Consumption of Micronutrient Powder, Syrup or Fortified Food Significantly Improves Zinc and Iron Status in Young Mexican Children: A Cluster Randomized Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Design
2.2. Data Collection and Descriptions
2.3. Data Management, Statistical Analysis, and Power
2.3.1. Data Management
2.3.2. Statistical Analysis
2.3.3. Statistical Power
2.4. Ethical Considerations
3. Results
Differential Effects of Supplementation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hess, S.Y.; Lönnerdal, B.; Hotz, C.; Rivera, J.A.; Brown, K.H. Recent advances in knowledge of zinc nutrition and human health. Food. Nutr. Bull. 2009, 30 (Suppl. 1), S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M.; on behalf of Nutrition Impact Model Study Group (Anaemia). Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob. Health 2013, 1, e16–e25. [Google Scholar] [CrossRef] [Green Version]
- Black, R.E.; Alderman, H.; Bhutta, Z.A.; Gillespie, S.; Haddad, L.; Horton, S.; Lartey, A.; Mannar, V.; Ruel, M.; Victora, C.G.; et al. Maternal and child nutrition: Building momentum for impact. Maternal and Child Nutrition Study Group. Lancet 2013, 382, 372–375. [Google Scholar] [CrossRef] [Green Version]
- De la Cruz-Góngora, V.; Shamah-Levy, T.; Villalpando, S.; Méndez-Gómez Humarán, I.; Rebollar-Campos, R.; Rivera-Dommarco, J. A decreasing trend in zinc deficiency in Mexican children aged 1–4: Analysis of three national health and nutrition surveys in 1999, 2006 and 2018–19. Salud Publica Mex. 2021, 63, 371–381. [Google Scholar] [CrossRef]
- Villalpando, S.; de la Cruz, V.; Shamah-Levy, T.; Rebollar, R.; Contreras-Manzano, A. Nutritional status of iron, vitamin B12, folate, retinol and anemia in children 1 to 11 years old. Results of the Ensanut 2012. Salud Publica Mex. 2015, 57, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Secretaría de Desarrollo Social. Programa Oportunidades. Reglas de Operación 2010. Available online: https://www.gob.mx/cms/uploads/attachment/file/79552/2010.pdf (accessed on 29 March 2012).
- Rivera, J.A.; Sotres-Alvarez, D.; Habicht, J.P.; Shamah, T.; Villalpando, S. Impact of the Mexican program for education, health, and nutrition (Progresa) on rates of growth and anemia in infants and young children: A randomized effectiveness study. JAMA 2004, 291, 2563–2570. [Google Scholar] [CrossRef]
- Neufeld, L.M.; Garcia-Guerra, A.; Leroy, J.; Flores, M.L.; Fernandez, A.C.; Rivera-Dommarco, J.A. Food and nutrition. In External Evaluation of the Impact of the Oportunidades Program; Hernandez Avila, M., Hernandez Prado, B., Eds.; Instituto Nacional de Salud Pública: Cuernavaca, Mexico, 2006. (In Spanish) [Google Scholar]
- Leroy, J.L.; García-Guerra, A.; García, R.; Dominguez, C.; Rivera, J.; Neufeld, L. The Oportunidades Program increases the linear growth of children enrolled at young ages in Urban Mexico. J. Nutr. 2008, 138, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Fernald, L.C.; Gertler, P.J.; Neufeld, L.M. 10-year effect of Oportunidades, Mexico’s conditional cash tranfer programme on child growth, cognition, language, and behaviour: A longitudinal follow-up study. Lancet 2009, 374, 1997–2005. [Google Scholar] [CrossRef]
