Beneficial Effects of Ursolic Acid and Its Derivatives—Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions
Abstract
:1. Introduction
2. Pentacyclic Triterpenoids and Their Agent—Ursolic Acid
3. Ursolic Acid
3.1. Ursolic Acid Effect on Atherosclerosis
3.2. Ursolic Acid Effect on Cardiomyocytes
3.3. Ursolic Acid Effect on Vasodilatation
3.4. Ursolic Acid Effect on Aneurysm
4. Ursolic Acid Derivatives and Their Effects on the Cardiovascular System
4.1. Asiatic Acid
4.2. Corosolic Acid
4.3. 23-Hydroxy Ursolic Acid
4.4. Pomolic Acid
5. Ursolic Acid and Human Subjects
5.1. Randomized Controlled Trials
5.2. Clinical Trials, Phase I
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noncommunicable Diseases. Available online: https://www.who.int/data/gho/data/themes/noncommunicable-diseases (accessed on 6 June 2021).
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 6 June 2021).
- Frostegård, J. Immunity, Atherosclerosis and Cardiovascular Disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francula-Zaninovic, S.; Nola, I.A. Management of Measurable Variable Cardiovascular Disease’ Risk Factors. Curr. Cardiol. Rev. 2018, 14, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.; Addy, K.; Campbell, S.; Wilkinson, P. Primary Prevention of Cardiovascular Disease: Updated Review of Contemporary Guidance and Literature. JRSM Cardiovasc. Dis. 2020, 9, 2048004020949326. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable Risk Factors, Cardiovascular Disease, and Mortality in 155,722 Individuals from 21 High-Income, Middle-Income, and Low-Income Countries (PURE): A Prospective Cohort Study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Dimovski, K.; Orho-Melander, M.; Drake, I. A Favorable Lifestyle Lowers the Risk of Coronary Artery Disease Consistently across Strata of Non-Modifiable Risk Factors in a Population-Based Cohort. BMC Public Health 2019, 19, 1575. [Google Scholar] [CrossRef]
- Razali, N.N.M.; Ng, C.T.; Fong, L.Y. Cardiovascular Protective Effects of Centella Asiatica and Its Triterpenes: A Review. Planta Med. 2019, 85, 1203–1215. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Fazio, G.C.; Matsuda, S.P.T. On the Origins of Triterpenoid Skeletal Diversity. Phytochemistry 2004, 65, 261–291. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.H.; Abdelhak, Z.; Razmovski-Naumovski, V.; Chan, K.; Li, K.M.; Groundwater, P.W.; Li, G.Q. The Pentacyclic Triterpenoids in Herbal Medicines and Their Pharmacological Activities in Diabetes and Diabetic Complications. Curr. Med. Chem. 2013, 20, 908–931. [Google Scholar]
- Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent Progress in the Antiviral Activity and Mechanism Study of Pentacyclic Triterpenoids and Their Derivatives. Med. Res. Rev. 2018, 38, 951–976. [Google Scholar] [CrossRef] [Green Version]
- Salvador, J.A.; Leal, A.S.; Alho, D.P.; Gonçalves, B.M.; Valdeira, A.S.; Mendes, V.I.; Jing, Y. Highlights of pentacyclic triterpenoids in the cancer settings. In Studies in Natural Products Chemistry; Elsevier: Knoxville, TN, USA, 2014; Volume 41, pp. 33–73. [Google Scholar]
- Xu, C.; Wang, B.; Pu, Y.; Tao, J.; Zhang, T. Techniques for the Analysis of Pentacyclic Triterpenoids in Medicinal Plants. J. Sep. Sci. 2018, 41, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Bag, B.G.; Garai, C.; Majumdar, R.; Laguerre, M. Natural Triterpenoids as Renewable Nanos. Struct. Chem. 2012, 23, 393–398. [Google Scholar] [CrossRef]
- Jäger, S.; Trojan, H.; Kopp, T.; Laszczyk, M.N.; Scheffler, A. Pentacyclic Triterpene Distribution in Various Plants—Rich Sources for a New Group of Multi-Potent Plant Extracts. Molecular 2009, 14, 2016–2031. [Google Scholar] [CrossRef] [Green Version]
