The Effect of Omega-3 Fatty Acids on Thromboxane, Brain-Derived Neurotrophic Factor, Homocysteine, and Vitamin D in Depressive Children and Adolescents: Randomized Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Biochemical Parameters
2.2. Statistical Analysis
3. Results
3.1. Baseline Data
3.2. Effect of FA Supplementation in Patients with DD
3.3. The Correlations between Parameters
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, G.Y.; Tam, W.W.; Lu, Y.; Ho, C.S.; Zhang, M.W.; Ho, R.C. Prevalence of Depression in the Community from 30 Countries between 1994 and 2014. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Costello, E.J.; Erkanli, A.; Angold, A. Is there an epidemic of child or adolescent depression? J. Child Psychol. Psychiatry 2006, 47, 1263–1271. [Google Scholar] [CrossRef]
- Coghill, D.; Bonnar, S.; Duke, S.L.; Graham, J.; Seth, S. Child and Adolescent Psychiatry, 1st ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2009. [Google Scholar]
- Vaváková, M.; Ďuračková, Z.; Trebatická, J. Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxidative Med. Cell. Longev. 2015, 898393. [Google Scholar] [CrossRef] [Green Version]
- Colin, A.; Reggers, J.; Castronovo, V.; Ansseau, M. Lipides, dépression et suicide. Encéphale 2003, 29, 49–58. [Google Scholar]
- Sinopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Caballero-Martínez, F.; León-Vázquez, F.; Payá-Pardo, A.; Díaz-Holgado, A. Use of health care resources and loss of productivity in patients with depressive disorders seen in primary care: Interdep Study. Actas Esp. Psiquiatr. 2014, 42, 281–291. [Google Scholar] [PubMed]
- Lopresti, A.L.; Hood, S.D.; Drummond, P.D. A review of lifestyle factors that contribute to important pathways associated with major depression: Diet, sleep and exercise. J. Affect. Disord. 2013, 148, 12–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trebatická, J.; Hradečná, Z.; Surovcová, A.; Katrenčíková, B.; Gushina, I.; Waczulíková, I.; Sušienková, K.; Garaiova, I.; Šuba, J.; Ďuračková, Z. Omega-3 fatty-acids modulate symptoms of depressive disorder, serum levels of omega-3 fatty acids and omega-6 / omega-3 ratio in children. A randomized, double-blind and controlled trial. Psychiatry Res. 2020, 287, 112911. [Google Scholar] [CrossRef]
- Husted, K.S.; Bouzinova, E.V. The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. Revista Española Medicina Nuclear Imagen Molecular 2016, 52, 139–147. [Google Scholar] [CrossRef]
- Trebatická, J.; Dukát, A.; Ďuračková, Z.; Muchová, J. Cardiovascular Diseases, Depression Disorders and Potential Effects of Omega-3 Fatty Acids. Physiol. Res. 2017, 66, 363–382. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.H.; Goldstein, B.I. Inflammation in Children and Adolescents With Neuropsychiatric Disorders: A Systematic Review. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 274–296. [Google Scholar] [CrossRef] [PubMed]
- D’Acunto, G.; Nageye, F.; Zhang, J.; Masi, G.; Cortese, S. Inflammatory Cytokines in Children and Adolescents with Depressive Disorders: A Systematic Review and Meta-Analysis. J. Child Adolesc. Psychopharmacol. 2019, 29, 362–369. [Google Scholar] [CrossRef]
- Colasanto, M.; Madigan, S.; Korczak, D.J. Depression and inflammation among children and adolescents: A meta-analysis. J. Affect. Disord. 2020, 277, 940–948. [Google Scholar] [CrossRef]
