Factors Influencing Changes in Food Preparation during the COVID-19 Pandemic and Associations with Food Intake among Japanese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Methodology and Participants
2.2. Measures
2.2.1. Sociodemographic Variables
2.2.2. Physical Variables
2.2.3. Dietary Attitudes and Behaviors
2.2.4. Lifestyle Variables
2.2.5. Food Intake
2.3. Ethics Approval
2.4. Statistical Analysis
3. Results
3.1. Changes in Food-Preparation Practices and Current Cooking Frequencies
3.2. Sociodemographic and Physical Variables
3.3. Dietary Attitudes, Behaviors, and Lifestyle Variables
3.4. Multivariate Logistic Regression Analyses of Factors Associated with Changes in Cooking Time and Effort
3.5. Food Intake and Desirable Eating Habits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NHK. Special Site—New Coronavirus Time Series News. Available online: https://www3.nhk.or.jp/news/special/coronavirus/chronology/ (accessed on 13 August 2021).
- Prime Minister’s Office of Japan. Basic Policy for Measures against New Coronavirus Infectins. Available online: https://www.kantei.go.jp/jp/content/kanren.pdf (accessed on 13 August 2021).
- Ministry of Agriculture, Forestry and Fisheries. 2020 Report of the Awareness Survey on Shokuiku. Available online: https://www.maff.go.jp/j/syokuiku/ishiki/r03/index.html (accessed on 13 August 2021).
- Sato, K.; Kobayashi, S.; Yamaguchi, M.; Sakata, R.; Sasaki, Y.; Murayama, C.; Kondo, N. Working from home and dietary changes during the COVID-19 pandemic: A longitudinal study of health app (CALO mama) users. Appetite 2021, 165, 105323. [Google Scholar] [CrossRef]
- Horikawa, C.; Murayama, N.; Kojima, Y.; Tanaka, H.; Morisaki, N. Changes in selected food groups consumption and quality of meals in Japanese school children during the COVID-19 Pandemic. Nutrients 2021, 13, 2743. [Google Scholar] [CrossRef] [PubMed]
- Shimpo, M.; Akamatsu, R.; Kojima, Y.; Yokoyama, T.; Okuhara, T.; Chiba, T. Factors associated with dietary change since the outbreak of COVID-19 in Japan. Nutrients 2021, 13, 2039. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, F.; McGowan, L.; Spence, M.; Caraher, M.; Raats, M.M.; Hollywood, L.; McDowell, D.; McCloat, A.; Mooney, E.; Dean, M. Barriers and facilitators to cooking from ‘scratch’ using basic or raw ingredients: A qualitative interview study. Appetite 2016, 107, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfson, J.A.; Bleich, S.N.; Smith, K.C.; Frattaroli, S. What does cooking mean to you?: Perceptions of cooking and factors related to cooking behavior. Appetite 2016, 97, 146–154. [Google Scholar] [CrossRef]
- Pfeifer, D.; Resetar, J.; Gajdos Kljusuric, J.; Panjkota Krbavcic, I.; Vranesic Bender, D.; Rodriguez-Perez, C.; Ruiz-Lopez, M.D.; Satalic, Z. Cooking at home and adherence to the Mediterranean diet during the COVID-19 confinement: The experience from the Croatian COVIDiet study. Front. Nutr. 2021, 8, 617721. [Google Scholar] [CrossRef]
- Giacalone, D.; Frost, M.B.; Rodriguez-Perez, C. Reported changes in dietary habits during the COVID-19 lockdown in the Danish population: The Danish COVIDiet study. Front. Nutr. 2020, 7, 592112. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.; Benson, T.; McCloat, A.; Mooney, E.; Elliott, C.; Dean, M.; Lavelle, F. Changes in consumers’ food practices during the COVID-19 lockdown, implications for diet quality and the food system: A cross-continental comparison. Nutrients 2020, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Mazzolani, B.C.; Smaira, F.I.; Esteves, G.P.; Santo André, H.C.; Amarante, M.C.; Castanho, D.; Campos, K.; Benatti, F.B.; Pinto, A.J.; Roschel, H.; et al. Influence of body mass index on eating habits and food choice determinants among Brazilian women during the COVID-19 pandemic. Front. Nutr. 2021, 8, 664240. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.R.; Wolfson, J.A.; Gearhardt, A.N. Health-promoting behaviors in the United States during the early stages of the COVID-19 pandemic. Appetite 2021, 168, 105659. [Google Scholar] [CrossRef]
- Tribst, A.A.L.; Tramontt, C.R.; Baraldi, L.G. Factors associated with diet changes during the COVID-19 pandemic period in Brazilian adults: Time, skills, habits, feelings and beliefs. Appetite 2021, 163, 105220. [Google Scholar] [CrossRef] [PubMed]
- Sulejmani, E.; Hyseni, A.; Xhabiri, G.; Rodríguez-Pérez, C. Relationship in dietary habits variations during COVID-19 lockdown in Kosovo: The COVIDiet study. Appetite 2021, 164, 105244. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Forestry and Fisheries. 2019 Report of the Awareness Survey on Shokuiku. Available online: https://www.maff.go.jp/j/syokuiku/ishiki/r02/index.html (accessed on 13 August 2021).