- Son, J.; Lee, S.Y. Therapeutic Potential of Ursonic Acid: Comparison with Ursolic Acid. Biomolecules 2020, 10, 1505. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Sharma, A.K. Ursolic Acid (UA): A Metabolite with Promising Therapeutic Potential. Life Sci. 2016, 146, 201–213. [Google Scholar] [CrossRef]
- Meng, Y.; Song, Y.; Yan, Z.; Xia, Y. Synthesis and in Vitro Cytotoxicity of Novel Ursolic Acid Derivatives. Molecular 2010, 15, 4033–4040. [Google Scholar] [CrossRef] [Green Version]
- Ayeleso, T.B.; Matumba, M.G.; Mukwevho, E. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases. Molecular 2017, 22, 1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, H.; Green, I.R.; Ali, I.; Khan, I.A.; Ali, Z.; Al-Sadi, A.M.; Ahmed, I. Ursolic Acid Derivatives for Pharmaceutical Use: A Patent Review (2012–2016). Expert Opin. Ther. Pat. 2017, 27, 1061–1072. [Google Scholar] [CrossRef]
- Seo, D.Y.; Lee, S.R.; Heo, J.-W.; No, M.-H.; Rhee, B.D.; Ko, K.S.; Kwak, H.-B.; Han, J. Ursolic Acid in Health and Disease. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2018, 22, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Woollard, K.J.; Geissmann, F. Monocytes in Atherosclerosis: Subsets and Functions. Nat. Rev. Cardiol. 2010, 7, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Wiciński, M.; Socha, M.; Walczak, M.; Wódkiewicz, E.; Malinowski, B.; Rewerski, S.; Górski, K.; Pawlak-Osińska, K. Beneficial Effects of Resveratrol Administration-Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients 2018, 10, 1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullevig, S.L.; Zhao, Q.; Zamora, D.; Asmis, R. Ursolic Acid Protects Diabetic Mice against Monocyte Dysfunction and Accelerated Atherosclerosis. Atherosclerosis 2011, 219, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.N.; Ahn, Y.J.; Medina, E.A.; Asmis, R. Dietary 23-Hydroxy Ursolic Acid Protects against Atherosclerosis and Obesity by Preventing Dyslipidemia-Induced Monocyte Priming and Dysfunction. Atherosclerosis 2018, 275, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Leng, S.; Iwanowycz, S.; Saaoud, F.; Wang, J.; Wang, Y.; Sergin, I.; Razani, B.; Fan, D. Ursolic Acid Enhances Macrophage Autophagy and Attenuates Atherogenesis. J. Lipid Res. 2016, 57, 1006–1016. [Google Scholar] [CrossRef] [Green Version]
- Messner, B.; Zeller, I.; Ploner, C.; Frotschnig, S.; Ringer, T.; Steinacher-Nigisch, A.; Ritsch, A.; Laufer, G.; Huck, C.; Bernhard, D. Ursolic Acid Causes DNA-Damage, P53-Mediated, Mitochondria- and Caspase-Dependent Human Endothelial Cell Apoptosis, and Accelerates Atherosclerotic Plaque Formation in Vivo. Atherosclerosis 2011, 219, 402–408. [Google Scholar] [CrossRef]
- Steinkamp-Fenske, K.; Bollinger, L.; Völler, N.; Xu, H.; Yao, Y.; Bauer, R.; Förstermann, U.; Li, H. Ursolic Acid from the Chinese Herb Danshen (Salvia Miltiorrhiza L.) Upregulates ENOS and Downregulates Nox4 Expression in Human Endothelial Cells. Atherosclerosis 2007, 195, e104–e111. [Google Scholar] [CrossRef] [PubMed]
- Hulsmans, M.; Van Dooren, E.; Holvoet, P. Mitochondrial Reactive Oxygen Species and Risk of Atherosclerosis. Curr. Atheroscler. Rep. 2012, 14, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Gareus, R.; Kotsaki, E.; Xanthoulea, S.; van der Made, I.; Gijbels, M.J.J.; Kardakaris, R.; Polykratis, A.; Kollias, G.; de Winther, M.P.J.; Pasparakis, M. Endothelial Cell-Specific NF-KappaB Inhibition Protects Mice from Atherosclerosis. Cell Metab. 2008, 8, 372–383. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-ΚB, Inflammation, and Metabolic Disease. Cell Metab. 2011, 13, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-T.; Yu, Y.-M.; Chang, W.-C.; Chiang, S.-Y.; Chan, H.-C.; Lee, M.-F. Ursolic Acid Plays a Protective Role in Obesity-Induced Cardiovascular Diseases. Can. J. Physiol. Pharmacol. 2016, 94, 627–633. [Google Scholar] [CrossRef]
