Effects of Acute Cocoa Supplementation on Postprandial Apolipoproteins, Lipoprotein Subclasses, and Inflammatory Biomarkers in Adults with Type 2 Diabetes after a High-Fat Meal
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Centers for Diseases Control and Prevention. National Diabetes Statistics Report 2020. Estimates of Diabetes and Its Burden in the United States; CDC: Atlanta, GA, USA, 2020; p. 30.
- Statistics About Diabetes|ADA. Available online: https://www.diabetes.org/resources/statistics/statistics-about-diabetes (accessed on 22 January 2020).
- U.S. Census Bureau. National Population Projections: United States by Age, Gender, Ethnicity and Race for Years 2014–2060. Available online: https://wonder.cdc.gov/WONDER/help/PopulationProjections-2060.HTML#Source (accessed on 27 February 2020).
- Geloneze, B.; Lamounier, R.N.; Coelho, O.R. Postprandial hyperglycemia: Treating its atherogenic potential. Arq. Bras. Cardiol. 2006, 87, 604–613. [Google Scholar]
- O’Keefe, J.H.; Bell, D.S.H. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am. J. Cardiol. 2007, 100, 899–904. [Google Scholar] [CrossRef]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef] [Green Version]
- Van Dieren, S.; Nöthlings, U.; van der Schouw, Y.T.; Spijkerman, A.M.W.; Rutten, G.E.H.M.; van der A, D.L.; Sluik, D.; Weikert, C.; Joost, H.G.; Boeing, H.; et al. Non-fasting lipids and risk of cardiovascular disease in patients with diabetes mellitus. Diabetologia 2011, 54, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Talayero, B.G.; Sacks, F.M. The role of triglycerides in atherosclerosis. Curr. Cardiol. Rep. 2011, 13, 544–552. [Google Scholar] [CrossRef] [Green Version]
- Chapman, M.J.; Ginsberg, H.N.; Amarenco, P.; Andreotti, F.; Borén, J.; Catapano, A.L.; Descamps, O.S.; Fisher, E.; Kovanen, P.T.; Kuivenhoven, J.A.; et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management. Eur. Heart J. 2011, 32, 1345–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teno, S.; Uto, Y.; Nagashima, H.; Endoh, Y.; Iwamoto, Y.; Omori, Y.; Takizawa, T. Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes. Diabetes Care 2000, 23, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Liu, W.; Huang, R.; Zhang, X. Postchallenge plasma glucose excursions, carotid intima-media thickness, and risk factors for atherosclerosis in Chinese population with type 2 diabetes. Atherosclerosis 2010, 210, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Shige, H.; Ishikawa, T.; Suzukawa, M.; Ito, T.; Nakajima, K.; Higashi, K.; Ayaori, M.; Tabata, S.; Ohsuzu, F.; Nakamura, H. Endothelium-dependent flow-mediated vasodilation in the postprandial state in type 2 diabetes mellitus. Am. J. Cardiol. 1999, 84, 1272–1274. [Google Scholar] [CrossRef]