- Ministry of Internal Affairs and Communications, Statistics Bureau. 2015 Population Census. Available online: https://www.stat.go.jp/data/kokusei/2015/kekka/kihon1/pdf/gaiyou2.pdf (accessed on 25 October 2021).
- Ministry of Health, Labour and Welfare. Dietary Reference Intakes for Japanese 2020. Available online: https://www.mhlw.go.jp/content/10904750/000586553.pdf (accessed on 16 August 2021).
- Hayashi, F.; Takemi, Y.; Akaiwa, Y.; Ishikawa, H.; Fukuda, Y. Change in dietary consciousness and its related factors among Japanese adults under the COVID-19 pandemic: Analysis using Dietary Consciousness Scale. Nihon Koshu Eisei Zasshi 2021, 68, 618–630. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Report of the Study Group on Revision of Exercise Standards and Exercise Guidelines. Available online: https://www.mhlw.go.jp/stf/houdou/2r9852000002xple-att/2r9852000002xpqt.pdf (accessed on 16 August 2021).
- Yoshiike, N.; Hayashi, F.; Takemi, Y.; Mizoguchi, K.; Seino, F. A new food guide in Japan: The Japanese food guide Spinning Top. Nutr. Rev. 2007, 65, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Forestry, and Fisheries. Dietary Guidelines for Japanese Was Revised in June 2016. Available online: https://www.maff.go.jp/e/policies/tech_res/attach/pdf/shokuiku-3.pdf (accessed on 16 August 2021).
- Fujioka, Y. Diet Therapy in Japan Atherosclerosis Society (JAS) Guidelines for Preventing Atherosclerotic Cardiovascular Disease 2017. J. Jpn. Coron. Assoc. 2018, 24, 20–25. [Google Scholar]
- Tanaka, M.; Takemi, Y. Comparison of current frequency of breakfast and recollections of childhood dietary habits among young single males. JJHEP 2015, 23, 182–194. [Google Scholar]
- Enriquez-Martinez, O.G.; Martins, M.C.T.; Pereira, T.S.S.; Pacheco, S.O.S.; Pacheco, F.J.; Lopez, K.V.; Huancahuire-Vega, S.; Silva, D.A.; Mora-Urda, A.I.; Rodriguez-Vasquez, M.; et al. Diet and lifestyle changes during the COVID-19 Pandemic in Ibero-American countries: Argentina, Brazil, Mexico, Peru, and Spain. Front. Nutr. 2021, 8, 671004. [Google Scholar] [CrossRef]
- De Backer, C.; Teunissen, L.; Cuykx, I.; Decorte, P.; Pabian, S.; Gerritsen, S.; Matthys, C.; Al Sabbah, H.; Van Royen, K.; Corona Cooking Survey Study Group. An evaluation of the COVID-19 Pandemic and perceived social distancing policies in relation to planning, selecting, and preparing healthy meals: An observational study in 38 countries worldwide. Front. Nutr. 2020, 7, 621726. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; White, M. Prevalence and socio-demographic correlates of time spent cooking by adults in the 2005 UK Time Use Survey. Cross-sectional analysis. Appetite 2015, 92, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Wolfson, J.A.; Ishikawa, Y.; Hosokawa, C.; Janisch, K.; Massa, J.; Eisenberg, D.M. Gender differences in global estimates of cooking frequency prior to COVID-19. Appetite 2021, 161, 105117. [Google Scholar] [CrossRef]
- Mills, S.; Brown, H.; Wrieden, W.; White, M.; Adams, J. Frequency of eating home cooked meals and potential benefits for diet and health: Cross-sectional analysis of a population-based cohort study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 109. [Google Scholar] [CrossRef]
- Poelman, M.P.; Gillebaart, M.; Schlinkert, C.; Dijkstra, S.C.; Derksen, E.; Mensink, F.; Hermans, R.C.J.; Aardening, P.; de Ridder, D.; de Vet, E. Eating behavior and food purchases during the COVID-19 lockdown: A cross-sectional study among adults in the Netherlands. Appetite 2021, 157, 105002. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. National Health and Nutrition Survey 2019. Available online: https://www.mhlw.go.jp/content/000711005.pdf (accessed on 25 October 2021).