- Zeller, I.; Wiedemann, D.; Schwaiger, S.; Stelzmüller, M.; Kreutmayer, S.; Leberfing, O.; Stuppner, H.; Bernhard, D. Inhibition of Cell Surface Expression of Endothelial Adhesion Molecules by Ursolic Acid Prevents Intimal Hyperplasia of Venous Bypass Grafts in Rats. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2012, 42, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Takada, K.; Nakane, T.; Masuda, K.; Ishii, H. Ursolic Acid and Oleanolic Acid, Members of Pentacyclic Triterpenoid Acids, Suppress TNF-α-Induced E-Selectin Expression by Cultured Umbilical Vein Endothelial Cells. Phytomedicine Int. J. Phytother. Phytopharm. 2010, 17, 1114–1119. [Google Scholar] [CrossRef]
- Mochizuki, M.; Uozumi, T.; Hisaka, S.; Osawa, T. Ursolic Acid and Derivatives Exhibit Anti-Atherosclerotic Activity by Inhibiting the Expression of Cell Adhesion Molecules Induced by TNF-Alpha. Food Sci. Technol. Res. 2019, 25, 405–412. [Google Scholar] [CrossRef]
- Jiang, Q.; Han, Y.; Gao, H.; Tian, R.; Li, P.; Wang, C. Ursolic Acid Induced Anti-Proliferation Effects in Rat Primary Vascular Smooth Muscle Cells Is Associated with Inhibition of MicroRNA-21 and Subsequent PTEN/PI3K. Eur. J. Pharmacol. 2016, 781, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-M.; Tsai, C.-C.; Tzeng, Y.-W.; Chang, W.-C.; Chiang, S.-Y.; Lee, M.-F. Ursolic Acid Suppresses Leptin-Induced Cell Proliferation in Rat Vascular Smooth Muscle Cells. Can. J. Physiol. Pharmacol. 2017, 95, 811–818. [Google Scholar] [CrossRef]
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease: Pathophysiological, Genetic, and Therapeutic Insights: A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhou, S.; Li, E.; Zhao, W.; Ji, Y.; Wen, X.; Sun, H.; Yuan, H. Fragment-Based Discovery of Novel Pentacyclic Triterpenoid Derivatives as Cholesteryl Ester Transfer Protein Inhibitors. Eur. J. Med. Chem. 2017, 126, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, R.; Sun, Y.; Chen, X.; Li, F.; Wen, X.; Yuan, H.; Chen, D. Synthesis, Biological Evaluation and SAR Studies of Ursolic Acid 3β-Ester Derivatives as Novel CETP Inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 126824. [Google Scholar] [CrossRef]
- Li, D.; Ren, D.; Luo, Y.; Yang, X. Protective Effects of Ursolic Acid against Hepatotoxicity and Endothelial Dysfunction in Mice with Chronic High Choline Diet Consumption. Chem. Biol. Interact. 2016, 258, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Wang, Z.J.; Shen, H.L.; Yin, M.; Tang, K.X. Effects of Artesunate and Ursolic Acid on Hyperlipidemia and Its Complications in Rabbit. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2013, 50, 366–371. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, W.; Zeng, X.; Hao, Z. Ursolic Acid Attenuates Atherosclerosis in ApoE−/− Mice: Role of LOX-1 Mediated by ROS/NF-ΚB Pathway. Mol. Basel Switz. 2018, 23, 1101. [Google Scholar] [CrossRef] [Green Version]
- Hua, W.J.; Hua, W.X.; Nan, F.Y.; Jiang, W.A.; Yan, C. The Influence of Herbal Medicine Ursolic Acid on the Uptake of Rosuvastatin Mediated by OATP1B1*1a and *5. Eur. J. Drug Metab. Pharmacokinet. 2014, 39, 221–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.L.; Morrow, D.A. Acute Myocardial Infarction. N. Engl. J. Med. 2017, 376, 2053–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frangogiannis, N.G. Pathophysiology of Myocardial Infarction. Compr. Physiol. 2015, 5, 1841–1875. [Google Scholar] [CrossRef] [PubMed]