- García-Guerra, A.; Neufeld, L.M.; Bonvecchio, A.; Fernández-Gaxiola, A.; Mejía-Rodríguez García-Feregrino, R.; Rivera-Dommarco, J. Closing the nutrition impact gap using program impact pathway analyses to inform the need for program modifications in Mexico’s conditional cash transfer program. J. Nutr. 2019, 149, 2281S–2289S. [Google Scholar] [CrossRef] [Green Version]
- de Pee, S.; Kraemer, K.; van den Briel, T.; Boy, E.; Grasset, C.; Moench-Pfanner, R.; Zlotkin, S.; Bloem, M.W.; World Food Programme; Sprinkles Global Health Initiative. Quality criteria for micronutrient powder products: Report of a meeting organized by the World Food Programme and Sprinkles Global Health Initiative. Food Nutr. Bull. 2008, 29, 232–241. [Google Scholar] [CrossRef]
- Rivera-Dommarco, J.A.; Cuevas-Nasu, L.; González de Cosío, T.; Shamah-Levy, T.; García-Feregrino, R. Desnutrición crónica en México en el último cuarto de siglo: Análisis de cuatro encuestas nacionales. Salud Publica Mex. 2013, 55 (Suppl. 2), S161–S169. [Google Scholar] [CrossRef] [Green Version]
- Suchdev, P.S.; Jefferds, M.E.D.; Ota, E.; da Silva Lopes, K.; De-Regil, L.M. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age. Cochrane Database Syst. Rev. 2020, 2020, CD008959. [Google Scholar] [CrossRef]
- Neufeld, M.L.; García-Guerra, A.; Quezada, A.D.; Théodore, F.; Bonvecchio, A.; Domínguez Islas, C.; García-Feregrino, R.; Hernández, A.; Colchero, A.; Habicht, J.P. A fortified food can be replaced by micronutrient supplements for distribution in a Mexican social protection program based on results of a cluster randomized trial and costing analyses. J. Nutr. 2019, 149, 2302S–2309S. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. (Eds.) Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- International Zinc Nutrition Consultative Group. Assessment of the risk of zinc deficiency in populations and options for its control. Technical Document #1. Food Nutr. Bull. 2004, 25, S94–S203. [Google Scholar]
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention, and Control. A Guide for Programme Managers; WHO: Geneva, Switzerland, 2001; WHO/NHD/01.3. [Google Scholar]
- Beguin, Y. Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin. Chim. Acta 2003, 329, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.H.; Hass, J.D. Hemoglobin correction factors for estimating the prevalence of iron deficiency anemia in pregnant women residing at high altitudes in Bolivia. Rev. Panam. Salud Publica 1999, 6, 392–399. [Google Scholar] [CrossRef] [Green Version]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-For-Age, Weight-For-Age, Weight-Forlength, Weight-For-Height, and Body Mass Index-For-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006; Available online: http://www.who.int/childgrowth/standards/technical_report/en/i.ndex.html (accessed on 16 May 2013).
- Oehlert, G.W. A Note on the Delta Method. Am. Stat. 1992, 46, 27–29. [Google Scholar]
- Korn, E.L.; Graubard, B.I. Predictive Margins. In Analysis of Health Surveys; Wiley: New York, NY, USA, 1999; pp. 126–129. [Google Scholar]