- Nappo, F.; Esposito, K.; Cioffi, M.; Giugliano, G.; Molinari, A.M.; Paolisso, G.; Marfella, R.; Giugliano, D. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: Role of fat and carbohydrate meals. J. Am. Coll. Cardiol. 2002, 39, 1145–1150. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, L.; Hartvigsen, M.; Brader, L.; Astrup, A.; Schrezenmeir, J.; Holst, J.; Thomsen, C.; Hermansen, K. Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: Comparison of whey, casein, gluten, and cod protein. Am. J. Clin. Nutr. 2009, 90, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaraj, S.; Wang-Polagruto, J.; Polagruto, J.; Keen, C.L.; Jialal, I. High-fat, energy-dense, fast-food–style breakfast results in an increase in oxidative stress in metabolic syndrome. Metabolism 2008, 57, 867–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, K.; Nappo, F.; Giugliano, F.; Di Palo, C.; Ciotola, M.; Barbieri, M.; Paolisso, G.; Giugliano, D. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2003, 78, 1135–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomsen, C.; Storm, H.; Holst, J.J.; Hermansen, K. Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am. J. Clin. Nutr. 2003, 77, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Neri, S.; Calvagno, S.; Mauceri, B.; Misseri, M.; Tsami, A.; Vecchio, C.; Mastrosimone, G.; Di Pino, A.; Maiorca, D.; Judica, A.; et al. Effects of antioxidants on postprandial oxidative stress and endothelial dysfunction in subjects with impaired glucose tolerance and type 2 diabetes. Eur. J. Nutr. 2010, 49, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Evans, L.M.; Ellis, G.R.; Khan, N.; Morris, K.; Jackson, S.K.; Rees, A.; Lewis, M.J.; Frenneaux, M.P. Prolonged deterioration of endothelial dysfunction in response to postprandial lipaemia is attenuated by vitamin C in Type 2 diabetes. Diabet. Med. 2006, 23, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B. Postprandial metabolic events and fruit-derived phenolics: A review of the science. Br. J. Nutr. 2010, 104 (Suppl. 3), S1–S14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oracz, J.; Zyzelewicz, D.; Nebesny, E. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1176–1192. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Ding, E.L.; Dixon, R.; Pasinetti, G.M.; Villarreal, F. The science of cocoa flavanols: Bioavailability, emerging evidence, and proposed mechanisms. Adv. Nutr. 2014, 5, 547–549. [Google Scholar] [CrossRef] [Green Version]
- Arranz, S.; Valderas-Martinez, P.; Chiva-Blanch, G.; Casas, R.; Urpi-Sarda, M.; Lamuela-Raventos, R.M.; Estruch, R. Cardioprotective effects of cocoa: Clinical evidence from randomized clinical intervention trials in humans. Mol. Nutr. Food Res. 2013, 57, 936–947. [Google Scholar] [CrossRef]
- Shrime, M.G.; Bauer, S.R.; McDonald, A.C.; Chowdhury, N.H.; Coltart, C.E.M.; Ding, E.L. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J. Nutr. 2011, 141, 1982–1988. [Google Scholar] [CrossRef] [PubMed]
