.; Shaik, S.A.; Dekhil, H.; Goran, M. Association between Osteocalcin, Metabolic Syndrome, and Cardiovascular Risk Factors: Role of Total and Undercarboxylated Osteocalcin in Patients with Type 2 Diabetes. Int. J. Endocrinol. 2013, 2013, 1–6. Available online: https://www.hindawi.com/journals/ije/2013/197519/ (accessed on 11 February 2021). [CrossRef] [Green Version]
- Liu, D.-M.; Guo, X.-Z.; Tong, H.-J.; Tao, B.; Sun, L.-H.; Zhao, H.-Y.; Ning, G.; Liu, J.-M. Association between osteocalcin and glucose metabolism: A meta-analysis. Osteoporos Int. 2015, 26, 2823–2833. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26089135 (accessed on 23 April 2019). [CrossRef]
- Kanazawa, I.; Yamaguchi, T.; Yamauchi, M.; Yamamoto, M.; Kurioka, S.; Yano, S.; Sugimoto, T. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int. 2011, 22, 187–194. [Google Scholar] [CrossRef]
- Kanazawa, I.; Yamaguchi, T.; Tada, Y.; Yamauchi, M.; Yano, S.; Sugimoto, T. Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes. Bone 2011, 48, 720–725. [Google Scholar] [CrossRef]
- Iki, M.; Tamaki, J.; Fujita, Y.; Kouda, K.; Yura, A.; Kadowaki, E.; Sato, Y.; Moon, J.S.; Tomioka, K.; Okamoto, N.; et al. Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos Int. 2012, 23, 761–770. [Google Scholar] [CrossRef]
- Tan, A.; Gao, Y.; Yang, X.; Zhang, H.; Qin, X.; Mo, L.; Peng, T.; Xia, N.; Mo, Z. Low serum osteocalcin level is a potential marker for metabolic syndrome: Results from a Chinese male population survey. Metabolism 2011, 60, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Yeap, B.B.; Chubb, S.A.P.; Flicker, L.; McCaul, K.A.; Ebeling, P.R.; Beilby, J.P.; Norman, P.E. Reduced serum total osteocalcin is associated with metabolic syndrome in older men via waist circumference, hyperglycemia, and triglyceride levels. Eur. J. Endocrinol 2010, 163, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Yeap, B.B.; Alfonso, H.; Chubb, S.A.P.; Byrnes, E.; Beilby, J.P.; Ebeling, P.R.; Allan, C.A.; Schultz, C.; Hankey, G.J.; Golledge, J.; et al. Proportion of Undercarboxylated Osteocalcin and Serum P1NP Predict Incidence of Myocardial Infarction in Older Men. J. Clin. Endocrinol Metab. 2015, 100, 3934–3942. [Google Scholar] [CrossRef] [Green Version]
- Qaradakhi, T.; Gadanec, L.K.; Tacey, A.B.; Hare, D.L.; Buxton, B.F.; Apostolopoulos, V.; Levinger, I.; Zulli, A. The Effect of Recombinant Undercarboxylated Osteocalcin on Endothelial Dysfunction. Calcif Tissue Int. 2019, 105, 546–556. Available online: http://www.ncbi.nlm.nih.gov/pubmed/31485687 (accessed on 14 November 2019). [CrossRef]