- Ariff, S.; Krebs, N.F.; Soofi, S.; Westcott, J.; Bhatti, Z.; Tabassum, F.; Bhutta, Z.A. Absorbed zinc and exchangeable zinc pool size are greater in Pakistani infants receiving traditional complementary foods with zinc-fortified micronutrient powder. J. Nutr. 2014, 144, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Esamai, F.; Liechty, E.; Ikemeri, J.; Westcott, J.; Kemp, J.; Culbertson, D.; Miller, L.V.; Hambidge, K.M.; Krebs, N.F. Zinc absorption from micronutrient powder is low but is not affected by iron in Kenyan infants. Nutrients 2014, 6, 5636–5651. [Google Scholar] [CrossRef] [Green Version]
- Das, J.K.; Kumar, R.; Salam, R.A.; Bhutta, Z.A. Systematic review of zinc fortification trials. Ann. Nutr. Metab. 2013, 62 (Suppl. 1), 44–56. [Google Scholar] [CrossRef]
- Salam, R.A.; MacPhail, C.; Das, J.K.; Bhutta, Z.A. Effectiveness of Micronutrient Powders (MNP) in women and children. BMC Public Health 2013, 13 (Suppl. 3), S22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, C.; Neufingerl, N.; Del Rosso, J.M.; Transler, C.; van den Briel, T.; Osendarp, S. Can multi-micronutrient food fortification improve the micronutrient status, growth, health, and cognition of schoolchildren? A systematic review. Nutr. Rev. 2011, 69, 186–204. [Google Scholar] [CrossRef]
- Ziegler, E.E. Adverse effects of cow’s milk in infants. Nestle Nutr. Workshop Ser. Pediatr. Program 2007, 60, 185–199. [Google Scholar] [PubMed] [Green Version]
- Dekker, L.H.; Villamor, E. Zinc supplementation in children is not associated with decreases in hemoglobin concentrations. J. Nutr. 2010, 140, 1035–1040. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, P. Iron and zinc interactions in humans. Am. J. Clin. Nutr. 1998, 68, 442S–446S. [Google Scholar] [CrossRef] [PubMed]
- Leroy, J.F.; García-Guerra, A.; Neufeld, L. The impact of three supplements with identical micronutrient content on morbidity in Mexican children. FASEB J. 2008, 22, 307.3. [Google Scholar] [CrossRef]
- Flores, L.; Théodore, F.; Bonvecchio, A.; Blanco, I.; Neufeld, L.M. Acceptability of three supplements with identical micronutrients content in Mexican children. FASEB J. 2008, 22, 677.2. [Google Scholar] [CrossRef]
- Adriani, M.; Wirjatmadi, B. The effect of adding zinc to vitamin A on IGF-1, bone age and linear growth in stunted children. J. Trace Elem. Med. Biol. 2014, 28, 431–435. [Google Scholar] [CrossRef]
- Dijkhuizen, M.A.; Wieringa, F.T.; West, C.E.; Martuti, S.; Muhilal. Effects of iron and zinc supplementation in Indonesian infants on micronutrient status and growth. J. Nutr. 2001, 131, 2860–2865. [Google Scholar] [CrossRef] [Green Version]
- Bonvecchio, A.; Gonzalez, W.; Théodore, F.; Lozada, A.L.; Garcia-Guerra, A.; Alvarado, R.; Fernandez-Gaxiola, A.C.; Rawlinson, C.R.; Villa de la Vega, A.; Neufeld, L.M. Translating evidence-based program recommendations into action: The design, testing and scaling up of the behavior change strategy EsIAN in Mexico. J. Nutr. 2019, 149, 2310S–2322S. [Google Scholar] [CrossRef]
Nutrisano (Fortified Food) | Micronutrient Powder | Syrup | |
---|---|---|---|
Quantity to be consumed | (44 g) | (1.0 g) | (5 mL) |
Energy, kcal | 194 | - | - |
Protein, g | 5.8 | - | - |
Carbohydrates, g | 27.9 | - | - |
Lipid, g | 6.6 | - | - |
Sodium, mg | 24.5 | - | - |
Iron, mg 2 | 10.0 | 10.0 | 10.0 |
Zinc, mg 3 | 10.0 | 10.0 | 10.0 |
Vitamin A, µg ER | 400.0 | 400.0 | 400.0 |
Vitamin E, µg ET | 6.0 | 6.0 | 6.0 |