- Westphal, S.; Luley, C. Flavanol-rich cocoa ameliorates lipemia-induced endothelial dysfunction. Heart Vessels 2011, 26, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Salmeán, G.; Ortiz-Vilchis, P.; Vacaseydel, C.M.; Rubio-Gayosso, I.; Meaney, E.; Villarreal, F.; Ramírez-Sánchez, I.; Ceballos, G. Acute effects of an oral supplement of (−)-epicatechin on postprandial fat and carbohydrate metabolism in normal and overweight subjects. Food Funct. 2014, 5, 521–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A.; Betts, N.M.; Leyva, M.J.; Fu, D.; Aston, C.E.; Lyons, T.J. Acute cocoa supplementation increases postprandial hdl cholesterol and insulin in obese adults with type 2 diabetes after consumption of a high-fat breakfast. J. Nutr. 2015, 145, 2325–2332. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. J. Am. Coll. Cardiol. 2019, 73, e285–e350. [Google Scholar] [CrossRef]
- Sachdeva, A.; Cannon, C.P.; Deedwania, P.C.; LaBresh, K.A.; Smith, S.C.; Dai, D.; Hernandez, A.; Fonarow, G.C. Lipid levels in patients hospitalized with coronary artery disease: An analysis of 136,905 hospitalizations in Get with The Guidelines. Am. Heart J. 2009, 157, 111–117. [Google Scholar] [CrossRef]
- Eren, E.; Yilmaz, N.; Aydin, O. High density lipoprotein and it’s dysfunction. Open Biochem. J. 2012, 6, 78–93. [Google Scholar] [CrossRef] [Green Version]
- Ramjee, V.; Sperling, L.S.; Jacobson, T.A. Non–high-density lipoprotein cholesterol versus apolipoprotein b in cardiovascular risk stratification: Do the math. J. Am. Coll. Cardiol. 2011, 58, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Varvel, S.A.; Dayspring, T.D.; Edmonds, Y.; Thiselton, D.L.; Ghaedi, L.; Voros, S.; McConnell, J.P.; Sasinowski, M.; Dall, T.; Warnick, G.R. Discordance between apolipoprotein B and low-density lipoprotein particle number is associated with insulin resistance in clinical practice. J. Clin. Lipidol. 2015, 9, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Tamang, H.K.; Timilsina, U.; Singh, K.P.; Shrestha, S.; Raman, R.K.; Panta, P.; Karna, P.; Khadka, L.; Dahal, C. Apo b/apo a-i ratio is statistically a better predictor of cardiovascular disease (CVD) than conventional lipid profile: A study from Kathmandu Valley, Nepal. J. Clin. Diagn. Res. 2014, 8, 34–36. [Google Scholar] [CrossRef]
- Kaneva, A.M.; Potolitsyna, N.N.; Bojko, E.R.; Odland, J.Ø. The apolipoprotein b/apolipoprotein a-i ratio as a potential marker of plasma atherogenicity. Dis. Mark. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krintus, M.; Bergmann, K.; Sypniewska, G.; Sawicki, M. Comparison of apolipoprotein concentrations and values of APOB: APOAI with traditional lipid measures in women diagnosed with acute cornonary syndromes—A preliminary report. J. Int. Fed. Clin. Chem. 2010, 21, 8. [Google Scholar]
