What Is the Impact of Energy Expenditure on Energy Intake?
Abstract
:1. Introduction
2. Main Part
2.1. Effect of Increased EE by EXERCISE on EI
2.2. Effect of Increased EE by Temperature on EI
2.3. Effect of Timing and Frequency of EE on EI
2.4. Effect of Sleep Duration on EI
2.5. Effect of Energy Requirement Due to Growth, Reproduction, and Changes in Body Composition on EI
2.6. Effect of Dietary Protein on EE and EI
3. Conclusions
Funding
Conflicts of Interest
References
- Kahlhöfer, J.; Karschin, J.; Silberhorn-Bühler, H.; Breusing, N.; Bosy-Westphal, A. Effect of low-glycemic-sugar-sweetened beverages on glucose metabolism and macronutrient oxidation in healthy men. Int. J. Obes. 2016, 40, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.R.; Kramer, M.; Stote, K.S.; Baer, D.J. Determinants of Variance in the Habitual Physical Activity of Overweight Adults. J. Phys. Act. Health 2015, 12, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, L.; Steinbrecher, A.; Jeran, S.; Konigorski, S.; Pischon, T. Variability and reliability study of overall physical activity and activity intensity levels using 24 h-accelerometry-assessed data. BMC Public Health 2018, 18, 530. [Google Scholar] [CrossRef] [PubMed]
- Markwald, R.R.; Melanson, E.L.; Smith, M.R.; Higgins, J.; Perreault, L.; Eckel, R.H.; Wright, K.P. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc. Natl. Acad. Sci. USA 2013, 110, 5695–5700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shechter, A.; Rising, R.; Albu, J.B.; St-Onge, M.-P. Experimental sleep curtailment causes wake-dependent increases in 24-h energy expenditure as measured by whole-room indirect calorimetry. Am. J. Clin. Nutr. 2013, 98, 1433–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Bixler, E.O.; Berg, A.; Imamura Kawasawa, Y.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Yanosky, J.; Liao, D. Habitual sleep variability, not sleep duration, is associated with caloric intake in adolescents. Sleep Med. 2015, 16, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Hooker, S.A.; Oswald, L.B.; Reid, K.J.; Baron, K.G. Do Physical Activity, Caloric Intake, and Sleep Vary Together Day to Day? Exploration of Intraindividual Variability in 3 Key Health Behaviors. J. Phys. Act. Health 2020, 17, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Bellicha, A.; Baak, M.A.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Busetto, L.; Carraça, E.V.; Dicker, D.; Encantado, J.; Ermolao, A.; et al. Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: An overview of 12 systematic reviews and 149 studies. Obes. Rev. 2021, 22, e13256. [Google Scholar] [CrossRef]
- Flack, K.D.; Hays, H.M.; Moreland, J. The consequences of exercise-induced weight loss on food reinforcement. A randomized controlled trial. PLoS ONE 2020, 15, e0234692. [Google Scholar] [CrossRef]
- Caudwell, P.; Gibbons, C.; Hopkins, M.; Naslund, E.; King, N.; Finlayson, G.; Blundell, J. The influence of physical activity on appetite control: An experimental system to understand the relationship between exercise-induced energy expenditure and energy intake. Proc. Nutr. Soc. 2011, 70, 171–180. [Google Scholar] [CrossRef] [Green Version]
- King, N.A.; Hopkins, M.; Caudwell, P.; Stubbs, R.J.; Blundell, J.E. Individual variability following 12 weeks of supervised exercise: Identification and characterization of compensation for exercise-induced weight loss. Int. J. Obes. 2008, 32, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, M.; Blundell, J.E.; King, N.A. Individual variability in compensatory eating following acute exercise in overweight and obese women. Br. J. Sports Med. 2014, 48, 1472–1476. [Google Scholar] [CrossRef] [PubMed]