- Lotrich, F.E.; Sears, B.; McNamara, R.K. Elevated ratio of arachidonic acid to long-chain omega-3 fatty acids predicts depression development following interferon-alpha treatment: Relationship with interleukin-6. Brain Behav. Immun. 2013, 31, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Tassoni, D.; Kaur, G.; Weisinger, R.S.; Sinclair, A.J. The role of eicosanoids in the brain. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. 1), 220–228. [Google Scholar] [PubMed]
- Macaluso, M.; Drevets, W.C.; Preskorn, S.H. How biomarkers will change psychiatry. Part II: Biomarker selection and potential inflammatory markers of depression. J. Psychiatr. Pract. 2012, 18, 281–286. [Google Scholar] [CrossRef]
- Savitz, J.B.; Teague, T.K.; Misaki, M.; Macaluso, M.; Wurfel, B.E.; Meyer, M.; Drevets, D.; Yates, W.; Gleason, O.; Drevets, W.C.; et al. Treatment of bipolar depression with minocycline and/or aspirin: An adaptive, 2×2 double-blind, randomized, placebo-controlled, phase IIA clinical trial. Transl. Psychiatry 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adili, R.; Hawley, M.; Holinstat, M. Regulation of platelet function and thrombosis by omega-3 and omega-6 polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat. 2018, 139, 10–18. [Google Scholar] [CrossRef]
- Lieb, J.; Karmali, R.; Horrobin, D. Elevated levels of prostaglandin e2 and thromboxane B2 in depression. Prostaglandins, Leukot. Med. 1983, 10, 361–367. [Google Scholar] [CrossRef]
- Gehi, A.; Musselman, D.; Otte, C.; Royster, E.B.; Ali, S.; Whooley, M.A. Depression and platelet activation in outpatients with stable coronary heart disease: Findings from the Heart and Soul Study. Psychiatry Res. 2010, 175, 200–204. [Google Scholar] [CrossRef]
- Pawełczyk, T.; Grancow-Grabka, M.; Trafalska, E.; Szemraj, J.; Żurner, N.; Pawełczyk, A. An increase in plasma brain derived neurotrophic factor levels is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized clinical trial. Psychopharmacology 2019, 236, 2811–2822. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Chen, Z.-Y. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol. Sin. 2010, 32, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Pandey, G.N.; Dwivedi, Y.; Rizavi, H.S.; Ren, X.; Zhang, H.; Pavuluri, M.N. Brain-derived neurotrophic factor gene and protein expression in pediatric and adult depressed subjects. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 645–651. [Google Scholar] [CrossRef]
- Sen, S.; Duman, R.; Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biol. Psychiatry 2008, 64, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Yasui-Furukori, N.; Tsuchimine, S.; Nakagami, T.; Fujii, A.; Sato, Y.; Tomita, T.; Yoshizawa, K.; Inoue, Y.; Kaneko, S. Association between plasma paroxetine concentration and changes in plasma brain-derived neurotrophic factor levels in patients with major depressive disorder. Hum. Psychopharmacol. 2011, 26, 194–200. [Google Scholar] [CrossRef]
- Bilgiç, A.; Çelikkol Sadıç, Ç.; Kılınç, İ.; Akça, Ö.F. Exploring the association between depression, suicidality and serum neurotrophin levels in adolescents. Int. J. Psychiatry Clin. Pract. 2020, 24, 143–150. [Google Scholar] [CrossRef]
- Tsuchimine, S.; Saito, M.; Kaneko, S.; Yasui-Furukori, N. Decreased serum levels of polyunsaturated fatty acids and folate, but not brain-derived neurotrophic factor, in childhood and adolescent females with depression. Psychiatry Res. 2015, 225, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Knöchel, C.; Voss, M.; Grüter, F.; Alves, G.S.; Matura, S.; Sepanski, B.; Stäblein, M.; Wenzler, S.; Prvulovic, D.; Carvalho, A.F.; et al. Omega 3 Fatty Acids: Novel Neurotherapeutic Targets for Cognitive Dysfunction in Mood Disorders and Schizophrenia? Curr. Neuropharmacol. 2015, 13, 663–680. [Google Scholar] [CrossRef]