- Upadhyay, R.K. Emerging risk biomarkers in cardiovascular diseases and disorders. Lipids 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Xu, H.; Huang, X.; Ärnlöv, J.; Qureshi, A.R.; Cederholm, T.; Sjögren, P.; Lindholm, B.; Risérus, U.; Carrero, J.J. Nonesterified fatty acids and cardiovascular mortality in elderly men with CKD. Clin. J. Am. Soc. Nephrol. 2015, 10, 584–591. [Google Scholar] [CrossRef] [Green Version]
- Karpe, F.; Dickmann, J.R.; Frayn, K.N. Fatty acids, obesity, and insulin resistance: Time for a reevaluation. Diabetes 2011, 60, 2441–2449. [Google Scholar] [CrossRef] [Green Version]
- Otvos, J.D.; Jeyarajah, E.J.; Bennett, D.W. Quantification of plasma lipoproteins by proton nuclear magnetic resonance spectroscopy. Clin. Chem. 1991, 37, 377–386. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, Y.J.; Lee, H.J.; Lee, C.Y. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric. Food Chem. 2003, 51, 7292–7295. [Google Scholar] [CrossRef]
- Amor, A.J.; Catalan, M.; Pérez, A.; Herreras, Z.; Pinyol, M.; Sala-Vila, A.; Cofán, M.; Gilabert, R.; Ros, E.; Ortega, E. Nuclear magnetic resonance lipoprotein abnormalities in newly-diagnosed type 2 diabetes and their association with preclinical carotid atherosclerosis. Atherosclerosis 2016, 247, 161–169. [Google Scholar] [CrossRef]
- Mora, S.; Otvos, J.D.; Rifai, N.; Rosenson, R.S.; Buring, J.E.; Ridker, P.M. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation 2009, 119, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Würtz, P.; Havulinna, A.S.; Soininen, P.; Tynkkynen, T.; Prieto-Merino, D.; Tillin, T.; Ghorbani, A.; Artati, A.; Wang, Q.; Tiainen, M.; et al. Metabolite profiling and cardiovascular event risk. Circulation 2015, 131, 774–785. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, S.I.; Noh, S.K. Green tea as inhibitor of the intestinal absorption of lipids: Potential mechanism for its lipid-lowering effect. J. Nutr. Biochem. 2007, 18, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raederstorff, D.G.; Schlachter, M.F.; Elste, V.; Weber, P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J. Nutr. Biochem. 2003, 14, 326–332. [Google Scholar] [CrossRef]
- Aranaz, P.; Romo-Hualde, A.; Navarro-Herrera, D.; Zabala, M.; López-Yoldi, M.; González-Ferrero, C.; Gil, A.G.; Martínez, J.A.; Vizmanos, J.L.; Milagro, F.I.; et al. Low doses of cocoa extract supplementation ameliorate diet-induced obesity and insulin resistance in rats. Food Funct. 2019, 10, 4811–4822. [Google Scholar] [CrossRef]
- Jalil, A.M.M.; Ismail, A.; Chong, P.P.; Hamid, M.; Kamaruddin, S.H.S. Effects of cocoa extract containing polyphenols and methylxanthines on biochemical parameters of obese-diabetic rats. J. Sci. Food Agric. 2009, 89, 130–137. [Google Scholar] [CrossRef]