- Sadek, N.B.; Gamal, S.M.; Aboulhoda, B.E.; Rashed, L.A.; Shawky, H.M.; Gamal El-Din, M.M. The Potential Role of Undercarboxylated Osteocalcin Upregulation in Microvascular Insufficiency in a Rat Model of Diabetic Cardiomyopathy. J. Cardiovasc. Pharmacol Ther. 2020, 25, 86–97. Available online: http://journals.sagepub.com/doi/10.1177/1074248419876632 (accessed on 14 November 2019). [CrossRef] [PubMed]
- Villafán-Bernal, J.R.; Llamas-Covarrubias, M.A.; Muñoz-Valle, J.F.; Rivera-León, E.A.; González-Hita, M.E.; Bastidas-Ramírez, B.E.; Gurrola-Díaz, C.M.; Armendáriz-Borunda, J.S.; Sánchez-Enríquez, S. A Cut-Point Value of Uncarboxylated to Carboxylated Index Is Associated With Glycemic Status Markers in Type 2 Diabetes. J. Investig. Med. 2014, 62, 33–36. Available online: http://jim.bmj.com/lookup/doi/10.2310/JIM.0000000000000015 (accessed on 13 February 2021). [CrossRef]
Males (N = 135) | Females (N = 161) | p | |||
---|---|---|---|---|---|
T2D (%) | 20.0% | 21.7% | 0.697 | ||
>7 h of sedentary activity (%) | 57.0% | 36.0% | <0.001 | ||
Smoking (%) | 16.3% | 8.1% | 0.029 | ||
Hypertension (%) | 93.3% | 90.7% | 0.270 | ||
Mean | SD | Mean | SD | p | |
Age | 62.1 | 5.1 | 65.8 | 4.1 | <0.001 |
BMI (kg/m²) | 32.5 | 3.5 | 32.8 | 3.9 | 0.537 |
WC (cm) | 112.7 | 9.5 | 104.3 | 9.6 | <0.001 |
Systolic BP (mm Hg) | 142.4 | 16.4 | 134.9 | 17.2 | <0.001 |
Dyastolic BP (mm Hg) | 88.4 | 10.2 | 83.8 | 9.6 | <0.001 |
FPG (mg/dL) | 101.0 | 20.3 | 102.4 | 26.8 | 0.611 |
Total cholesterol (mg/dL) | 194 | 32 | 208 | 37 | <0.001 |
HDL-C (mg/dL) | 46 | 10 | 53 | 10 | <0.001 |
LDL-C (mg/dL) | 119 | 29 | 127 | 35 | 0.034 |
Triglicerydes (mg/dL) | 165 | 77 | 168 | 72 | 0.798 |
HbA1c (%) | 5.9 | 0.8 | 6.0 | 0.8 | 0.242 |
CV-ZS | 1.0 | 2.5 | −0.9 | 2.8 | <0.001 |
Framingham score (%) | 16.7 | 6.3 | 10.2 | 4.8 | <0.001 |
Log ucOC (ng/mL) | 1.4 | 0.8 | 1.6 | 0.8 | 0.043 |
MedDiet index | 8.5 | 2.1 | 8.6 | 1.9 | 0.679 |
Baseline (n = 246) | 6 Months (n = 227) | 12 Months (n = 214) | |||||
---|---|---|---|---|---|---|---|
Mean/ N | SD/ % | Mean/ N | SD/ % | Mean/ N | SD/ % | p | |
BMI (kg/m2) | 32.4 | 3.6 | 31.6 | 3.9 | 31.3 | 4.1 | <0.001 |
Waist (cm) | 108.1 | 10.4 | 104.1 | 10.4 | 103.6 | 10.9 | <0.001 |
Mean BP (mm Hg) | 103.2 | 11.0 | 102.6 | 10.6 | 100.3 | 11.7 | 0.023 |
Pulse (bpm) | 71.0 | 10.0 | 68.0 | 9.0 | 69.0 | 11.0 | 0.002 |
MedDiet index | 8.5 | 2.0 | 9.9 | 2.8 | 9.8 | 3.1 | <0.001 |
FPG (mg/dL) | 102 | 24 | 99 | 24 | 99 | 24 | 0.105 |
HbA1c (%) | 6.0 | 0.1 | 6.0 | 0.1 | 6.0 | 0.1 | 0.454 |
Total cholesterol (mg/dL) | 201 | 36 | 205 | 39 | 200 | 38 | 0.201 |