- Savikj, M.; Zierath, J.R. Train like an athlete: Applying exercise interventions to manage type 2 diabetes. Diabetologia 2020, 63, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Miura, S.; Tadaishi, M.; Kamei, Y.; Ezaki, O. Mechanisms of exercise- and training-induced fatty acid oxidation in skeletal muscle. J. Phys. Fit. Sports Med. 2014, 3, 43–53. [Google Scholar] [CrossRef]
- Anderson, K.C.; Zieff, G.; Paterson, C.; Stoner, L.; Weltman, A.; Allen, J.D. The effect of acute exercise on pre-prandial ghrelin levels in healthy adults: A systematic review and meta-analysis. Peptides 2021, 145, 170625. [Google Scholar] [CrossRef] [PubMed]
- Hazell, T.J.; Islam, H.; Townsend, L.K.; Schmale, M.S.; Copeland, J.L. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite 2016, 98, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Shamlan, G.; Bech, P.; Robertson, M.D.; Collins, A.L. Acute effects of exercise intensity on subsequent substrate utilisation, appetite, and energy balance in men and women. Appl. Physiol. Nutr. Metab. 2017, 42, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Ouerghi, N.; Feki, M.; Bragazzi, N.L.; Knechtle, B.; Hill, L.; Nikolaidis, P.T.; Bouassida, A. Ghrelin Response to Acute and Chronic Exercise: Insights and Implications from a Systematic Review of the Literature. Sports Med. 2021, 1–22. [Google Scholar] [CrossRef]
- Stubbs, R.; Sepp, A.; Hughes, D.; Johnstone, A.; Horgan, G.; King, N.; Blundell, J. The effect of graded levels of exercise on energy intake and balance in free-living men, consuming their normal diet. Eur. J. Clin. Nutr. 2002, 56, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, R.; Sepp, A.; Hughes, D.; Johnstone, A.; Horgan, G.; King, N.; Blundell, J. The effect of graded levels of exercise on energy intake and balance in free-living women. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 866–869. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.M.; Desbrow, B.; Sabapathy, S.; Leveritt, M. Acute exercise and subsequent energy intake. A meta-analysis. Appetite 2013, 63, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Murgatroyd, P.; Goldberg, G.; Leahy, F.; Gilsenan, M.; Prentice, A. Effects of inactivity and diet composition on human energy balance. Int. J. Obes. 1999, 23, 1269–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granados, K.; Stephens, B.R.; Malin, S.K.; Zderic, T.W.; Hamilton, M.T.; Braun, B. Appetite regulation in response to sitting and energy imbalance. Appl. Physiol. Nutr. Metab. 2012, 37, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Hägele, F.A.; Büsing, F.; Nas, A.; Hasler, M.; Müller, M.J.; Blundell, J.E.; Bosy-Westphal, A. Appetite Control Is Improved by Acute Increases in Energy Turnover at Different Levels of Energy Balance. J. Clin. Endocrinol. Metab. 2019, 104, 4481–4491. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, A.; Faber, P.; Gibney, E.; Elia, M.; Horgan, G.; Golden, B.; Stubbs, R. Effect of an acute fast on energy compensation and feeding behaviour in lean men and women. Int. J. Obes. 2002, 26, 1623–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alméras, N.; Lemieux, S.; Bouchard, C.; Tremblay, A. Fat Gain in Female Swimmers. Physiol. Behav. 1997, 61, 811–817. [Google Scholar] [CrossRef]
- Williams, P.T. Asymmetric weight gain and loss from increasing and decreasing exercise. Med. Sci. Sports Exerc. 2008, 40, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Bakaloudi, D.R.; Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Chourdakis, M. Impact of the first COVID-19 lockdown on body weight: A combined systematic review and a meta-analysis. Clin. Nutr. 2021. [Google Scholar] [CrossRef]