- Mejean, C.; Si Hassen, W.; Gojard, S.; Ducrot, P.; Lampure, A.; Brug, H.; Lien, N.; Nicolaou, M.; Holdsworth, M.; Terragni, L.; et al. Social disparities in food preparation behaviours: A DEDIPAC study. Nutr. J. 2017, 16, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.J.; Antonelli, M. Conceptual Models of Food Choice: Influential Factors Related to Foods, Individual Differences, and Society. Foods 2020, 9, 1898. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; White, M.; Brown, H.; Wrieden, W.; Kwasnicka, D.; Halligan, J.; Robalino, S.; Adams, J. Health and social determinants and outcomes of home cooking: A systematic review of observational studies. Appetite 2017, 111, 116–134. [Google Scholar] [CrossRef] [PubMed]
- Hanson, A.J.; Kattelmann, K.K.; McCormack, L.A.; Zhou, W.; Brown, O.N.; Horacek, T.M.; Shelnutt, K.P.; Kidd, T.; Opoku-Acheampong, A.; Franzen-Castle, L.D.; et al. Cooking and meal planning as predictors of fruit and vegetable intake and BMI in first-year college students. Int. J. Environ. Res. Public Health 2019, 16, 2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monsivais, P.; Aggarwal, A.; Drewnowski, A. Time spent on home food preparation and indicators of healthy eating. Am. J. Prev. Med. 2014, 47, 796–802. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Maintaining a Healthy Diet during the COVID-19 Pandemic. Available online: http://www.fao.org/3/ca8380en/CA8380EN.pdf (accessed on 13 August 2021).
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
- Moradi, S.; Entezari, M.H.; Mohammadi, H.; Jayedi, A.; Lazaridi, A.V.; Kermani, M.A.H.; Miraghajani, M. Ultra-processed food consumption and adult obesity risk: A systematic review and dose-response meta-analysis. Crit. Rev. Food Sci. Nutr. 2021, 1–12. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; De Curtis, A.; Persichillo, M.; Sofi, F.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study. Am. J. Clin. Nutr. 2021, 113, 446–455. [Google Scholar] [CrossRef]
- Vandevijvere, S.; Jaacks, L.M.; Monteiro, C.A.; Moubarac, J.C.; Girling-Butcher, M.; Lee, A.C.; Pan, A.; Bentham, J.; Swinburn, B. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes. Rev. 2019, 20 (Suppl. 2), 10–19. [Google Scholar] [CrossRef] [PubMed]
- Koiwai, K.; Takemi, Y.; Hayashi, F.; Ogata, H.; Matsumoto, S.; Ozawa, K.; Machado, P.P.; Monteiro, C.A. Consumption of ultra-processed foods decreases the quality of the overall diet of middle-aged Japanese adults. Public Health Nutr. 2019, 22, 2999–3008. [Google Scholar] [CrossRef] [PubMed]