HDL-C (mg/dL) | 50 | 11 | 52 | 12 | 51 | 11 | <0.001 |
LDL-C (mg/dL) | 123 | 33 | 124 | 34 | 123 | 33 | 0.706 |
Triglycerides (mg/dL) | 167 | 74 | 158 | 72 | 156 | 77 | 0.002 |
Log ucOC (ng/mL) | 0.6 | 0.3 | 0.8 | 0.3 | 0.7 | 0.3 | <0.001 |
CV-ZS | −0.2 | 0.2 | −0.2 | 0.2 | −0.2 | 0.2 | 0.956 |
Framingham index (%) | 12.4 | 0.6 | 12.0 | 0.6 | 11.5 | 0.6 | 0.125 |
Sedentary | 135 | 46 | 111 | 37 | 124 | 42 | <0.001 |
Baseline (n = 246) | 6-Months (n = 227) | 12-Monts (n = 214) | ||||
---|---|---|---|---|---|---|
MetS Patients | r | p | r | p | r | p |
Age | 0.065 | 0.312 | 0.122 | 0.065 | 0.141 | 0.039 |
FPG (mg/dL) | −0.102 | 0.110 | −0.036 | 0.603 | −0.177 | 0.013 |
HDL-C (mg/dL) | 0.244 | <0.001 | 0.147 | 0.036 | 0.155 | 0.038 |
LDL-C (mg/dL) | 0.049 | 0.452 | 0.072 | 0.307 | 0.139 | 0.059 |
Triglycerides (mg/dL) | −0.113 | 0.079 | −0.058 | 0.408 | −0.021 | 0.773 |
HbA1c (%) | −0.193 | 0.007 | −0.190 | 0.012 | −0.265 | 0.002 |
Systolic BP (mm Hg) | 0.017 | 0.788 | 0.041 | 0.558 | 0.072 | 0.319 |
Dyastolic BP (mm Hg) | 0.012 | 0.848 | 0.071 | 0.304 | 0.179 | 0.013 |
CV-ZS score | −0.175 | 0.007 | −0.054 | 0.457 | −0.008 | 0.919 |
Framingham score (%) | −0.200 | 0.008 | −0.068 | 0.390 | −0.082 | 0.324 |
Log ucOC (ng/mL) | MetS Patients (n = 234) | T2D Patients (n = 62) | p | ||||
---|---|---|---|---|---|---|---|
Mean | CI (95%) | Mean | CI (95%) | ||||
Baseline (n = 246) | 1.61 | 1.50 | 1.72 | 1.02 | 0.82 | 1.23 | <0.001 |
6 months (n = 227) | 1.99 | 1.88 | 2.10 | 1.57 | 1.34 | 1.80 | 0.002 |
12 months (n = 214) | 1.70 | 1.60 | 1.81 | 1.14 | 0.93 | 1.34 | <0.001 |
Sample | Time | B | CI | p | |
---|---|---|---|---|---|
MetS patients | Baseline (n = 246) | −0.904 | −1.955 | 0.148 | 0.092 |
6 months (n = 227) | −0.148 | −1.419 | 1.124 | 0.819 | |
12 months (n = 214) | −0.145 | −1.427 | 1.137 | 0.824 | |
MetS-No T2D patients | Baseline (n = 246) | −1.317 | −2.417 | −0.217 | 0.019 |
6 months (n = 227) | 0.014 | −1.164 | 1.376 | 0.869 | |
12 months (n = 214) | 1.014 | −0.305 | 2.333 | 0.131 |
Log ucOC | Baseline | 6 Months | 12 Months | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.92 ng/mL (n = 61) | ≥0.92 ng/mL (n = 185) | p | <0.92 ng/mL (n = 25) | ≥0.92 ng/mL (n = 202) | p | <0.92 ng/mL (n = 33) | ≥0.92 ng/mL (n = 181) | p | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||
BMI (kg/m2) | 32.9 | 3.4 | 32.4 | 3.6 | 0.360 | 31.7 | 3.6 | 31.5 | 3.8 | 0.569 | 31.7 | 3.7 | 31.1 | 4.1 | 0.277 |
WC (cm) | 109.7 | 9.6 | 107.2 | 10.2 | 0.312 | 105.6 | 9.8 | 103.6 | 10.2 | 0.464 | 106.1 | 10.8 | 102.7 | 10.7 | 0.143 |