- Careau, V.; Halsey, L.G.; Pontzer, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Energy compensation and adiposity in humans. Curr. Biol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.M.; Sabapathy, S.; Leveritt, M.; Desbrow, B. Acute Exercise and Hormones Related to Appetite Regulation: A Meta-Analysis. Sports Med. 2014, 44, 387–403. [Google Scholar] [CrossRef] [Green Version]
- King, J.A.; Miyashita, M.; Wasse, L.K.; Stensel, D.J. Influence of prolonged treadmill running on appetite, energy intake and circulating concentrations of acylated ghrelin. Appetite 2010, 54, 492–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broom, D.R.; Stensel, D.J.; Bishop, N.C.; Burns, S.F.; Miyashita, M. Exercise-induced suppression of acylated ghrelin in humans. J. Appl. Physiol. 2007, 102, 2165–2171. [Google Scholar] [CrossRef] [PubMed]
- Ropelle, E.R.; da Silva, A.S.R.; Cintra, D.E.; de Moura, L.P.; Teixeira, A.M.; Pauli, J.R. Physical Exercise: A Versatile Anti-Inflammatory Tool Involved in the Control of Hypothalamic Satiety Signaling. Exerc. Immunol. Rev. 2021, 27, 7–23. [Google Scholar] [PubMed]
- Blundell, J.E.; Stubbs, R.J.; Hughes, D.A.; Whybrow, S.; King, N.A. Cross talk between physical activity and appetite control: Does physical activity stimulate appetite? Proc. Nutr. Soc. 2003, 62, 651–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grannell, A.; De Vito, G.; Murphy, J.C.; le Roux, C.W. The influence of skeletal muscle on appetite regulation. Expert Rev. Endocrinol. Metab. 2019, 14, 267–282. [Google Scholar] [CrossRef] [PubMed]
- López, M.; Nogueiras, R.; Tena-Sempere, M.; Diéguez, C. Hypothalamic AMPK: A canonical regulator of whole-body energy balance. Nat. Rev. Endocrinol. 2016, 12, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Islam, H.; Townsend, L.K.; McKie, G.L.; Medeiros, P.J.; Gurd, B.J.; Hazell, T.J. Potential involvement of lactate and interleukin-6 in the appetite-regulatory hormonal response to an acute exercise bout. J. Appl. Physiol. 2017, 123, 614–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Febbraio, M.A.; Pedersen, B.K. Muscle-derived interleukin-6: Mechanisms for activation and possible biological roles. FASEB J. 2002, 16, 1335–1347. [Google Scholar] [CrossRef]
- Beaulieu, K.; Hopkins, M.; Long, C.; Blundell, J.; Finlayson, G. High Habitual Physical Activity Improves Acute Energy Compensation in Nonobese Adults. Med. Sci. Sports Exerc. 2017, 49, 2268–2275. [Google Scholar] [CrossRef]
- Dorling, J.; Broom, D.R.; Burns, S.F.; Clayton, D.J.; Deighton, K.; James, L.J.; King, J.A.; Miyashita, M.; Thackray, A.E.; Batterham, R.L.; et al. Acute and chronic effects of exercise on appetite, energy intake, and appetite-related hormones: The modulating effect of adiposity, sex, and habitual physical activity. Nutrients 2018, 10, 1140. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, A.; Alméras, N.; Boer, J.; Kranenbarg, E.K.; Després, J.P. Diet composition and postexercise energy balance. Am. J. Clin. Nutr. 1994, 59, 975–979. [Google Scholar] [CrossRef]
- King, N.A.; Blundell, J.E. High-fat foods overcome the energy expenditure induced by high-intensity cycling or running. Eur. J. Clin. Nutr. 1995, 49, 114–123. [Google Scholar]
- Thivel, D.; Finlayson, G.; Miguet, M.; Pereira, B.; Duclos, M.; Boirie, Y.; Doucet, E.; Blundell, J.E.; Metz, L. Energy depletion by 24-h fast leads to compensatory appetite responses compared with matched energy depletion by exercise in healthy young males. Br. J. Nutr. 2018, 120, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Westerterp-Plantenga, M.S. Effects of extreme environments on food intake in human subjects. Proc. Nutr. Soc. 1999, 58, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Wijers, S.L.J.; Saris, W.H.M.; van Marken Lichtenbelt, W.D. Individual Thermogenic Responses to Mild Cold and Overfeeding Are Closely Related. J. Clin. Endocrinol. Metab. 