- Ekman, A.; Litton, J.E. New times, new needs; e-epidemiology. Eur. J. Epidemiol. 2007, 22, 285–292. [Google Scholar] [CrossRef] [PubMed]
Changes in Cooking Time and Effort Compared to before COVID-19 | |||||||
---|---|---|---|---|---|---|---|
Increased (n = 563) | Decreased (n = 166) | No change (n = 1556) | |||||
Cooking Frequency in COVID-19 | n | % | n | % | n | % | p *1 |
| 289 ** | 51.3 | 55 * | 33.1 | 735 | 47.2 | <0.001 |
| 97 ** | 17.2 | 24 | 14.5 | 167 * | 10.7 | |
| 113 | 20.1 | 49 ** | 29.5 | 249 * | 16.0 | |
| 64 * | 11.4 | 38 | 22.9 | 405 ** | 26.0 |
Changes in Cooking Time and Effort Compared to before COVID-19 | ||||||||
---|---|---|---|---|---|---|---|---|
Increased (n = 563) | Decreased (n = 166) | No Change (n = 1556) | ||||||
Sociodemographic Variables | n | % | n | % | n | % | p *1 | |
| Males | 229 * | 40.7 | 80 | 48.2 | 795 ** | 51.1 | <0.001 |
Females | 334 ** | 59.3 | 86 | 51.8 | 761 * | 48.9 | ||
| 20–29 | 163 ** | 29.0 | 40 | 24.1 | 229 * | 14.7 | <0.001 |
30–39 | 105 | 18.7 | 39 | 23.5 | 298 | 19.2 | ||
40–49 | 106 | 18.8 | 34 | 20.5 | 328 | 21.1 | ||
50–59 | 102 | 18.1 | 30 | 18.1 | 326 | 21.0 | ||
60–69 | 87 * | 15.5 | 23 * | 13.9 | 375 ** | 24.1 | ||
| Unmarried | 218 | 38.7 | 66 | 39.8 | 572 | 36.8 | 0.066 |
Married | 314 | 55.8 | 84 | 50.6 | 839 | 53.9 | ||
Divorced or widowed | 31 | 5.5 | 16 | 9.6 | 145 | 9.3 | ||
| Living alone | 144 | 25.6 | 47 | 28.3 | 357 | 22.9 | 0.173 |
Couple | 106 | 18.8 | 29 | 17.5 | 314 | 20.2 | ||
Couple with children | 165 | 29.3 | 51 | 30.7 | 415 | 26.7 | ||
Others | 148 | 26.3 | 39 | 23.5 | 470 | 30.2 | ||
| Permanent employees | 203 | 36.1 | 73 * | 44.0 | 534 | 34.3 | <0.001 |
Contract employees | 31 | 5.5 | 23 ** | 13.9 | 100 | 6.4 | ||
Part-time workers | 88 | 15.6 | 27 | 16.3 | 264 | 17.0 | ||
Self-employed | 39 | 6.9 | 5 * | 3.0 | 132 ** | 8.5 | ||
Students | 42 ** | 7.5 | 4 | 2.4 | 26 * | 1.7 | ||
Housewives | 114 | 20.2 | 2 | 12.7 | 282 | 18.1 | ||
Unemployed | 45 * | 8.0 | 13 | 7.8 | 215 | 13.8 | ||
Others | 1 | 0.2 | 0 | 0.0 | 3 | 0.2 | ||
| Fully remote working | 31 | 5.5 | 7 | 4.2 | 66 | 4.2 | <0.001 |
More remote working than working in the office | 37 ** | 6.7 | 12 | 7.2 | 53 * | 3.4 | ||
More working in the office than remote working | 49 ** | 8.7 | 13 | 7.8 | 75 * | 4.8 | ||
Fully working in the office | 210 | 37.3 | 90 ** | 54.2 | 761 ** | 48.9 | ||
Currently not working | 229 ** | 40.7 | 42 * | 25.3 | 569 | 36.6 | ||
Don’t want to answer | 6 | 1.1 | 2 | 1.2 | 32 | 2.1 | ||
| <2,000,000 | 113 | 20.1 | 29 | 17.5 | 282 | 18.1 | 0.004 |
2,000,000–4,000,000 | 107 | 19.0 | 44 | 26.5 | 311 | 20.0 | ||
4,000,000–6,000,000 | 119 | 21.1 | 30 | 18.1 | 271 | 17.4 | ||