- Senthil, S.; Sridevi, M.; Pugalendi, K.V. Protective Effect of Ursolic Acid against Myocardial Ischemia Induced by Isoproterenol in Rats. Toxicol. Mech. Methods 2007, 17, 57–65. [Google Scholar] [CrossRef]
- Radhiga, T.; Rajamanickam, C.; Sundaresan, A.; Ezhumalai, M.; Pugalendi, K.V. Effect of Ursolic Acid Treatment on Apoptosis and DNA Damage in Isoproterenol-Induced Myocardial Infarction. Biochimie 2012, 94, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Radhiga, T.; Rajamanickam, C.; Senthil, S.; Pugalendi, K.V. Effect of Ursolic Acid on Cardiac Marker Enzymes, Lipid Profile and Macroscopic Enzyme Mapping Assay in Isoproterenol-Induced Myocardial Ischemic Rats. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 3971–3977. [Google Scholar] [CrossRef]
- Radhiga, T.; Senthil, S.; Sundaresan, A.; Pugalendi, K.V. Ursolic Acid Modulates MMPs, Collagen-I, α-SMA, and TGF-β Expression in Isoproterenol-Induced Myocardial Infarction in Rats. Hum. Exp. Toxicol. 2019, 38, 785–793. [Google Scholar] [CrossRef]
- Al-Taweel, A.M.; Raish, M.; Perveen, S.; Fawzy, G.A.; Ahmad, A.; Ansari, M.A.; Mudassar, S.; Ganaie, M.A. Nepeta Deflersiana Attenuates Isoproterenol-Induced Myocardial Injuries in Rats: Possible Involvement of Oxidative Stress, Apoptosis, Inflammation through Nuclear Factor (NF)-ΚB Downregulation. Phytomed. Int. J. Phytother. Phytopharm. 2017, 34, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, X.; Hu, B.O.; Zhou, J.; Wang, X.; Wei, W.; Zhou, H. Ursolic Acid Stimulates UCP2 Expression and Protects H9c2 Cells from Hypoxia-Reoxygenation Injury via P38 Signaling. J. Biosci. 2018, 43, 857–865. [Google Scholar] [CrossRef]
- Brieler, J.; Breeden, M.A.; Tucker, J. Cardiomyopathy: An Overview. Am. Fam. Phys. 2017, 96, 640–646. [Google Scholar]
- Kong, P.; Christia, P.; Frangogiannis, N.G. The Pathogenesis of Cardiac Fibrosis. Cell. Mol. Life Sci. CMLS 2014, 71, 549–574. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, R.; Pugalendi, V. Impact of Ursolic Acid on Chronic Ethanol-Induced Oxidative Stress in the Rat Heart. Pharmacol. Rep. PR 2006, 58, 41–47. [Google Scholar] [PubMed]
- Yang, Y.; Li, C.; Xiang, X.; Dai, Z.; Chang, J.; Zhang, M.; Cai, H.; Zhang, H.; Zhang, M.; Guo, Y.; et al. Ursolic Acid Prevents Endoplasmic Reticulum Stress-Mediated Apoptosis Induced by Heat Stress in Mouse Cardiac Myocytes. J. Mol. Cell. Cardiol. 2014, 67, 103–111. [Google Scholar] [CrossRef]
- Mu, H.; Liu, H.; Zhang, J.; Huang, J.; Zhu, C.; Lu, Y.; Shi, Y.; Wang, Y. Ursolic Acid Prevents Doxorubicin-Induced Cardiac Toxicity in Mice through ENOS Activation and Inhibition of ENOS Uncoupling. J. Cell. Mol. Med. 2019, 23, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-T.; Gong, Y.; Zhou, B.; Yang, J.-J.; Cheng, Y.; Zhao, J.-G.; Qi, M.-Y. Ursolic Acid Ameliorates Oxidative Stress, Inflammation and Fibrosis in Diabetic Cardiomyopathy Rats. Biomed. Pharmacother. Biomedecine Pharmacother. 2018, 97, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liu, S.; Zhang, L.; Yu, S.; Huo, L.; Qile, M.; Liu, L.; Yang, B.; Yu, J. Downregulation of MiR-21 Is Involved in Direct Actions of Ursolic Acid on the Heart: Implications for Cardiac Fibrosis and Hypertrophy. Cardiovasc. Ther. 2015, 33, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhang, Z.; Li, X.; Wei, Q.; Li, H.; Li, C.; Chen, H.; Liu, C.; He, K. Ursolic Acid Improves Monocrotaline-Induced Right Ventricular Remodeling by Regulating Metabolism. J. Cardiovasc. Pharmacol. 2020, 75, 545–555. [Google Scholar] [CrossRef]