2007, 92, 4299–4305. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Schnabl, K.; Gabler, S.-M.; Willershäuser, M.; Reber, J.; Karlas, A.; Laurila, S.; Lahesmaa, M.; u Din, M.; Bast-Habersbrunner, A.; et al. Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation. Cell 2018, 175, 1561–1574.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp, K.R. Seasonal variation in body mass, body composition and activity-induced energy expenditure: A long-term study. Eur. J. Clin. Nutr. 2020, 74, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; van Marken Lichtenbelt, W.D.; Strobbe, H.; Schrauwen, P. Energy metabolism in humans at a lowered ambient temperature. Eur. J. Clin. Nutr. 2002, 56, 288–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp-Plantenga, M.; van Marken Lichtenbelt, W.; Cilissen, C.; Top, S. Energy metabolism in women during short exposure to the thermoneutral zone. Physiol. Behav. 2002, 75, 227–235. [Google Scholar] [CrossRef]
- Zakrzewski-Fruer, J.K.; Horsfall, R.N.; Cottrill, D.; Hough, J. Acute exposure to a hot ambient temperature reduces energy intake but does not affect gut hormones in men during rest. Br. J. Nutr. 2021, 125, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.E.T.; Brayson, D.; Halsey, L.G. The cardio-respiratory effects of passive heating and the human thermoneutral zone. Physiol. Rep. 2021, 9, e14973. [Google Scholar] [CrossRef]
- Landis, C.A.; Savage, M.V.; Lentz, M.J.; Brengelmann, G.L. Sleep Deprivation Alters Body Temperature Dynamics to Mild Cooling and Heating Not Sweating Threshold in Women. Sleep 1998, 21, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, J.A.; Wasse, L.K.; Stensel, D.J. The Acute Effects of Swimming on Appetite, Food Intake, and Plasma Acylated Ghrelin. J. Obes. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verger, P.; Lanteaume, M.T.; Louis-Sylvestre, J. Human intake and choice of foods at intervals after exercise. Appetite 1992, 18, 93–99. [Google Scholar] [CrossRef]
- Thackray, A.E.; Willis, S.A.; Sherry, A.P.; Clayton, D.J.; Broom, D.R.; Demashkieh, M.; Sargeant, J.A.; James, L.J.; Finlayson, G.; Stensel, D.J.; et al. An acute bout of swimming increases post-exercise energy intake in young healthy men and women. Appetite 2020, 154, 104785. [Google Scholar] [CrossRef] [PubMed]
- White, L.J.; Dressendorfer, R.H.; Holland, E.; McCoy, S.C.; Ferguson, M.A. Increased Caloric Intake Soon after Exercise in Cold Water. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Halse, R.E.; Wallman, K.E.; Guelfi, K.J. Postexercise Water Immersion Increases Short-Term Food Intake in Trained Men. Med. Sci. Sports Exerc. 2011, 43, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Rüst, C.A.; Knechtle, B.; Rosemann, T. Changes in body core and body surface temperatures during prolonged swimming in water of 10 °C—A case report. Extrem. Physiol. Med. 2012, 1, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, M.; Costill, D.; Kirwan, J.; Mitchell, J.; Houmard, J.; Fink, W.; Beltz, J.; D’Acquisto, L. Fat Storage in Athletes: Metabolic and Hormonal Responses to Swimming and Running. Int. J. Sports Med. 1990, 11, 433–440. [Google Scholar] [CrossRef]
- McMurray, R.G.; Horvath, S.M. Thermoregulation in swimmers and runners. J. Appl. Physiol. 1979, 46, 1086–1092. [Google Scholar] [CrossRef]