Mean BP (mm Hg) | 103.5 | 12.3 | 103.3 | 11.2 | 0.739 | 100.6 | 9.1 | 102.8 | 10.4 | 0.075 | 99.3 | 13.3 | 101.3 | 11.2 | 0.131 |
HDL-C (mg/dL) | 45.1 | 7.7 | 50.4 | 10.3 | 0.002 | 47.2 | 8.9 | 53.5 | 12.2 | <0.001 | 47.9 | 8.8 | 52.4 | 10.9 | 0.030 |
FPG (mg/dL) | 110.1 | 33.6 | 99.0 | 20.7 | 0.002 | 106.2 | 34.0 | 96.4 | 19.9 | 0.009 | 111.5 | 33.8 | 95.1 | 19.4 | <0.001 |
Triglycerides(mg/dL) | 189.2 | 96.3 | 163.8 | 67.3 | 0.020 | 163.6 | 71.1 | 158.0 | 70.8 | 0.589 | 174.9 | 84.3 | 153.0 | 76.0 | 0.079 |
HbA1c (%) | 6.3 | 1.0 | 5.8 | 0.7 | <0.001 | 6.3 | 0.8 | 5.8 | 0.6 | <0.001 | 6.4 | 0.9 | 5.8 | 0.6 | <0.001 |
CV-ZS score | 1.0 | 3.4 | −0.3 | 2.4 | <0.001 | 0.6 | 2.9 | −0.3 | 2.5 | 0.035 | 0.7 | 3.0 | −0.5 | 2.5 | 0.007 |
Framingham score (%) | 15.1 | 6.7 | 12.6 | 6.1 | 0.107 | 13.7 | 6.7 | 12.1 | 6.6 | 0.386 | 14.1 | 7.0 | 11.8 | 6.5 | 0.413 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riquelme-Gallego, B.; García-Molina, L.; Cano-Ibáñez, N.; Andújar-Vera, F.; González-Salvatierra, S.; García-Fontana, C.; Bueno-Cavanillas, A.; Muñoz-Torres, M.; García-Fontana, B. Undercarboxylated Osteocalcin: A Promising Target for Early Diagnosis of Cardiovascular and Glycemic Disorders in Patients with Metabolic Syndrome: A Pilot Study. Nutrients 2022, 14, 2991. https://doi.org/10.3390/nu14142991
Riquelme-Gallego B, García-Molina L, Cano-Ibáñez N, Andújar-Vera F, González-Salvatierra S, García-Fontana C, Bueno-Cavanillas A, Muñoz-Torres M, García-Fontana B. Undercarboxylated Osteocalcin: A Promising Target for Early Diagnosis of Cardiovascular and Glycemic Disorders in Patients with Metabolic Syndrome: A Pilot Study. Nutrients. 2022; 14(14):2991. https://doi.org/10.3390/nu14142991
Chicago/Turabian StyleRiquelme-Gallego, Blanca, Laura García-Molina, Naomi Cano-Ibáñez, Francisco Andújar-Vera, Sheila González-Salvatierra, Cristina García-Fontana, Aurora Bueno-Cavanillas, Manuel Muñoz-Torres, and Beatriz García-Fontana. 2022. "Undercarboxylated Osteocalcin: A Promising Target for Early Diagnosis of Cardiovascular and Glycemic Disorders in Patients with Metabolic Syndrome: A Pilot Study" Nutrients 14, no. 14: 2991. https://doi.org/10.3390/nu14142991
APA StyleRiquelme-Gallego, B., García-Molina, L., Cano-Ibáñez, N., Andújar-Vera, F., González-Salvatierra, S., García-Fontana, C., Bueno-Cavanillas, A., Muñoz-Torres, M., & García-Fontana, B. (2022). Undercarboxylated Osteocalcin: A Promising Target for Early Diagnosis of Cardiovascular and Glycemic Disorders in Patients with Metabolic Syndrome: A Pilot Study. Nutrients, 14(14), 2991. https://doi.org/10.3390/nu14142991