- Bakris, G.; Sarafidis, P.; Agarwal, R.; Ruilope, L. Review of Blood Pressure Control Rates and Outcomes. J. Am. Soc. Hypertens. JASH 2014, 8, 127–141. [Google Scholar] [CrossRef]
- Wang, R.; Szabo, C.; Ichinose, F.; Ahmed, A.; Whiteman, M.; Papapetropoulos, A. The Role of H2S Bioavailability in Endothelial Dysfunction. Trends Pharmacol. Sci. 2015, 36, 568–578. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.-T. Endothelium-Derived Relaxing Factors of Small Resistance Arteries in Hypertension. Toxicol. Res. 2014, 30, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holwerda, K.M.; Karumanchi, S.A.; Lely, A.T. Hydrogen Sulfide: Role in Vascular Physiology and Pathology. Curr. Opin. Nephrol. Hypertens. 2015, 24, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre-Crespo, F.; Vergara-Galicia, J.; Villalobos-Molina, R.; Javier López-Guerrero, J.; Navarrete-Vázquez, G.; Estrada-Soto, S. Ursolic Acid Mediates the Vasorelaxant Activity of Lepechinia Caulescens via NO Release in Isolated Rat Thoracic Aorta. Life Sci. 2006, 79, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Romo-Mancillas, A.; López-Vallejo, F.H.; Solís-Gutiérrez, M.; Rojas-Molina, J.I.; Rivero-Cruz, F. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus Serotina Fruits. Molecular 2016, 21, 78. [Google Scholar] [CrossRef] [Green Version]
- Flores-Flores, A.; Hernández-Abreu, O.; Rios, M.Y.; León-Rivera, I.; Aguilar-Guadarrama, B.; Castillo-España, P.; Perea-Arango, I.; Estrada-Soto, S. Vasorelaxant Mode of Action of Dichloromethane-Soluble Extract from Agastache Mexicana and Its Main Bioactive Compounds. Pharm. Biol. 2016, 54, 2807–2813. [Google Scholar] [CrossRef] [Green Version]
- Erbel, R.; Aboyans, V.; Boileau, C.; Bossone, E.; Di Bartolomeo, R.; Eggebrecht, H.; Evangelista, A.; Falk, V.; Frank, H.; Gaemperli, O.; et al. [2014 ESC Guidelines on the diagnosis and treatment of aortic diseases]. Kardiol. Pol. 2014, 72, 1169–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International AAA Screening Group; Björck, M.; Bown, M.J.; Choke, E.; Earnshaw, J.; Flørenes, T.; Glover, M.; Kay, M.; Laukontaus, S.; Lees, T.; et al. International Update on Screening for Abdominal Aortic Aneurysms: Issues and Opportunities. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2015, 49, 113–115. [Google Scholar] [CrossRef] [Green Version]
- Makrygiannis, G.; Courtois, A.; Drion, P.; Defraigne, J.-O.; Kuivaniemi, H.; Sakalihasan, N. Sex Differences in Abdominal Aortic Aneurysm: The Role of Sex Hormones. Ann. Vasc. Surg. 2014, 28, 1946–1958. [Google Scholar] [CrossRef]
- Nordon, I.M.; Hinchliffe, R.J.; Loftus, I.M.; Thompson, M.M. Pathophysiology and Epidemiology of Abdominal Aortic Aneurysms. Nat. Rev. Cardiol. 2011, 8, 92–102. [Google Scholar] [CrossRef]
- Qin, Z.; Bagley, J.; Sukhova, G.; Baur, W.E.; Park, H.-J.; Beasley, D.; Libby, P.; Zhang, Y.; Galper, J.B. Angiotensin II-Induced TLR4 Mediated Abdominal Aortic Aneurysm in Apolipoprotein E Knockout Mice Is Dependent on STAT3. J. Mol. Cell. Cardiol. 2015, 87, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Zhai, M.; Guo, J.; Ma, H.; Shi, W.; Jou, D.; Yan, D.; Liu, T.; Tao, J.; Duan, J.; Wang, Y.; et al. Ursolic Acid Prevents Angiotensin II-Induced Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice. Atherosclerosis 2018, 271, 128–135. [Google Scholar] [CrossRef]
- Epanchintsev, A.; Shyamsunder, P.; Verma, R.S.; Lyakhovich, A. IL-6, IL-8, MMP-2, MMP-9 Are Overexpressed in Fanconi Anemia Cells through a NF-ΚB/TNF-α Dependent Mechanism. Mol. Carcinog. 2015, 54, 1686–1699. [Google Scholar] [CrossRef]