- Gwinup, G. Weight loss without dietary restriction: Efficacy of different forms of aerobic exercise. Am. J. Sports Med. 1987, 15, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Kojima, C.; Sasaki, H.; Tsuchiya, Y.; Goto, K. The influence of environmental temperature on appetite-related hormonal responses. J. Physiol. Anthropol. 2015, 34, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crabtree, D.R.; Blannin, A.K. Effects of Exercise in the Cold on Ghrelin, PYY, and Food Intake in Overweight Adults. Med. Sci. Sports Exerc. 2015, 47, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Haftenberger, M.; Mensink, G.B.M.; Herzog, B.; Kluttig, A.; Greiser, K.H.; Merz, B.; Nöthlings, U.; Schlesinger, S.; Vogt, S.; Thorand, B.; et al. Changes in body weight and obesity status in German adults: Results of seven population-based prospective studies. Eur. J. Clin. Nutr. 2016, 70, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Pontzer, H.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Daily energy expenditure through the human life course. Science 2021, 373, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.J.; Geisler, C.; Hübers, M.; Pourhassan, M.; Braun, W.; Bosy-Westphal, A. Normalizing resting energy expenditure across the life course in humans: Challenges and hopes. Eur. J. Clin. Nutr. 2018, 72, 628–637. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.B. Control of Food Intake in Older Men. JAMA J. Am. Med. Assoc. 1994, 272, 1601. [Google Scholar] [CrossRef]
- Ma, Y.; Olendzki, B.C.; Li, W.; Hafner, A.R.; Chiriboga, D.; Hebert, J.R.; Campbell, M.; Sarnie, M.; Ockene, I.S. Seasonal variation in food intake, physical activity, and body weight in a predominantly overweight population. Eur. J. Clin. Nutr. 2006, 60, 519–528. [Google Scholar] [CrossRef]
- Orsama, A.-L.; Mattila, E.; Ermes, M.; van Gils, M.; Wansink, B.; Korhonen, I. Weight Rhythms: Weight Increases during Weekends and Decreases during Weekdays. Obes. Facts 2014, 7, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Racette, S.B.; Weiss, E.P.; Schechtman, K.B.; Steger-May, K.; Villareal, D.T.; Obert, K.A.; Holloszy, J.O. Influence of weekend lifestyle patterns on body weight. Obesity 2008, 16, 1826–1830. [Google Scholar] [CrossRef]
- Tuomisto, M.T.; Terho, T.; Korhonen, I.; Lappalainen, R.; Tuomisto, T.; Laippala, P.; Turjanmaa, V. Diurnal and weekly rhythms of health-related variables in home recordings for two months. Physiol. Behav. 2006, 87, 650–658. [Google Scholar] [CrossRef] [PubMed]
- de Castro, J.M. Weekly rhythms of spontaneous nutrient intake and meal pattern of humans. Physiol. Behav. 1991, 50, 729–738. [Google Scholar] [CrossRef]
- Buchowski, M.S.; Acra, S.; Majchrzak, K.M.; Sun, M.; Chen, K.Y. Patterns of physical activity in free-living adults in the Southern United States. Eur. J. Clin. Nutr. 2004, 58, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Higuchi, M.; Tanaka, S. Association of Day-to-Day Variations in Physical Activity with Postprandial Appetite Regulation in Lean Young Males. Nutrients 2019, 11, 2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, S.Y.M.; Kanaley, J.A.; Guelfi, K.J.; Dimmock, J.A.; Jackson, B.; Fairchild, T.J. Effects of diurnal exercise timing on appetite, energy intake and body composition: A parallel randomized trial. Appetite 2021, 167, 105600. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.M.; Hallschmid, M.; Jauch-Chara, K.; Wilms, B.; Benedict, C.; Lehnert, H.; Born, J.; Schultes, B. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am. J. Clin. Nutr. 2009, 90, 1476–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.R.; Hu, F.B. Short Sleep Duration and Weight Gain: A Systematic Review. Obesity 2008, 16, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Ruan, H.; Xun, P.; Cai, W.; He, K.; Tang, Q. Habitual Sleep Duration and Risk of Childhood Obesity: Systematic Review and Dose-response Meta-analysis of Prospective Cohort Studies. Sci. Rep. 2015, 5, 16160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Ling, J.; Zhu, X.; Lee, T.M.-C.; Li, S.X. Associations of weekday-to-weekend sleep differences with academic performance and health-related outcomes in school-age children and youths. Sleep Med. Rev. 2019, 46, 27–53. [Google Scholar] [CrossRef]