- Gu, Y.; Hurst, W.J.; Stuart, D.A.; Lambert, J.D. Inhibition of key digestive enzymes by cocoa extracts 1 and procyanidins. J. Agric. Food Chem. 2011, 59, 5305–5311. [Google Scholar] [CrossRef] [Green Version]
- Kontush, A. HDL particle number and size as predictors of cardiovascular disease. Front. Pharmacol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Otvos, J.D.; Collins, D.; Freedman, D.S.; Shalaurova, I.; Schaefer, E.J.; McNamara, J.R.; Bloomfield, H.E.; Robins, S.J. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation 2006, 113, 1556–1563. [Google Scholar] [CrossRef]
- Kuller, L.H.; Grandits, G.; Cohen, J.D.; Neaton, J.D.; Ronald, P. Lipoprotein particles, insulin, adiponectin, c-reactive protein and risk of coronary heart disease among men with metabolic syndrome. Atherosclerosis 2007, 195, 122–128. [Google Scholar] [CrossRef] [Green Version]
- El Harchaoui, K.; Arsenault, B.J.; Franssen, R.; Després, J.-P.; Hovingh, G.K.; Stroes, E.S.G.; Otvos, J.D.; Wareham, N.J.; Kastelein, J.J.P.; Khaw, K.-T.; et al. High-density lipoprotein particle size and concentration and coronary risk. Ann. Int. Med. 2009, 150, 84–93. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Dimina, L.; Mariotti, F. The postprandial appearance of features of cardiometabolic risk: Acute induction and prevention by nutriens and other dietary substances. Nutrients 2019, 11, 1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schell, J.; Betts, N.M.; Foster, M.; Hal Scofield, R.; Basu, A. Cranberries improve postprandial glucose excursions in type 2 diabetes. Food Funct. 2017, 8, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- Schell, J.; Betts, N.M.; Lyons, T.J.; Basu, A. Raspberries improve postprandial glucose and acute and chronic inflammation in adults with type 2 diabetes. ANM 2019, 74, 165–174. [Google Scholar] [CrossRef]
- Oh, E.S.; Petersen, K.S.; Kris-Etherton, P.M.; Rogers, C.J. Spices in a high-saturated-fat, high-carbohydrate meal reduce postprandial proinflammatory cytokine secretion in men with overweight or obesity: A 3-period, crossover, randomized controlled trial. J. Nutr. 2020, 150, 1600–1609. [Google Scholar] [CrossRef]
- Ellinger, S.; Stehle, P. Impact of cocoa consumption on inflammation processes—A critical review of randomized controlled trials. Nutrients 2016, 8, 321. [Google Scholar] [CrossRef]
- Stote, K.S.; Clevidence, B.A.; Novotny, J.A.; Henderson, T.; Radecki, S.V.; Baer, D.J. Effect of cocoa and green tea on biomarkers of glucose regulation, oxidative stress, inflammation and hemostasis in obese adults at risk for insulin resistance. Eur. J. Clin. Nutr. 2012, 66, 1153–1159. [Google Scholar] [CrossRef] [Green Version]
Variable | Intervention | Fasting | 1 h | 2 h | 4 h | 6 h | Time (p) | Intervention (p) | Time * Intervention (p) |
---|---|---|---|---|---|---|---|---|---|
Apo-B (mg/dL) | Cocoa | 96 ± 5 | 94 ± 5 | 97 ± 5 | 94 ± 5 | 100 ± 5 | 0.70 | 0.57 | 0.58 |