- Huang, C.; Fang, X.; Xie, X.; Liu, Y.; Xu, D.; Meng, X.; Long, J. Effect of MiR-126 on the Proliferation and Migration of Vascular Smooth Muscle Cells in Aortic Aneurysm Mice Under PI3K/AKT/MTOR Signaling Pathway. Mol. Biotechnol. 2021, 63, 631–637. [Google Scholar] [CrossRef]
- Vo, N.N.Q.; Nomura, Y.; Muranaka, T.; Fukushima, E.O. Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes. J. Nat. Prod. 2019, 82, 3311–3320. [Google Scholar] [CrossRef]
- Kamble, S.M.; Patil, C.R. Asiatic Acid Ameliorates Doxorubicin-Induced Cardiac and Hepato-Renal Toxicities with Nrf2 Transcriptional Factor Activation in Rats. Cardiovasc. Toxicol. 2018, 18, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, B.; Li, L.; Li, B.; Luo, J.; Shen, B. Asiatic Acid Protects against Doxorubicin-Induced Cardiotoxicity in Mice. Oxid. Med. Cell. Longev. 2020, 2020, 5347204. [Google Scholar] [CrossRef]
- Ma, Z.-G.; Dai, J.; Wei, W.-Y.; Zhang, W.-B.; Xu, S.-C.; Liao, H.-H.; Yang, Z.; Tang, Q.-Z. Asiatic Acid Protects against Cardiac Hypertrophy through Activating AMPKα Signalling Pathway. Int. J. Biol. Sci. 2016, 12, 861–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Tian, X.; Ruan, Y.; Xing, J.; Meng, Z. Asiatic Acid Alleviates Ang-II Induced Cardiac Hypertrophy and Fibrosis via MiR-126/PIK3R2 Signaling. Nutr. Metab. 2021, 18, 71. [Google Scholar] [CrossRef]
- Wu, K.; Hu, M.; Chen, Z.; Xiang, F.; Chen, G.; Yan, W.; Peng, Q.; Chen, X. Asiatic Acid Enhances Survival of Human AC16 Cardiomyocytes under Hypoxia by Upregulating MiR-1290. IUBMB Life 2017, 69, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.-P.; Zhang, X.-H.; Sun, L.-N.; Xing, W.-F.; Wang, Y.; Sun, S.-Y.; Ma, M.-Y.; Cheng, Z.-P.; Wu, Z.-D.; Xing, C.; et al. Corosolic Acid and Its Structural Analogs: A Systematic Review of Their Biological Activities and Underlying Mechanism of Action. Phytomed. Int. J. Phytother. Phytopharm. 2021, 91, 153696. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Zhang, Q.; Chen, L.-H.; Wang, Q. Corosolic Acid Ameliorates Atherosclerosis in Apolipoprotein E-Deficient Mice by Regulating the Nuclear Factor-ΚB Signaling Pathway and Inhibiting Monocyte Chemoattractant Protein-1 Expression. Circ. J. Off. J. Jpn. Circ. Soc. 2012, 76, 995–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhou, Z.-H.; Chen, M.-H.; Yang, J.; Leng, J.; Cao, G.-S.; Xin, G.-Z.; Liu, L.-F.; Kou, J.-P.; Liu, B.-L.; et al. Inhibition of Mitochondrial Fission and NOX2 Expression Prevent NLRP3 Inflammasome Activation in the Endothelium: The Role of Corosolic Acid Action in the Amelioration of Endothelial Dysfunction. Antioxid. Redox Signal. 2016, 24, 893–908. [Google Scholar] [CrossRef]
- Sahu, B.D.; Kuncha, M.; Rachamalla, S.S.; Sistla, R. Lagerstroemia Speciosa L. Attenuates Apoptosis in Isoproterenol-Induced Cardiotoxic Mice by Inhibiting Oxidative Stress: Possible Role of Nrf2/HO-1. Cardiovasc. Toxicol. 2015, 15, 10–22. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Che, Y.; Zhou, H.; Meng, Y.-Y.; Wu, H.-M.; Jin, Y.-G.; Wu, Q.-Q.; Wang, S.-S.; Yuan, Y. Corosolic Acid Attenuates Cardiac Fibrosis Following Myocardial Infarction in Mice. Int. J. Mol. Med. 2020, 45, 1425–1435. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Shen, D.; Che, Y.; Jin, Y.-G.; Wang, S.-S.; Wu, Q.-Q.; Zhou, H.; Meng, Y.-Y.; Yuan, Y. Corosolic Acid Ameliorates Cardiac Hypertrophy via Regulating Autophagy. Biosci. Rep. 2019, 39, BSR20191860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Ortiz, D.A.; Eloy, R.; Moustapha, B.; César, I.-A.; Edmundo, M.-S.; Jesús Eduardo, C.-R.; Dulce María, R.-P. Vasorelaxing Effect and Possible Chemical Markers of the Flowers of the Mexican Crataegus Gracilior. Nat. Prod. Res. 2020, 34, 3522–3525. [Google Scholar] [CrossRef] [PubMed]