- Spiegel, K.; Tasali, E.; Penev, P.; Cauter, E. Van Brief Communication: Sleep Curtailment in Healthy Young Men Is Associated with Decreased Leptin Levels, Elevated Ghrelin Levels, and Increased Hunger and Appetite. Ann. Intern. Med. 2004, 141, 846. [Google Scholar] [CrossRef]
- Spiegel, K.; Leproult, R.; L’Hermite-Balériaux, M.; Copinschi, G.; Penev, P.D.; Van Cauter, E. Leptin Levels Are Dependent on Sleep Duration: Relationships with Sympathovagal Balance, Carbohydrate Regulation, Cortisol, and Thyrotropin. J. Clin. Endocrinol. Metab. 2004, 89, 5762–5771. [Google Scholar] [CrossRef] [Green Version]
- Bosy-Westphal, A.; Hinrichs, S.; Jauch-Chara, K.; Hitze, B.; Later, W.; Wilms, B.; Settler, U.; Peters, A.; Kiosz, D.; Müller, M.J. Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women. Obes. Facts 2008, 1, 266–273. [Google Scholar] [CrossRef]
- Chaput, J.-P. Sleep patterns, diet quality and energy balance. Physiol. Behav. 2014, 134, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Caudwell, P.; Finlayson, G.; Gibbons, C.; Hopkins, M.; King, N.; Näslund, E.; Blundell, J.E. Resting metabolic rate is associated with hunger, self-determined meal size, and daily energy intake and may represent a marker for appetite. Am. J. Clin. Nutr. 2013, 97, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; Caudwell, P.; Gibbons, C.; Hopkins, M.; Näslund, E.; King, N.A.; Finlayson, G. Body composition and appetite: Fat-free mass (but not fat mass or BMI) is positively associated with self-determined meal size and daily energy intake in humans. Br. J. Nutr. 2012, 107, 445–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weise, C.M.; Hohenadel, M.G.; Krakoff, J.; Votruba, S.B. Body composition and energy expenditure predict ad-libitum food and macronutrient intake in humans. Int. J. Obes. 2014, 38, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.W.; Williams, S.M.; Carter, P.J.; Goulding, A.; Gerrard, D.F.; Taylor, B.J. Changes in fat mass and fat-free mass during the adiposity rebound: FLAME study. Int. J. Pediatr. Obes. 2011, 6, e243–e251. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.J.F. Energy partitioning, tissue growth and appetite control. Proc. Nutr. Soc. 1993, 52, 69–76. [Google Scholar] [CrossRef]
- Piaggi, P.; Thearle, M.S.; Krakoff, J.; Votruba, S.B. Higher Daily Energy Expenditure and Respiratory Quotient, Rather Than Fat-Free Mass, Independently Determine Greater ad Libitum Overeating. J. Clin. Endocrinol. Metab. 2015, 100, 3011–3020. [Google Scholar] [CrossRef] [Green Version]
- Pannacciulli, N.; Salbe, A.D.; Ortega, E.; Venti, C.A.; Bogardus, C.; Krakoff, J. The 24-h carbohydrate oxidation rate in a human respiratory chamber predicts ad libitum food intake. Am. J. Clin. Nutr. 2007, 86, 625–632. [Google Scholar] [CrossRef]
- Zurlo, F.; Lillioja, S.; Esposito-Del Puente, A.; Nyomba, B.L.; Raz, I.; Saad, M.F.; Swinburn, B.A.; Knowler, W.C.; Bogardus, C.; Ravussin, E. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: Study of 24-h RQ. Am. J. Physiol. 1990, 259, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Gluck, M.E.; Venti, C.A.; Salbe, A.D.; Votruba, S.B.; Krakoff, J. Higher 24-h Respiratory Quotient and Higher Spontaneous Physical Activity in Nighttime Eaters. Obesity 2011, 19, 319–323. [Google Scholar] [CrossRef]
- Mayer, J. Glucostatic Mechanism of Regulation of Food Intake. N. Engl. J. Med. 1953, 249, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Flatt, J.P. Carbohydrate balance and body-weight regulation. Proc. Nutr. Soc. 1996, 55, 449–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melanson, K.J.; Westerterp-Plantenga, M.S.; Campfield, L.A.; Saris, W.H.M. Appetite and blood glucose profiles in humans after glycogen-depleting exercise. J. Appl. Physiol. 1999, 87, 947–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raben, A.; Holst, J.J.; Christensen, N.J.; Astrup, A. Determinants of postprandial appetite sensations: Macronutrient intake and glucose metabolism. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 161–169. [Google Scholar] [PubMed]