Placebo | 96 ± 4 | 93 ± 5 | 95 ± 4 | 97 ± 5 | 98 ± 4 | ||||
Apo-A1 (mg/dL) | Cocoa | 158 ± 8 | 153 ± 7 | 155 ± 6 | 167 ± 8 | 166 ± 8 | 0.06 | 0.97 | 0.26 |
Placebo | 155 ± 6 | 167 ± 8 | 153 ± 8 | 162 ± 9 | 164 ± 8 | ||||
Apo-B:Apo-A1 Ratio | Cocoa | 0.63 ± 0.04 | 0.63 ± 0.04 | 0.64 ± 0.04 | 0.59 ± 0.04 | 0.63 ± 0.05 | 0.48 | 0.92 | 0.51 |
Placebo | 0.63 ± 0.03 | 0.57 ± 0.04 | 0.66 ± 0.04 | 0.63 ± 0.05 | 0.62 ± 0.04 | ||||
NEFAs (mg/dL) | Cocoa | 0.62 ± 0.04 | 0.49 ± 0.04 | 0.44 ± 0.04 | 0.51 ± 0.05 | 0.65 ± 0.05 | <0.0011 | 0.70 | 0.07 |
Placebo | 0.64 ± 0.05 | 0.42 ± 0.05 | 0.36 ± 0.03 | 0.45 ± 0.03 | 0.71 ± 0.06 |
Variable | Intervention | Fasting | 1 h | 2 h | 4 h | 6 h | Time (p) | Intervention (p) | Time * Intervention (p) |
---|---|---|---|---|---|---|---|---|---|
Total VLDL and Chylomicron Particles (nmol/L) | Cocoa | 39.1 ± 17.9 | 38.2 ± 15.8 | 46.1± 12.8 | 47.9 ± 19.2 | 45.7 ± 19.6 | 0.02 1 | 0.08 | 0.03 2 |
Placebo | 43.1 ± 18.2 | 40.1 ± 19.8 | 47.9 ± 18.8 | 62.2 ± 21.5 | 58.6 ± 15.4 | ||||
Large VLDL and Chylomicron Particles (nmol/L) | Cocoa | 5.7 ± 3.8 | 7.1 ± 3.7 | 8.9 ± 4.4 | 7.7 ± 5.1 | 7.2 ± 5.8 | 0.31 | 0.23 | 0.38 |
Placebo | 6.6 ± 5.0 | 6.2 ± 4.4 | 5.9 ± 3.5 | 8.2 ± 4.4 | 8.1 ± 5.3 | ||||
Medium VLDL Particles (nmol/L) | Cocoa | 12.6 ± 10.5 | 14.5 ± 10.6 | 19.1 ± 13.6 | 18.0 ± 14.2 | 14.8 ± 9.7 | 0.21 | 0.19 | 0.37 |
Placebo | 16.7 ± 10.5 | 15.8 ± 14.5 | 11.1 ± 10.6 | 28.5 ± 14.1 | 20.9 ± 14.7 | ||||
Small VLDL Particles (nmol/L) | Cocoa | 20.9 ± 9.9 | 16.5 ± 11.5 | 18.1 ± 11.6 | 22.2 ± 17.0 | 23.7 ± 14.5 | 0.18 | 0.08 | 0.07 |
Placebo | 19.9 ± 13.2 | 18.0 ± 12.0 | 31.0 ± 13.5 | 24.2 ± 15.2 | 24.7 ± 12.4 | ||||
Total LDL Particles (nmol/L) | Cocoa | 1120 ± 325 | 1136 ± 320 | 1221 ± 202 | 1018 ± 290 | 1092 ± 306 | 0.41 | 0.32 | 0.30 |
Placebo | 1083 ± 195 | 997 ± 245 | 1100 ± 278 | 1056 ± 226 | 1049 ± 267 | ||||
IDL Particles (nmol/L) | Cocoa | 333 ± 173 | 280 ± 172 | 167 ± 144 | 336 ± 179 | 264 ± 186 | 0.48 | 0.26 | 0.19 |
Placebo | 277 ± 103 | 283 ± 206 | 383 ± 141 | 211 ± 168 | 328 ± 201 | ||||
Large LDL Particles (nmol/L) | Cocoa | 209 ± 152 | 349 ± 237 | 410 ± 151 | 182 ± 157 | 299 ± 191 | 0.41 | 0.29 | 0.15 |
Placebo | 317 ± 170 | 250 ± 199 | 263 ± 145 | 195 ± 169 | 184 ± 168 | ||||
Total Small LDL Particles (nmol/L) | Cocoa | 686 ± 251 | 600 ± 256 | 726 ± 198 | 596 ± 289 | 582 ± 241 | 0.34 | 0.23 | 0.38 |
Placebo | 594 ± 268 | 542 ± 178 | 685 ± 256 | 649 ± 279 | 537 ± 249 | ||||
Total HDL Particles (µmol/L) | Cocoa | 29.9 ± 5.0 | 26.1 ± 4.1 | 27.3 ± 4.3 | 27.2 ± 6.6 | 26.0 ± 5.8 | 0.15 | 0.08 | 0.04 2 |
Placebo | 28.0 ± 3.1 | 25.3 ± 7.5 | 24.6 ± 6.5 | 24.3 ± 3.8 | 23.1 ± 5.8 | ||||
Large HDL Particles (µmol/L) | Cocoa | 4.3 ± 1.9 | 3.4 ± 2.0 | 4.3 ± 1.8 | 3.1 ± 1.9 | 4.7 ± 2.3 | 0.21 | 0.26 | 0.33 |
Placebo | 4.0 ± 2.1 | 3.3 ± 2.9 | 4.0 ± 2.4 | 5.0 ± 2.8 | 4.0 ± 2.5 | ||||