Vitamin C, mg | 50.0 | 50.0 | 50.0 |
Vitamin B2, mg | 0.8 | 0.8 | 0.8 |
Vitamin B12, µg | 0.7 | 0.7 | 0.7 |
Folic acid, µg | 50.0 | 50.0 | 50.0 |
Fortified Food | Syrup | MNP 1 | Total | |
---|---|---|---|---|
n = 73 | n = 105 | n = 105 | n = 283 | |
General characteristics | ||||
Age, months | 8.2 ± 2.5 | 8.5 ± 2.6 | 8.4 ± 2.4 | 8.4 ± 2.5 |
Sex, % males | 47.9 | 47.1 | 55.2 | 50.2 |
Socioeconomic Index # | 0.2 ± 1.0 | −0.2 ± 1.0 | 0.1 ± 1.0 | 0.0 ± 1.0 |
Anthropometric measurements | ||||
Length, cm | 67.3 ± 4.3 | 67.5 ± 4.5 | 67.8 ± 4.2 | 67.6 ± 4.3 |
Weight, kg | 7.9 ± 1.2 | 7.8 ± 1.3 | 8.1 ± 1.2 | 7.9 ± 1.2 |
Nutritional Status | ||||
Length for age, Z | −1.0 ± 1.0 | −1.1 ± 1.0 | −1.0 ± 1.0 | −1.0 ± 1.0 |
Stunting 2, % | 17.8 | 14.4 | 20.0 | 17.3 |
Weight for age, Z | −0.4 ± 1.0 | −0.6 ± 1.0 | −0.4 ± 1.0 | −0.5 ± 1.0 |
Weight for length, Z | 0.3 ± 0.9 | 0.1 ± 1.0 | 0.3 ± 0.9 | 0.3 ± 0.9 |
BMI for age, Z | 0.3 ± 0.9 | 0.1 ± 1.0 | 0.3 ± 0.9 | 0.2 ± 0.9 |
Overweight or obesity 3, % | 2.7 | 1.0 | 1.9 | |
CRP, mg/L | ||||
Median | 1.7 | 1.1 | 0.8 | 1.0 |
[p25, p75] | [0.4, 8] | [0.3, 4.2] | [0.2, 3.4] | [0.3, 4.2] |
FF | Syrup | MNP 1 | Syrup vs. FF | MNP vs. FF | MNP vs. Syrup | |
---|---|---|---|---|---|---|
Zinc, µmol/L | ||||||
n = 73 | n = 99 | n = 104 | ||||
Baseline | 11.3 (10.9, 11.8) | 10.8 (10.5, 11.2) | 10.9 (10.4, 11.3) | −0.5 (−1.1, 0.1) | −0.5 (−1.1, 0.2) | 0.0 (−0.6, 0.6) |
4 months | 12.3 (11.9, 12.7) | 15.2 (14.3, 16.2) | 13.7 (13.2, 14.2) | 2.9 (1.9, 4.0) | 1.5 (0.8, 2.1) | −1.5 (−2.6, −0.4) |
Change | 0.9 (0.3, 1.6) | 4.4 (3.2, 5.5) | 2.9 (2.1, 3.6) | 3.4 (2.1, 4.7) | 1.9 (0.9, 2.9) | −1.5 (−2.9, −0.1) |
Ferritin, µg/L | ||||||
n = 70 | n = 98 | n = 99 | ||||
Baseline | 18.7 (12.7, 24.7) | 26.5 (20.0, 32.9) | 22.3 (16.7, 27.8) | 7.8 (−1.4, 16.9) | 3.6 (−4.7, 11.8) | −4.2 (−12.9, 4.4) |
4 months | 14.5 (10.5, 18.6) | 24.7 (19.8, 29.6) | 25.7 (20.2, 31.2) | 10.2 (3.5, 16.8) | 11.2 (4.3, 18.1) | 1.0 (−6.5, 8.6) |
Change | −4.2 (−11.6, 3.3) | −1.8 (−7.6, 4.0) | 3.5 (−5.6, 12.6) | 2.4 (−7.1, 11.8) | 7.6 (−4.1, 19.4) | 5.3 (−5.5, 16.0) |
sTfR, mg/L | ||||||
n = 70 | n = 99 | n = 99 | ||||
Baseline | 4.14 (3.44, 4.83) | 4.73 (4.27, 5.20) | 4.52 (4.17, 4.86) | 0.60 (−0.25, 1.45) | 0.38 (−0.42, 1.19) | −0.22 (−0.82, 0.39) |
4 months | 4.87 (4.35, 5.40) | 4.36 (4.15, 4.57) | 4.49 (4.20, 4.77) | −0.51 (−1.09, 0.06) | −0.39 (−0.99, 0.21) | 0.13 (−0.23, 0.49) |
Change | 0.74 (−0.23, 1.71) | −0.38 (−0.88, 0.12) | −0.03 (−0.53, 0.47) | −1.11 (−2.21, −0.02) | −0.77 (−1.86, 0.32) | 0.34 (−0.36, 1.05) |
Hemoglobin, g/L | ||||||
n = 73 | n = 100 | n = 103 | ||||
Baseline | 110.6 (108.0, 113.2) | 109.2 (105.6, 112.7) | 110.2 (107.7, 112.6) | −1.4 (−5.9, 3.0) | −0.4 (−4.0, 3.2) | 1.0 (−3.3, 5.4) |
4 months | 109.3 (107.4, 111.3) | 113.6 (110.6, 116.6) | 115.6 (114.0, 117.3) | 4.3 (0.7, 7.8) | 6.3 (3.5, 9.1) | 2.1 (−1.5, 5.6) |
Change | −1.3 (−4.1, 1.6) | 4.4 (−1.4, 10.3) | 5.5 (2.5, 8.4) | 5.7 (−0.8, 12.2) | 6.7 (2.7, 10.8) | 1.0 (−5.5, 7.6) |
FF | Syrup | MNP 1 | Syrup vs. FF | MNP vs. FF | MNP vs. Syrup | |
---|---|---|---|---|---|---|
Zinc deficiency (Zn < 9.9 µmol/L), % | ||||||
n = 73 | n = 99 | n = 104 | ||||
Baseline | 22.9 (14.2, 31.6) | 39.2 (31.0, 47.5) | 32.1 (24.0, 40.3) | 16.4 (3.9, 28.9) | 9.3 (−3.0, 21.5) | −7.1 (−19.4, 5.2) |