- Thompson, D.; Campbell, R. Hunger in humans induced by 2-deoxy-D-glucose: Glucoprivic control of taste preference and food intake. Science 1977, 198, 1065–1068. [Google Scholar] [CrossRef]
- Chen, W.; Balland, E.; Cowley, M.A. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis. Neuroendocrinology 2017, 104, 364–381. [Google Scholar] [CrossRef] [PubMed]
- Ukropcova, B.; Sereda, O.; de Jonge, L.; Bogacka, I.; Nguyen, T.; Xie, H.; Bray, G.A.; Smith, S.R. Family History of Diabetes Links Impaired Substrate Switching and Reduced Mitochondrial Content in Skeletal Muscle. Diabetes 2007, 56, 720–727. [Google Scholar] [CrossRef] [Green Version]
- Carnero, E.A.; Bock, C.P.; Distefano, G.; Corbin, K.D.; Stephens, N.A.; Pratley, R.E.; Smith, S.R.; Goodpaster, B.H.; Sparks, L.M. Twenty-four hour assessments of substrate oxidation reveal differences in metabolic flexibility in type 2 diabetes that are improved with aerobic training. Diabetologia 2021, 64, 2322–2333. [Google Scholar] [CrossRef]
- Hunter, G.R.; Singh, H.; Carter, S.J.; Bryan, D.R.; Fisher, G. Sarcopenia and Its Implications for Metabolic Health. J. Obes. 2019, 2019, 8031705. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Eichhorn, C.; Kutzner, D.; Illner, K.; Heller, M.; Müller, M.J. The Age-Related Decline in Resting Energy Expenditure in Humans Is Due to the Loss of Fat-Free Mass and to Alterations in Its Metabolically Active Components. J. Nutr. 2003, 133, 2356–2362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rössner, S.; Öhlin, A. Pregnancy as a Risk Factor for Obesity: Lessons from the Stockholm Pregnancy and Weight Development Study. Obes. Res. 1995, 3, 267s–275s. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.K.; Chomtho, S.; Fewtrell, M.S. Programming of body composition by early growth and nutrition. Proc. Nutr. Soc. 2007, 66, 423–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, M.V.; Larnkjær, A.; Mølgaard, C.; Michaelsen, K.F. Dietary protein intake and quality in early life. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Plachta-Danielzik, S.; Bosy-Westphal, A.; Kehden, B.; Gehrke, M.I.; Kromeyer-Hauschild, K.; Grillenberger, M.; Willhöft, C.; Heymsfield, S.B.; Müller, M.J. Adiposity rebound is misclassified by BMI rebound. Eur. J. Clin. Nutr. 2013, 67, 984–989. [Google Scholar] [CrossRef] [Green Version]
- Buyken, A.E.; Bolzenius, K.; Karaolis-Danckert, N.; Günther, A.L.B.; Kroke, A. Body composition trajectories into adolescence according to age at pubertal growth spurt. Am. J. Hum. Biol. 2011, 23, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Polidori, D.; Sanghvi, A.; Seeley, R.J.; Hall, K.D. How Strongly Does Appetite Counter Weight Loss? Quantification of the Feedback Control of Human Energy Intake. Obesity 2016, 24, 2289–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrannini, G.; Hach, T.; Crowe, S.; Sanghvi, A.; Hall, K.D.; Ferrannini, E. Energy Balance After Sodium–Glucose Cotransporter 2 Inhibition. Diabetes Care 2015, 38, 1730–1735. [Google Scholar] [CrossRef] [Green Version]
- Stock, M.J. Gluttony and thermogenesis revisited. Int. J. Obes. 1999, 23, 1105–1117. [Google Scholar] [CrossRef] [Green Version]
- Journel, M.; Chaumontet, C.; Darcel, N.; Fromentin, G.; Tomé, D. Brain Responses to High-Protein Diets. Adv. Nutr. 2012, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Fisher, F.M.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Bray, G.A.; Bouchard, C. The biology of human overfeeding: A systematic review. Obes. Rev. 2020, 21, e13040. [Google Scholar] [CrossRef] [PubMed]