- Almeida, O.P.; McCaul, K.; Hankey, G.J.; Norman, P.; Jamrozik, K.; Flicker, L. Homocysteine and Depression in Later Life. Arch. Gen. Psychiatry 2008, 65, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Esnafoglu, E.; Ozturan, D.D. The relationship of severity of depression with homocysteine, folate, vitamin B12, and vitamin D levels in children and adolescents. Child Adolesc. Ment. Health 2020, 25, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-H.; Chiou, H.-Y.; Chen, Y.-H. Associations between serum homocysteine levels and anxiety and depression among children and adolescents in Taiwan. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Föcker, M.; Antel, J.; Grasemann, C.; Führer, D.; Timmesfeld, N.; Öztürk, D.; Peters, T.; Hinney, A.; Hebebrand, J.; Libuda, L. Effect of an vitamin D deficiency on depressive symptoms in child and adolescent psychiatric patients—A randomized controlled trial: Study protocol. BMC Psychiatry 2018, 18, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spedding, S. Vitamin D and Depression: A Systematic Review and Meta-Analysis Comparing Studies with and without Biological Flaws. Nutrients 2014, 6, 1501–1518. [Google Scholar] [CrossRef] [PubMed]
- Cernackova, A.; Durackova, Z.; Trebaticka, J.; Mravec, B. Neuroinflammation and depressive disorder: The role of the hypothalamus. J. Clin. Neurosci. 2020, 75, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Patrick, R.P.; Ames, B.N. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 2015, 29, 2207–2222. [Google Scholar] [CrossRef] [Green Version]
- Libuda, L.; Laabs, B.-H.; Ludwig, C.; Bühlmeier, J.; Antel, J.; Hinney, A.; Naaresh, R.; Föcker, M.; Hebebrand, J.; König, I.R.; et al. Vitamin D and the Risk of Depression: A Causal Relationship? Findings from a Mendelian Randomization Study. Nutrients 2019, 11, 1085. [Google Scholar] [CrossRef] [Green Version]
- Milaneschi, Y.; Peyrot, W.J.; Nivard, M.G.; Mbarek, H.; Boomsma, D.I.; Penninx, B.W. A role for vitamin D and omega-3 fatty acids in major depression? An exploration using genomics. Transl. Psychiatry 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Libuda, L.; Timmesfeld, N.; Antel, J.; Hirtz, R.; Bauer, J.; Führer, D.; Zwanziger, D.; Öztürk, D.; Langenbach, G.; Hahn, D.; et al. Effect of vitamin D deficiency on depressive symptoms in child and adolescent psychiatric patients: Results of a randomized controlled trial. Eur. J. Nutr. 2020, 59, 3415–3424. [Google Scholar] [CrossRef] [Green Version]
- Katrenčíková, B.; Vaváková, M.; Waczulíková, I.; Oravec, S.; Garaiova, I.; Nagyová, Z.; Hlaváčová, N.; Ďuračková, Z.; Trebatická, J. Lipid profile, lipoprotein subfractions, and fluidity of membranes in children and adolescents with depressive disorder: Effect of omega-3 fatty acids in a double-blind randomized controlled study. Biomolecules 2020, 10, 1427. [Google Scholar]
- Bang, Y.R.; Park, J.H.; Kim, S.H. Cut-Off Scores of the Children’s Depression Inventory for Screening and Rating Severity in Korean Adolescents. Psychiatry Investig. 2015, 12, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, M. Childrens Depression Inventory CDI; Psychodiagnostika a.s.: Bratislava, Slovakia, 1998. [Google Scholar]
- Lindberg, L.; Hagman, E.; Danielsson, P.; Marcus, C.; Persson, M. Anxiety and depression in children and adolescents with obesity: A nationwide study in Sweden. BMC Med. 2020, 18, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiNicolantonio, J.J.; Okeefe, J. Importance of maintaining a low omega-6/omega-3 ratio for reducing platelet aggregation, coagulation and thrombosis. Open Heart 2019, 6, e001011. [Google Scholar] [CrossRef] [PubMed]