- Won, J.-H.; Chung, K.-S.; Park, E.-Y.; Lee, J.-H.; Choi, J.-H.; Tapondjou, L.A.; Park, H.-J.; Nomura, M.; Hassan, A.H.E.; Lee, K.-T. 23-Hydroxyursolic Acid Isolated from the Stem Bark of Cussonia Bancoensis Induces Apoptosis through Fas/Caspase-8-Dependent Pathway in HL-60 Human Promyelocytic Leukemia Cells. Molecular 2018, 23, 3306. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.J.; Wang, L.; Foster, S.; Asmis, R. Dietary 23-Hydroxy Ursolic Acid Protects against Diet-Induced Weight Gain and Hyperglycemia by Protecting Monocytes and Macrophages against Nutrient Stress-Triggered Reprogramming and Dysfunction and Preventing Adipose Tissue Inflammation. J. Nutr. Biochem. 2020, 86, 108483. [Google Scholar] [CrossRef] [PubMed]
- Estrada, O.; González-Guzmán, J.M.; Salazar-Bookaman, M.; Fernández, A.Z.; Cardozo, A.; Alvarado-Castillo, C. Pomolic Acid of Licania Pittieri Elicits Endothelium-Dependent Relaxation in Rat Aortic Rings. Phytomed. Int. J. Phytother. Phytopharm. 2011, 18, 464–469. [Google Scholar] [CrossRef]
- Alvarado-Castillo, C.; Estrada, O.; Carvajal, E. Pomolic Acid, Triterpenoid Isolated from Licania Pittieri, as Competitive Antagonist of ADP-Induced Aggregation of Human Platelets. Phytomed. Int. J. Phytother. Phytopharm. 2012, 19, 484–487. [Google Scholar] [CrossRef]
- López, R.; Bolaños, P.; Guillén, A.; Fernández, M.C.; Ramos, M.; Granados, S.; Milán, A.F.; Caputo, C.; Alvarado-Castillo, C.; Estrada, O.; et al. Pomolic Acid Reduces Contractility and Modulates Excitation-Contraction Coupling in Rat Cardiomyocytes. Eur. J. Pharmacol. 2019, 851, 88–98. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, A.M.; González-Ortiz, M.; Martínez-Abundis, E.; Acuña Ortega, N. Effect of Ursolic Acid on Metabolic Syndrome, Insulin Sensitivity, and Inflammation. J. Med. Food 2017, 20, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Cione, J.G.C.; Verlengia, R.; Barbosa, C.G.R.; Ribeiro, A.G.S.V.; de Oliveira, J.J.; Oliveira, M.A.; Crisp, A.H. No Additional Effects of Ursolic Acid Supplementation Associated with Combined Exercise Program on Metabolic Syndrome of Postmenopausal Women: A Double-Blind, Randomized, Placebo-Controlled Trial. Clin. Nutr. ESPEN 2021, 44, 143–149. [Google Scholar] [CrossRef]
- Lobo, P.C.B.; Vieira, I.P.; Pichard, C.; Marques, B.S.; Gentil, P.; da Silva, E.L.; Pimentel, G.D. Ursolic Acid Has No Additional Effect on Muscle Strength and Mass in Active Men Undergoing a High-Protein Diet and Resistance Training: A Double-Blind and Placebo-Controlled Trial. Clin. Nutr. Edinb. Scotl. 2021, 40, 581–589. [Google Scholar] [CrossRef]
- Church, D.D.; Schwarz, N.A.; Spillane, M.B.; McKinley-Barnard, S.K.; Andre, T.L.; Ramirez, A.J.; Willoughby, D.S. L-Leucine Increases Skeletal Muscle IGF-1 but Does Not Differentially Increase Akt/MTORC1 Signaling and Serum IGF-1 Compared to Ursolic Acid in Response to Resistance Exercise in Resistance-Trained Men. J. Am. Coll. Nutr. 2016, 35, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Jinhua, W. Ursolic Acid: Pharmacokinetics Process in Vitro and in Vivo, a Mini Review. Arch. Pharm. 2019, 352, e1800222. [Google Scholar] [CrossRef]
- Wang, X.-H.; Zhou, S.-Y.; Qian, Z.-Z.; Zhang, H.-L.; Qiu, L.-H.; Song, Z.; Zhao, J.; Wang, P.; Hao, X.-S.; Wang, H.-Q. Evaluation of Toxicity and Single-Dose Pharmacokinetics of Intravenous Ursolic Acid Liposomes in Healthy Adult Volunteers and Patients with Advanced Solid Tumors. Expert Opin. Drug Metab. Toxicol. 2013, 9, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Qian, Z.; Yan, Z.; Zhao, C.; Wang, H.; Ying, G. A Phase I Pharmacokinetic Study of Ursolic Acid Nanoliposomes in Healthy Volunteers and Patients with Advanced Solid Tumors. Int. J. Nanomed. 2013, 8, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Qian, Z.; Wang, X.; Song, Z.; Zhang, H.; Zhou, S.; Zhao, J.; Wang, H. A Phase I Trial to Evaluate the Multiple-Dose Safety and Antitumor Activity of Ursolic Acid Liposomes in Subjects with Advanced Solid Tumors. BioMed Res. Int. 2015, 2015, 809714. [Google Scholar] [CrossRef] [Green Version]