- Piaggi, P. Metabolic Determinants of Weight Gain in Humans. Obesity 2019, 27, 691–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redman, L.M.; Ravussin, E. In Pursuit of a Biomarker of Weight Gain Susceptibility—Is FGF21 a Candidate? Diabetes 2019, 68, 266–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.J. About “spendthrift” and “thrifty” phenotypes: Resistance and susceptibility to overeating revisited. Am. J. Clin. Nutr. 2019, 110, 542–543. [Google Scholar] [CrossRef]
- Hollstein, T.; Basolo, A.; Ando, T.; Krakoff, J.; Piaggi, P. Reduced adaptive thermogenesis during acute protein-imbalanced overfeeding is a metabolic hallmark of the human thrifty phenotype. Am. J. Clin. Nutr. 2021. [Google Scholar] [CrossRef]
- Bray, G.A.; Redman, L.M.; de Jonge, L.; Covington, J.; Rood, J.; Brock, C.; Mancuso, S.; Martin, C.K.; Smith, S.R. Effect of protein overfeeding on energy expenditure measured in a metabolic chamber. Am. J. Clin. Nutr. 2015, 101, 496–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acheson, K.J.; Blondel-Lubrano, A.; Oguey-Araymon, S.; Beaumont, M.; Emady-Azar, S.; Ammon-Zufferey, C.; Monnard, I.; Pinaud, S.; Nielsen-Moennoz, C.; Bovetto, L. Protein choices targeting thermogenesis and metabolism. Am. J. Clin. Nutr. 2011, 93, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, P.B.; Toubro, S.; Astrup, A. Effect of fat-reduced diets on 24-h energy expenditure: Comparisons between animal protein, vegetable protein, and carbohydrate. Am. J. Clin. Nutr. 2000, 72, 1135–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary protein—Its role in satiety, energetics, weight loss and health. Br. J. Nutr. 2012, 108, S105–S112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frayn, K.N.; Evans, R.D. Human Metabolism: A Regulatory Perspective, 4th ed.; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2019; ISBN 9781119331438. [Google Scholar]
- Schutz, Y. Protein Turnover, Ureagenesis and Gluconeogenesis. Int. J. Vitam. Nutr. Res. 2011, 81, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Tomé, D.; Chaumontet, C.; Even, P.C.; Darcel, N.; Thornton, S.N.; Azzout-Marniche, D. Protein Status Modulates an Appetite for Protein To Maintain a Balanced Nutritional State—A Perspective View. J. Agric. Food Chem. 2020, 68, 1830–1836. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Luscombe-Marsh, N.; Lejeune, M.P.G.M.; Diepvens, K.; Nieuwenhuizen, A.; Engelen, M.P.K.J.; Deutz, N.E.P.; Azzout-Marniche, D.; Tome, D.; Westerterp, K.R. Dietary protein, metabolism, and body-weight regulation: Dose–response effects. Int. J. Obes. 2006, 30, S16–S23. [Google Scholar] [CrossRef] [Green Version]
EE | EI | EB | |
---|---|---|---|
high protein intake | ↑ | ↓ | ↓ |
high habitual PAL | ↑ | ↓(↑) | ↓ |
cold exposure | ↑ | ↑ | ↑ |
heat stress | ↑ | ↓ | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosy-Westphal, A.; Hägele, F.A.; Müller, M.J. What Is the Impact of Energy Expenditure on Energy Intake? Nutrients 2021, 13, 3508. https://doi.org/10.3390/nu13103508
Bosy-Westphal A, Hägele FA, Müller MJ. What Is the Impact of Energy Expenditure on Energy Intake? Nutrients. 2021; 13(10):3508. https://doi.org/10.3390/nu13103508
Chicago/Turabian StyleBosy-Westphal, Anja, Franziska A. Hägele, and Manfred J. Müller. 2021. "What Is the Impact of Energy Expenditure on Energy Intake?" Nutrients 13, no. 10: 3508. https://doi.org/10.3390/nu13103508
APA StyleBosy-Westphal, A., Hägele, F. A., & Müller, M. J. (2021). What Is the Impact of Energy Expenditure on Energy Intake? Nutrients, 13(10), 3508. https://doi.org/10.3390/nu13103508