Medium HDL Particles (µmol/L) | Cocoa | 5.6 ± 4.8 | 4.9 ± 3.8 | 6.0 ± 3.8 | 6.4 ± 4.5 | 6.4 ± 4.4 | 0.25 | 0.31 | 0.45 |
Placebo | 5.5 ± 3.4 | 3.8 ± 2.2 | 5.5 ± 3.1 | 6.3 ± 4.2 | 4.2 ± 3.7 | ||||
Small HDL Particles (µmol/L) | Cocoa | 19.2 ± 5.6 | 17.7 ± 4.3 | 17.1 ± 4.1 | 15.7 ± 4.8 | 15.0 ± 4.8 | 0.36 | 0.28 | 0.29 |
Placebo | 17.5 ± 1.4 | 18.2 ± 4.8 | 15.1 ± 4.3 | 16.0 ± 4.1 | 14.8 ± 3.4 | ||||
VLDL Size (nm) | Cocoa | 55.7 ± 7.2 | 59.7 ± 8.2 | 59.6 ± 8.3 | 57.2 ± 11.3 | 56.9 ± 12.9 | 0.26 | 0.22 | 0.43 |
Placebo | 56.7 ± 7.5 | 55.1 ± 7.9 | 52.2 ± 5.1 | 57.1 ± 7.4 | 55.6 ± 9.0 | ||||
LDL Size (nm) | Cocoa | 20.0 ± 0.6 | 20.5 ± 0.8 | 20.6 ± 0.7 | 20.0 ± 0.6 | 20.6 ± 0.7 | 0.32 | 0.44 | 0.53 |
Placebo | 20.6 ± 0.9 | 20.4 ± 0.8 | 20.0 ± 0.5 | 20.3 ± 0.5 | 20.6 ± 0.8 | ||||
HDL Size (nm) | Cocoa | 9.2 ± 0.5 | 9.0 ± 0.6 | 9.1 ± 0.4 | 9.0 ± 0.4 | 9.2 ± 0.6 | 0.26 | 0.42 | 0.70 |
Placebo | 9.2 ± 0.5 | 9.0 ± 0.7 | 9.2 ± 0.5 | 9.2 ± 0.5 | 9.3 ± 0.5 |
Variable | Intervention | Fasting | 1 h | 2 h | 4 h | 6 h | Time (p) | Intervention (p) | Time * Intervention (p) |
---|---|---|---|---|---|---|---|---|---|
IL-6 (pg/mL) | Cocoa | 3.2 ± 0.5 | 5.1 ± 0.7 | 6.8 ± 2.4 | 3.1 ± 0.6 | 4.5 ± 1.3 | 0.06 | 0.39 | 0.51 |
Placebo | 6.3 ± 2.1 | 4.4 ± 1.2 | 7.6 ± 2.5 | 5.4 ± 1.8 | 5.0 ± 2.6 | ||||
IL-1β (pg/mL) | Cocoa | 3.0 ± 0.4 | 5.5 ± 2.0 | 3.6 ± 0.4 | 6.3 ± 1.1 | 4.0 ± 0.4 | 0.55 | 0.15 | 0.77 |
Placebo | 3.5 ± 1.1 | 2.4 ± 0.4 | 3.1 ± 1.3 | 3.0 ± 1.0 | 4.2 ± 0.6 | ||||
IL-18 (pg/mL) | Cocoa | 300 ± 12 | 279 ± 11 | 286 ± 12 | 267 ± 9 | 250 ± 9 | 0.45 | 0.001 1 | <0.001 2 |
Placebo | 303 ± 13 | 302 ± 11 | 290 ± 12 | 325 ± 13 | 339 ± 15 | ||||
Nitrite (µM) | Cocoa | 6.2±1.5 | 11.1±2.6 | 13.1±1.6 | 13.7±2.3 | 12.2±2.3 | 0.08 | 0.12 | 0.43 |
Placebo | 8.3±4.5 | 10.6±4.0 | 14.2±3.5 | 17.7±4.0 | 13.8±3.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, D.W.; Tallent, R.; Navalta, J.W.; Salazar, A.; Lyons, T.J.; Basu, A. Effects of Acute Cocoa Supplementation on Postprandial Apolipoproteins, Lipoprotein Subclasses, and Inflammatory Biomarkers in Adults with Type 2 Diabetes after a High-Fat Meal. Nutrients 2020, 12, 1902. https://doi.org/10.3390/nu12071902
Davis DW, Tallent R, Navalta JW, Salazar A, Lyons TJ, Basu A. Effects of Acute Cocoa Supplementation on Postprandial Apolipoproteins, Lipoprotein Subclasses, and Inflammatory Biomarkers in Adults with Type 2 Diabetes after a High-Fat Meal. Nutrients. 2020; 12(7):1902. https://doi.org/10.3390/nu12071902
Chicago/Turabian StyleDavis, Dustin W., Rickelle Tallent, James W. Navalta, Anthony Salazar, Timothy J. Lyons, and Arpita Basu. 2020. "Effects of Acute Cocoa Supplementation on Postprandial Apolipoproteins, Lipoprotein Subclasses, and Inflammatory Biomarkers in Adults with Type 2 Diabetes after a High-Fat Meal" Nutrients 12, no. 7: 1902. https://doi.org/10.3390/nu12071902