≥6,000,000 | 149 | 26.5 | 41 | 24.7 | 375 | 24.1 | ||
Don’t know/don’t want to answer | 75 * | 13.3 | 22 | 13.3 | 317 ** | 20.4 | ||
| Increased | 14 | 2.5 | 7 ** | 4.2 | 18 * | 1.2 | <0.001 |
Reduced | 272 ** | 48.3 | 73 ** | 44.0 | 450 * | 28.9 | ||
No change | 277 * | 49.2 | 86 * | 51.8 | 1088 ** | 69.9 | ||
| No affluence | 244 | 43.3 | 75 | 45.2 | 682 | 43.8 | 0.282 |
Neither | 177 | 31.4 | 58 | 34.9 | 544 | 35.0 | ||
Affluence | 142 | 25.2 | 33 | 19.9 | 330 | 21.2 | ||
| No affluence | 185 | 32.9 | 60 | 36.1 | 571 | 36.7 | 0.001 |
Neither | 205 * | 36.4 | 69 | 41.6 | 650 | 41.8 | ||
Affluence | 173 ** | 30.7 | 37 ** | 22.3 | 335 * | 21.5 | ||
| Improved | 32 | 5.7 | 19 ** | 11.4 | 76 * | 4.9 | <0.001 |
Worsen | 137 ** | 24.3 | 39 ** | 23.5 | 210 * | 13.5 | ||
No change | 394 * | 70.0 | 108 * | 65.1 | 1270 ** | 81.6 | ||
| Junior/high school | 121 * | 21.5 | 43 | 25.9 | 463 * | 29.8 | 0.003 |
Vocational school/college | 132 | 23.4 | 41 | 24.7 | 357 | 22.9 | ||
University | 280 ** | 49.7 | 74 | 44.6 | 645 * | 41.5 | ||
Graduate school | 27 | 4.8 | 6 | 3.6 | 61 | 3.9 | ||
Don’t want to answer | 3 * | 0.5 | 2 | 1.2 | 30 ** | 1.9 | ||
Physical variables | ||||||||
| Underweight | 96 | 17.1 | 26 | 15.7 | 328 ** | 21.1 | 0.010 |
Normal | 366 ** | 65.0 | 106 | 63.9 | 893 * | 57.4 | ||
Overweight/obese | 75 * | 13.3 | 26 | 15.7 | 281 ** | 18.1 | ||
Don’t want to answer | 26 | 4.6 | 8 | 4.8 | 54 | 3.5 | ||
| Increased | 227 ** | 40.3 | 59 | 35.5 | 415 * | 26.7 | <0.001 |
Decreased | 75 ** | 13.3 | 31 ** | 18.7 | 130 * | 8.4 | ||
No change | 230 * | 40.9 | 66 * | 39.8 | 859 ** | 55.2 | ||
Don’t know | 31 * | 5.5 | 10 | 6.0 | 152 ** | 9.8 | ||
| Yes | 101 | 17.9 | 39 | 23.5 | 334 | 21.5 | 0.139 |
No | 462 | 82.1 | 127 | 76.5 | 1222 | 78.5 | ||
| Yes | 25 | 4.4 | 11 | 6.6 | 74 | 4.8 | 0.503 |
No | 538 | 95.6 | 155 | 93.4 | 1482 | 95.2 |
Changes in Cooking Time and Effort Compared to before COVID-19 | ||||||||
---|---|---|---|---|---|---|---|---|
Increased (n = 563) | Decreased (n = 166) | No Change (n = 1556) | ||||||
Dietary Consciousness Scale | n | % | n | % | n | % | p *1 | |
| High score group | 389 ** | 69.1 | 79 | 47.6 | 723 * | 46.5 | <0.001 |
Low score group | 174 * | 30.9 | 87 | 52.4 | 833 ** | 53.5 | ||
| High score group | 365 ** | 64.8 | 73 | 44.4 * | 947 | 60.9 | <0.001 |
Low score group | 198 * | 35.2 | 93 | 56.0 ** | 609 | 39.1 | ||
| Improved | 407 ** | 72.3 | 81 | 48.8 | 571 * | 36.7 | <0.001 |
Worsened | 33 | 5.9 | 43 ** | 25.9 | 72 * | 4.6 | ||
No change | 123 * | 21.8 | 42 * | 25.3 | 913 ** | 58.7 | ||
| Improved | 260 ** | 46.2 | 68 ** | 41.0 | 365 * | 23.5 | <0.001 |