- Pallavi, P.; Sagar, R.; Mehta, M.; Sharma, S.; Subramanium, A.; Shamshi, F.; Sengupta, U.; Qadri, R.; Pandey, R.M.; Mukhopadhyay, A.K. Serum neurotrophic factors in adolescent depression: Gender difference and correlation with clinical severity. J. Affect. Disord. 2013, 150, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Sugasini, D.; Yalagala, P.C.R.; Subbaiah, P.V. Plasma BDNF is a more reliable biomarker than erythrocyte omega-3 index for the omega-3 fatty acid enrichment of brain. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.; Liu, T.; Peter, I.; Buell, J.; Arsenault, L.; Scott, T.; Qiu, W.W. The homocysteine hypothesis of depression. Am. J. Psychiatry 2007, 164, 861–867. [Google Scholar] [CrossRef]
- Bell, I.R.; Edman, J.S.; Morrow, F.D.; Marby, D.W.; Mirages, S.; Perrone, G.; Kayne, H.L.; Cole, J.O. B complex vitamin patterns in geriatric and young adult in patients with major depression. J. Am. Geriatr. Soc. 1991, 39, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Bottiglieri, T.; Laundy, M.; Crellin, R.; Toone, B.K.; Carney, M.W.P.; Reynolds, E.H. Homocysteine, folate, methylation, and monoamine metabolism in depression. J. Neurol. Neurosurg. Psychiatry 2000, 69, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M.; Sotoudeh, G.; Amini, M.; Raisi, F.; Mansoori, A.; Hosseinzadeh, M. The relationship between dietary patterns and depression mediated by serum levels of Folate and vitamin B12. BMC Psychiatry 2020, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wouters, M.G.A.J.; Moorrees, M.T.E.C.; Van Der Mooren, M.J.; Blom, H.J.; Boers, G.H.J.; Schellekens, L.A.; Thomas, C.M.G.; Eskes, T.K.A.B. Plasma homocysteine and menopausal status. Eur. J. Clin. Investig. 1995, 25, 801–805. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, G.; Laganà, A.S. The Link between Homocysteine and Omega-3 Polyunsaturated Fatty Acid: Critical Appraisal and Future Directions. Biomolecules 2020, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, J.A.; Edmondson, D.; Wasson, L.T.; Falzon, L.; Homma, K.; Ezeokoli, N.; Li, P.; Davidson, K.W. Vitamin D supplementation for depressive symptoms: A systematic review and meta-analysis of randomized controlled trials. Psychosom. Med. 2014, 76, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Michaëlsson, K.; Melhus, H.; Larsson, S.C. Serum 25-Hydroxyvitamin D Concentrations and Major Depression: A Mendelian Randomization Study. Nutrients 2018, 10, 1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manson, J.E.; Bassuk, S.S.; Cook, N.R.; Lee, I.M.; Mora, S.; Albert, C.M.; Buring, J.E. VITAL Research Group. Vitamin D, marine n-3 fatty acids, and primary prevention of cardiovascular disease. Current evidence. Circ. Res. 2020, 126, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Casseb, G.A.S.; Kaster, M.P.; Rodrigues, A.L.S. Potential Role of Vitamin D for the Management of Depression and Anxiety. CNS Drugs 2019, 33, 619–637. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Son, Y.K.; Kim, S.E.; An, W.S. The effect of omega-3 fatty acid on vitamin D activation in hemodialysis patients: A pilot study. Mar. Drugs 2015, 13, 741–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Patients | p-Value | Healthy Controls | p-Value | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
All | Male | Female | M vs. F | All | Male | Female | M vs. F | P vs. C | |
n | 58 | 12 | 46 | 20 | 8 | 12 | |||