Author | Subject of Study | Potential Mechanism of Action |
---|---|---|
Ullevig et al., 2011 [24] | High-fat diet-fed diabetic mice LDLR−/− |
|
Nguyen et al., 2018 [25] | High-fat diet-fed mice LDLR−/− |
|
Leng et al., 2016 [26] | LPS-stimulated cell culture RAW264.7 |
|
Western diet-fed mice LDLR−/− |
| |
Messner et al., 2011 [27] | HUVECs |
|
Western diet-fed mice apoE−/− |
| |
Steinkamp-Fenske et al., 2007 [28] | EA.hy 926 endothelial cells and HUVECs |
|
Lin et al., 2016 [32] | Resistin-stimulated lymphoma cells (U937) and HUVECs |
|
Zeller et al., 2012 [33] | TNF-α-stimulated HUVECs |
|
Wistar rats after autologous vein grafting |
| |
Takada et al., 2010 [34] | TNF-α-stimulated HUVECs |
|
Mochizuki et al., 2019 [35] | TNF-α-stimulated HUVECs |
|
Jiang et al., 2016 [36] | 10% fetal-bovine-serum-stimulated rat VSMCs |
|
Yu et al., 2017 [37] | Leptin-stimulated rat VSMCs |
|
Chang et al., 2017 [39] | CETP enzymatic inhibition assay |
|
Chen et al., 2020 [40] | CETP enzymatic inhibition assay |
|
Dongyu Li et al., 2016 [41] | High-choline diet-fed mice |
|
Wang et al., 2013 [42] | Western diet-fed rabbit |
|
Qiu Li et al., 2018 [43] | LPS-stimulated HUVECs |
|
Atherogenic diet-fed mice apoE−/− |
| |
Hua et al., 2014 [44] | Rat hepatocytes |
|
Author | Subject of Study | Potential Mechanism of Action |
---|---|---|
Senthil et al., 2007 [47] | Isoproterenol-stimulated Wistar rats |
|
Radhiga et al., 2012 [48] | Isoproterenol-stimulated Wistar rats |
|
Radhiga et al., 2012 [49] | Isoproterenol-stimulated Wistar rats |
|
Radhiga et al., 2019 [50] | Isoproterenol-stimulated Wistar rats |
|
Al-Taweel et al., 2017 [51] | Isoproterenol-stimulated Wistar rats |
|
Chen et al., 2018 [52] | Rat H9c2 cells under ischemia-reperfusion injury |
|
Saravanan et al., 2006 [55] | Ethanol-treated Wistar rats |
|
Yang et al., 2014 [56] | Heat-stress-treated ICR mice |
|
Mu et al., 2019 [57] | Doxorubicin-treated ICR mice |
|
Wang et al., 2018 [58] | Diabetic Sprague–Dawley rats |
|
Dong et al., 2015 [59] | TGF-β1-treated cardiac fibroblast from neonatal Kunming mice hearts |
|
Kunming mice after transverse aortic constriction |
| |
Gao et al., 2020 [60] | Neonatal rat ventricular myocytes from neonatal Sprague–Dawley rats |
|
Sprague–Dawley rats with pulmonary arterial hypertension |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdmann, J.; Kujaciński, M.; Wiciński, M. Beneficial Effects of Ursolic Acid and Its Derivatives—Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients 2021, 13, 3900. https://doi.org/10.3390/nu13113900
Erdmann J, Kujaciński M, Wiciński M. Beneficial Effects of Ursolic Acid and Its Derivatives—Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients. 2021; 13(11):3900. https://doi.org/10.3390/nu13113900
Chicago/Turabian StyleErdmann, Jakub, Marcin Kujaciński, and Michał Wiciński. 2021. "Beneficial Effects of Ursolic Acid and Its Derivatives—Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions" Nutrients 13, no. 11: 3900. https://doi.org/10.3390/nu13113900
APA StyleErdmann, J., Kujaciński, M., & Wiciński, M. (2021). Beneficial Effects of Ursolic Acid and Its Derivatives—Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients, 13(11), 3900. https://doi.org/10.3390/nu13113900