Worsened | 101 ** | 17.9 | 48 ** | 28.9 | 173 * | 11.1 | ||
No change | 202 * | 35.9 | 50 * | 30.1 | 1018 ** | 65.4 | ||
Dietary behaviors | ||||||||
| Prepare meals by cooking most things from raw ingredients | 251 ** | 44.6 | 34 * | 20.5 | 558 | 35.9 | <0.001 |
Prepare meals by combining some commercial foods | 246 | 43.7 | 69 | 41.6 | 610 | 39.2 | ||
Prepare meals by combining many commercial foods | 55 * | 9.8 | 49 ** | 29.5 | 253 | 16.3 | ||
Prepare meals using commercial foods for everything | 11 * | 2.0 | 14 | 8.4 | 135 ** | 8.7 | ||
| more than 4 times a week | 36 | 6.4 | 22 ** | 13.3 | 81 * | 5.2 | <0.001 |
2–3 times a week | 51 | 9.1 | 27 ** | 16.3 | 131 | 8.4 | ||
once a week | 71 | 12.6 | 25 | 15.1 | 195 | 12.5 | ||
less than once a week | 225 | 40.0 | 53 * | 31.9 | 637 | 40.9 | ||
none | 180 | 32.0 | 39 * | 23.5 | 512 | 32.9 | ||
| more than 4 times a week | 34 | 6.0 | 21 ** | 12.7 | 89 | 5.7 | <0.001 |
2–3 times a week | 84 | 14.9 | 39 ** | 23.5 | 190 * | 12.2 | ||
once a week | 95 | 16.9 | 32 | 19.3 | 221 * | 14.2 | ||
less than once a week | 207 | 36.8 | 47 * | 28.3 | 623 ** | 40.0 | ||
none | 143 | 25.4 | 27 * | 16.3 | 433 ** | 27.8 | ||
Lifestyle variables | ||||||||
| Yes | 290 ** | 51.5 | 70 | 42.2 | 661 * | 42.5 | 0.001 |
No | 273 * | 48.5 | 96 | 57.8 | 895 ** | 57.5 | ||
| Yes | 210 ** | 37.3 | 43 | 25.9 | 487 | 31.3 | 0.006 |
No | 353 * | 62.7 | 123 | 74.1 | 1069 | 68.7 | ||
| Increased | 119 ** | 21.1 | 20 | 12.0 | 117 * | 7.5 | <0.001 |
Decreased | 236 ** | 41.9 | 65 ** | 39.2 | 363 * | 23.3 | ||
No change | 208 * | 36.9 | 81 * | 48.8 | 1076 ** | 69.2 | ||
| Yes | 108 | 19.2 | 39 | 23.5 | 291 | 18.7 | 0.329 |
No | 455 | 80.8 | 127 | 76.5 | 1265 | 81.3 |
Increased (n = 445) | Decreased (n = 130) | ||||||||
---|---|---|---|---|---|---|---|---|---|
OR *1 | 95%CI | p | OR *1 | 95%CI | p | ||||
Sociodemographic variables | |||||||||
| Males | ref. | |||||||
Females | 1.27 | 0.95 | 1.69 | 0.104 | |||||
| 20–29 | 3.41 | 2.26 | 5.14 | <0.001 | ||||
30–39 | 1.60 | 1.06 | 2.42 | 0.027 | |||||
40–49 | 1.66 | 1.11 | 2.50 | 0.015 | |||||
50–59 | 1.48 | 0.97 | 2.26 | 0.069 | |||||
60–69 | ref. | ||||||||
| Fully remote working | 0.97 | 0.52 | 1.78 | 0.913 | ||||
More remote working than working in the office | 1.91 | 1.07 | 3.41 | 0.029 | |||||
More working in the office than remote working | 1.74 | 1.05 | 2.88 | 0.033 | |||||
Fully working in the office | 0.89 | 0.65 | 1.20 | 0.433 | |||||
Currently not working | ref. | ||||||||
| Increased | 1.72 | 0.66 | 4.46 | 0.264 | 3.04 | 0.87 | 10.68 | 0.083 |
Reduced | 1.95 | 1.49 | 2.54 | <0.001 | 1.57 | 1.01 | 2.43 | 0.047 | |