4 months | 10.8 (4.0, 17.5) | 3.0 (0.1, 5.9) | 8.6 (4.7, 12.5) | −7.8 (−15.1, −0.4) | −2.2 (−10.2, 5.9) | 5.6 (0.8, 10.4) |
Change | −12.1 (−22.6, −1.6) | −36.2 (−45.8, −26.6) | −23.5 (−34.3, −12.8) | −24.1 (−38.8, −9.4) | −11.4 (−26.4, 3.5) | 12.7 (−2.2, 27.6) |
Low iron stores (ferritin < 12 µg/L), % | ||||||
n = 70 | n = 98 | n = 99 | ||||
Baseline | 33.8 (21.2, 46.3) | 27.9 (17.4, 38.4) | 25.7 (18.3, 33.1) | −5.9 (−22.6, 10.8) | −8.1 (−22.9, 6.7) | −2.2 (−15.2, 10.8) |
4 months | 39.8 (26.5, 53.0) | 15.2 (9.2, 21.2) | 14.8 (7.1, 22.4) | −24.6 (−39.7, −9.5) | −25.0 (−40.2, −9.8) | −0.4 (−10.5, 9.7) |
Change | 6.0 (−11.4, 23.3) | −12.7 (−22.2, −3.2) | −10.9 (−24.1, 2.3) | −18.7 (−38.5, 1.1) | −16.9 (−38.6, 4.8) | 1.8 (−14.4, 18.0) |
Tissue iron deficiency (sTfR > 6 mg/L), % | ||||||
n = 70 | n = 99 | n = 99 | ||||
Baseline | 16.3 (3.3, 29.2) | 19.6 (9.4, 29.8) | 18.1 (9.2, 27.1) | 3.3 (−13.6, 20.3) | 1.9 (−14.9, 18.6) | −1.5 (−15.0, 12.1) |
4 months | 16.3 (7.4, 25.1) | 7.8 (2.5, 13.1) | 6.5 (0.9, 12.1) | −8.5 (−18.7, 1.8) | −9.8 (−20.5, 1.0) | −1.3 (−9.2, 6.6) |
Change | 0.0 (−10.8, 10.8) | −11.8 (−24.4, 0.9) | −11.6 (−23.1, −0.2) | −11.8 (−28.5, 4.9) | −11.6 (−27.4, 4.1) | 0.2 (−16.8, 17.1) |
Anemia (Hb < 110 g/L), % | ||||||
n = 73 | n = 100 | n = 103 | ||||
Baseline | 49.3 (42.9, 55.7) | 48.4 (37.5, 59.4) | 44.2 (33.2, 55.2) | −0.9 (−13.9, 12.2) | −5.1 (−18.5, 8.3) | −4.2 (−20.0, 11.5) |
4 months | 53.4 (46.7, 60.1) | 35.5 (24.5, 46.5) | 26.8 (21.6, 32.0) | −17.9 (−31.1, −4.7) | −26.6 (−35.4, −17.8) | −8.7 (−21.3, 3.9) |
Change | 4.1 (−4.1, 12.2) | −12.9 (−31.8, 5.9) | −17.4 (−29.6, −5.2) | −17.0 (−37.5, 3.5) | −21.5 (−36.2, −6.8) | −4.5 (−26.9, 17.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Guerra, A.; Rivera, J.A.; Neufeld, L.M.; Quezada-Sánchez, A.D.; Dominguez Islas, C.; Fernández-Gaxiola, A.C.; Bonvecchio Arenas, A. Consumption of Micronutrient Powder, Syrup or Fortified Food Significantly Improves Zinc and Iron Status in Young Mexican Children: A Cluster Randomized Trial. Nutrients 2022, 14, 2231. https://doi.org/10.3390/nu14112231
García-Guerra A, Rivera JA, Neufeld LM, Quezada-Sánchez AD, Dominguez Islas C, Fernández-Gaxiola AC, Bonvecchio Arenas A. Consumption of Micronutrient Powder, Syrup or Fortified Food Significantly Improves Zinc and Iron Status in Young Mexican Children: A Cluster Randomized Trial. Nutrients. 2022; 14(11):2231. https://doi.org/10.3390/nu14112231
Chicago/Turabian StyleGarcía-Guerra, Armando, Juan A. Rivera, Lynnette M. Neufeld, Amado D. Quezada-Sánchez, Clara Dominguez Islas, Ana Cecilia Fernández-Gaxiola, and Anabelle Bonvecchio Arenas. 2022. "Consumption of Micronutrient Powder, Syrup or Fortified Food Significantly Improves Zinc and Iron Status in Young Mexican Children: A Cluster Randomized Trial" Nutrients 14, no. 11: 2231. https://doi.org/10.3390/nu14112231
APA StyleGarcía-Guerra, A., Rivera, J. A., Neufeld, L. M., Quezada-Sánchez, A. D., Dominguez Islas, C., Fernández-Gaxiola, A. C., & Bonvecchio Arenas, A. (2022). Consumption of Micronutrient Powder, Syrup or Fortified Food Significantly Improves Zinc and Iron Status in Young Mexican Children: A Cluster Randomized Trial. Nutrients, 14(11), 2231. https://doi.org/10.3390/nu14112231