Age (years) | 15.6 ± 1.6 | 16.4 ± 2.2 | 15.3 ± 1.3 | 0.235 | 14.8 ± 2.4 | 14.0 ± 2.5 | 14.4 ± 2.5 | 0.621 | 0.059 |
Weight (kg) | 60.3 ± 11.7 | 68.2 ± 15.5 | 56.8 ± 9.3 | 0.015 | 54.9 ± 18.8 | 56.1 ± 21.2 | 54.1 ± 17.8 | 0.435 | 0.147 |
Height (m) | 1.68 ± 0.1 | 1.74 ± 01 | 1.66 ± 0.1 | 0.016 | 1.6 ± 0.2 | 1.6 ± 0.2 | 1.6 ± 0.1 | 0.543 | 0.471 |
BMI (kg/m2) | 21.14 ± 2.7 | 22.4 ± 3.6 | 20.5 ± 2.8 | 0.532 | 20.6 ± 4.2 | 20.1 ± 3.0 | 20.9 ± 5.0 | 0.498 | 0.537 |
Parameter | All Patients | Healthy Controls | p-Value |
---|---|---|---|
n = 58 | n = 20 | ||
TXB (pg/mL) | 411.6 ± 288.7 | 151.2 ± 89.7 | <0.001 |
BDNF (ng/mL) | 631.8 ± 257.3 | 605.9 ± 95.9 | 0.678 |
HCy (µmol/L) | 12.7 ± 8.1 | 11.6 ± 3.1 | 0.550 |
Vitamin D (ng/mL) | 19.0 ± 7.4 | 23.1 ± 5.8 | 0.031 |
Parameter | Om3 Group (n = 29) | Om6 Group (n = 29) | p-Values between Om3 and Om6 Groups | |||||
---|---|---|---|---|---|---|---|---|
Week 6 | Week 12 | p-Value to Baseline * | Week 6 | Week 12 | p-Value to Baseline * | Week 6 | Week 12 | |
TXB (pg/mL) | 318.3 ± 173.7 | 291.7 ± 140.0 | 0.037 | 425.9 ± 275.5 | 406.3 ± 180.1 | ns | 0.091 | 0.024 |
BDNF (ng/mL) | 827.2 ± 441.3 | 824.7 ± 416.7 | 0.040 | 683.4 ± 413.9 | 592.5 ± 220.2 | ns | ns | 0.011 |
HCy (µmol/L) | 13.6 ± 9.3 | 11.6 ± 8.1 | ns | 11.4 ± 5.7 | 11.3 ± 7.2 | ns | ns | ns |
Vitamin D (ng/mL) | 18.7 ± 7.8 | 20.9 ± 8.3 | ns | 17.8 ± 5.2 | 21.7 ± 8.5 | ns | ns | ns |
All Patients | n | r | p |
CDI vs. TXB | 56 | 0.411 | <0.001 |
CDI vs. BDNF | 52 | −0.5 | <0.001 |
CDI vs. HCy | 58 | −0.2 | 0.081 |
CDI vs. vitamin D | 56 | 0.036 | 0.396 |
All patients | n | r | p |
omega-6/omega-3 vs. TXB | 56 | 0.304 | 0.03 |
omega-6/omega-3 vs. BDNF | 52 | −0.258 | 0.038 |
omega-6/omega-3 vs. HCy | 58 | 0.08 | 0.282 |
omega-6/omega-3 vs. vitamin D | 56 | −0.088 | 0.269 |
Healthy Controls | n | r | p |
omega-6/omega-3 vs. TXB | 19 | 0.520 | 0.01 |
omega-6/omega-3 vs. BDNF | 19 | 0.174 | 0.471 |
omega-6/omega-3 vs. HCy | 19 | 0.058 | 0.099 |
omega-6/omega-3 vs. vitamin D | 18 | −0.028 | 0.915 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paduchová, Z.; Katrenčíková, B.; Vaváková, M.; Laubertová, L.; Nagyová, Z.; Garaiova, I.; Ďuračková, Z.; Trebatická, J. The Effect of Omega-3 Fatty Acids on Thromboxane, Brain-Derived Neurotrophic Factor, Homocysteine, and Vitamin D in Depressive Children and Adolescents: Randomized Controlled Trial. Nutrients 2021, 13, 1095. https://doi.org/10.3390/nu13041095
Paduchová Z, Katrenčíková B, Vaváková M, Laubertová L, Nagyová Z, Garaiova I, Ďuračková Z, Trebatická J. The Effect of Omega-3 Fatty Acids on Thromboxane, Brain-Derived Neurotrophic Factor, Homocysteine, and Vitamin D in Depressive Children and Adolescents: Randomized Controlled Trial. Nutrients. 2021; 13(4):1095. https://doi.org/10.3390/nu13041095
Chicago/Turabian StylePaduchová, Zuzana, Barbora Katrenčíková, Magdaléna Vaváková, Lucia Laubertová, Zuzana Nagyová, Iveta Garaiova, Zdenka Ďuračková, and Jana Trebatická. 2021. "The Effect of Omega-3 Fatty Acids on Thromboxane, Brain-Derived Neurotrophic Factor, Homocysteine, and Vitamin D in Depressive Children and Adolescents: Randomized Controlled Trial" Nutrients 13, no. 4: 1095. https://doi.org/10.3390/nu13041095
APA StylePaduchová, Z., Katrenčíková, B., Vaváková, M., Laubertová, L., Nagyová, Z., Garaiova, I., Ďuračková, Z., & Trebatická, J. (2021). The Effect of Omega-3 Fatty Acids on Thromboxane, Brain-Derived Neurotrophic Factor, Homocysteine, and Vitamin D in Depressive Children and Adolescents: Randomized Controlled Trial. Nutrients, 13(4), 1095. https://doi.org/10.3390/nu13041095