No change | ref. | ||||||||
| Improved | 1.59 | 0.95 | 2.67 | 0.080 | ||||
Worsen | 2.25 | 1.11 | 4.54 | 0.025 | |||||
No change | ref. | ||||||||
Physical variables | |||||||||
| Increased | 1.35 | 0.85 | 2.14 | 0.200 | ||||
Decreased | 2.15 | 1.15 | 4.02 | 0.016 | |||||
No change | ref. | ||||||||
Dietary Consciousness | |||||||||
| High score group | 1.56 | 1.17 | 2.06 | 0.002 | ||||
Low score group | ref. | ||||||||
| High score group | 0.60 | 0.38 | 0.93 | 0.023 | ||||
Low score group | ref. | ||||||||
| Improved | 2.71 | 1.95 | 3.76 | <0.001 | 1.71 | 0.99 | 2.93 | 0.053 |
Worsened | 2.98 | 1.68 | 5.29 | <0.001 | 6.52 | 3.35 | 12.70 | <0.001 | |
No change | ref. | ref. | |||||||
| Improved | 1.95 | 1.43 | 2.66 | <0.001 | 2.54 | 1.48 | 4.35 | 0.001 |
Worsened | 1.64 | 1.11 | 2.42 | 0.013 | 2.37 | 1.28 | 4.39 | 0.006 | |
No change | ref. | ref. | |||||||
Dietary behaviors | |||||||||
| Prepare meals by cooking most things from raw ingredients | 4.20 | 1.93 | 9.11 | <0.001 | ||||
Prepare meals by combining some commercial foods | 3.85 | 1.80 | 8.27 | 0.001 | |||||
Prepare meals by combining many commercial foods | 2.01 | 0.88 | 4.59 | 0.097 | |||||
Prepare meals using commercial foods for everything | ref. | ||||||||
| more than 4 times a week | 3.92 | 1.72 | 8.97 | 0.001 | ||||
2–3 times a week | 3.40 | 1.73 | 6.71 | <0.001 | |||||
once a week | 2.33 | 1.19 | 4.58 | 0.014 | |||||
less than once a week | 1.29 | 0.69 | 2.39 | 0.423 | |||||
none | ref. | ||||||||
Lifestyle variables | |||||||||
| Yes | 0.50 | 0.30 | 0.82 | 0.006 | ||||
No | ref. | ||||||||
| Increased | 2.95 | 2.03 | 4.28 | <0.001 | 1.56 | 0.75 | 3.24 | 0.238 |
Decreased | 2.19 | 1.64 | 2.93 | <0.001 | 1.78 | 1.13 | 2.79 | 0.013 | |
No change | ref. | ref. |
Unadjusted | Adjusted | |||||||
---|---|---|---|---|---|---|---|---|
Increased (n = 563) | Decreased (n = 166) | No Change (n = 1556) | p *1 | Increased (n = 563) | Decreased (n = 166) | No Change (n = 1556) | p *2 | |
Mean (SD) | Mean (SD) | Mean (SD) | LSM (SE) | LSM (SE) | LSM (SE) | |||
Food groups for which daily consumption is recommended *3 | ||||||||
| 1.72(2.09) a | 1.45 (1.79) | 1.33(1.82) b | <0.001 | 1.73 (0.08) a | 1.47 (0.15) | 1.32(0.05) b | <0.001 |
| 2.12(1.52) a | 1.92 (1.51) | 1.90(1.44) b | 0.011 | 2.15 (0.06) a | 1.96 (0.11) | 1.89(0.04) b | 0.001 |
| 2.18(1.58) a | 1.78(1.40) b | 1.80(1.37) b | <0.001 | 2.17 (0.06) a | 1.78(0.11) b | 1.80(0.04) b | <0.001 |
| 4.01(2.15) a | 3.36(2.17) b | 3.54(2.21) b | <0.001 | 4.00 (0.09) a | 3.38(0.17) b | 3.55(0.66) b | <0.001 |
| 4.13(2.50) a | 3.37(2.52) b | 3.88(2.59) a | 0.003 | 4.18 (0.11) a | 3.49(0.19) b | 3.84(0.06) b | 0.002 |
| 3.69(2.19) a | 2.84(1.98) b | 3.29(2.24) c | <0.001 | 3.74 (0.09) a | 2.91(0.17) b | 3.26(0.06) b | <0.001 |
| 4.29(2.19) a | 3.34(2.25) b | 3.85(2.30) c | <0.001 | 4.29 (0.09) a | 3.41(0.17) b | 3.84(0.06) b | <0.001 |
| 4.73(2.03) a | 3.48(2.24) b | 4.24(2.28) c | <0.001 | 4.74 (0.09) a | 3.55(0.17)b | 4.23 (0.06) c | <0.001 |
| 2.33 (1.84) | 1.96 (1.66) | 2.12 (1.87) | 0.022 | 2.38 (0.08) a | 2.02 (0.14) | 2.10(0.05) b | 0.005 |
| 2.41(1.82) a | 1.93(1.45) b | 2.07(1.73) b | <0.001 | 2.41 (0.07) a | 1.97(0.13) b | 2.06(0.04) b | <0.001 |
| 1.67 (1.20) | 1.58 (1.37) | 1.53 (1.17) | 0.059 | 1.67 (0.05) | 1.59 (0.09) | 1.53 (0.03) | 0.061 |
| 2.58(2.30) a | 2.30 (2.07) | 2.27(2.19) b | 0.018 | 2.64 (0.09) a | 2.39 (0.17) | 2.24(0.06) b | 0.001 |
| 35.85 (13.34) a | 29.32 (12.91) b | 31.81 (13.76) b | <0.001 | 36.09 (0.56) a | 29.92 (1.02) b | 31.65 (0.33) b | <0.001 |
Food groups for which daily consumption is not recommended *4 | ||||||||
| 2.06 (1.50) | 1.95 (1.36) | 2.03 (1.06) | 0.711 | 2.07 (0.07) | 1.95 (0.12) | 2.03 (0.04) | 0.674 |
| 3.16 (2.31) | 2.94 (2.16) | 3.05 (2.30) | 0.468 | 3.12 (0.10) | 2.95 (0.18) | 3.06 (0.06) | 0.686 |
| 2.09 (2.24) | 2.30 (2.33) | 2.14 (2.35) | 0.592 | 2.29 (0.09) | 2.41 (0.17) | 2.05 (0.06) | 0.022 |
| 2.16 (2.24) | 2.55 (2.27) | 2.11 (2.26) | 0.055 | 2.12 (0.10) | 2.50 (0.17) | 2.13 (0.06) | 0.114 |
| 1.70(1.43) a | 1.94(1.54) a | 1.46(1.28) b | <0.001 | 1.69 (0.06) a | 1.91 (0.10) a,c | 1.47(0.03) b | <0.001 |
| 1.43(1.25) a | 1.82(1.59) b | 1.39(1.22) a | <0.001 | 1.45 (0.05) a | 1.80(0.10) c | 1.38(0.03) a,b | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, F.; Takemi, Y. Factors Influencing Changes in Food Preparation during the COVID-19 Pandemic and Associations with Food Intake among Japanese Adults. Nutrients 2021, 13, 3864. https://doi.org/10.3390/nu13113864
Hayashi F, Takemi Y. Factors Influencing Changes in Food Preparation during the COVID-19 Pandemic and Associations with Food Intake among Japanese Adults. Nutrients. 2021; 13(11):3864. https://doi.org/10.3390/nu13113864
Chicago/Turabian StyleHayashi, Fumi, and Yukari Takemi. 2021. "Factors Influencing Changes in Food Preparation during the COVID-19 Pandemic and Associations with Food Intake among Japanese Adults" Nutrients 13, no. 11: 3864. https://doi.org/10.3390/nu13113864
APA StyleHayashi, F., & Takemi, Y. (2021). Factors Influencing Changes in Food Preparation during the COVID-19 Pandemic and Associations with Food Intake among Japanese Adults. Nutrients, 13(11), 3864. https://doi.org/10.3390/nu13113864