The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge
Abstract
:1. Introduction
2. Botanical Characteristics
3. Chemical Composition
4. Health-Promoting Properties
5. Antioxidant and Antimicrobial Activity
6. Application of Chia Seeds in Food Industry
7. Placing Chia Seeds on the EU Market—Legal Regulations
8. Chia Seeds—Future Perspectives
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trovato, G.M. Behavior, nutrition and lifestyle in a comprehensive health and disease paradigm: Skills and knowledge for a predictive, preventive and personalized medicine. EPMA J. 2012, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Muller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 11–12. [Google Scholar] [CrossRef]
- Saldanha, G.L. Summary of comments received in response to the Federal Register notice defining bioactive food components. Fed. Regist. 2004, 69, 55821–55822. [Google Scholar]
- Kulczyński, B.; Gramza-Michałowska, A. Goji Berry (Lycium barbarum): Composition and health effects—A review. Pol. J. Food Nutr. Sci. 2016, 66, 67–75. [Google Scholar] [CrossRef]
- Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78 (Suppl. 1), A18–A25. [Google Scholar] [CrossRef]
- Shashirekha, M.N.; Mallikarjuna, S.E.; Rajarathnam, S. Status of bioactive compounds in foods, with focus on fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 1324–1339. [Google Scholar] [CrossRef]
- Graf, B.L.; Raskin, I.; Cefalu, W.T.; Ribnicky, D.V. Plant-derived therapeutics for the treatment of metabolic syndrome. Curr. Opin. Investig. Drugs 2010, 11, 1107–1115. [Google Scholar]
- Kris-Etherton, P.M.; Hecke, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Kulczyński, B.; Kobus-Cisowska, J.; Kmiecik, D.; Gramza-Michalowska, A.; Golczak, D.; Korczak, J. Antiradical capacity and polyphenol composition of asparagus spears varieties cultivated under different sunlight conditions. Acta Sci. Pol. Technol. Aliment. 2016, 15, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Gramza-Michałowska, A.; Bueschke, M.; Kulczyński, B.; Gliszczyńska-Świgło, A.; Kmiecik, D.; Bilska, A.; Purłan, M.; Wałęsa, L.; Ostrowski, M.; Filipczuk, M.; et al. Phenolic compounds and multivariate analysis of antiradical properties of red fruits. J. Food Meas. Charact. 2019. [Google Scholar] [CrossRef]
- Cahill, J. Ethnobotany of chia, Salvia hispanica L. (Lamiaceae). Econ. Bot. 2003, 57, 604–618. [Google Scholar] [CrossRef]
- Coates, W. Whole and ground chia (Salvia hispanica L.) seeds, chia oil—Effects on plasma lipids and fatty acids. In Nuts & Seeds in Health and Disease Prevention; Preedy, V., Watson, R.R., Patel, V., Eds.; Academic Press: London, UK, 2011; Volume 1, pp. 309–315. [Google Scholar]
- Suri, S.; Passi, S.J.; Goyat, J. Chia seed (Salvia hispanica L.)—A new age functional food. Int. J. Adv. Technol. Eng. Sci. 2016, 4, 286–299. [Google Scholar]
- Munoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seed (Salvia hispanica): An ancient grain and new functional food. Food Res. Int. 2013, 29, 394–408. [Google Scholar] [CrossRef]
- Iglesias-Puig, E.; Haros, M. Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur. Food Res. Technol. 2013, 237, 865–874. [Google Scholar] [CrossRef]
- Inglett, G.E.; Chen, D.; Liu, S. Physical properties of sugar cookies containing chia–oat composites. J. Sci. Food Agric. 2014, 94, 3226–3233. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, P.L.; Almeida, E.L.; Samman, N.C.; Chang, Y.K. Evaluation of whole chia (Salvia hispanica L.) flour and hydrogenated vegetable fat in pound cake. LWT Food Sci. Technol. 2013, 54, 73–79. [Google Scholar] [CrossRef]
- Steffolani, E.; Martinez, M.M.; Leon, A.E.; Gomez, M. Effect of pre-hydration of chia (Salvia hispanicaL.), seeds and flour on the quality of wheat flour breads. LWT Food Sci. Technol. 2015, 61, 401–406. [Google Scholar] [CrossRef]
- Ali, N.M.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Tan, S.W.; Tan, S.G. The promising future of chia, Salvia hispanica L. J. Biomed. Biotechnol. 2012, 2012, 171956. [Google Scholar]
- Huxley, A.J. The New RHS Dictionary of Gardening; Mac Millan Press: London, UK, 1992. [Google Scholar]
- Ayerza, R.; Coates, W. Chia: Rediscovering an Ancient Crop of the Aztecs; University of Arizona Press: Tucson, AZ, USA, 2005. [Google Scholar]
- Ramírez-Jaramillo, G.; Lozano-Contreras, M. Potential for Growing Salvia hispanica L. Areas under Rainfed Conditions in Mexico. Agric. Sci. 2015, 6, 1048–1057. [Google Scholar]
- Ayerza, R.; Coates, W. Influence of environment on growing period and yield, protein, oil and α-linolenic content of three chia (Salvia hispanica L.) selections. Ind. Crop. Prod. 2009, 30, 321–324. [Google Scholar] [CrossRef]
- Marineli, R.; Lenquiste, S.A.; Moraes, E.A.; Marostica, M.R., Jr. Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats. Food Res. Int. 2015, 76, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-Lopez, M.A. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Ciftci, O.N.; Przybylski, R.; Rudzińska, M. Lipid components of flax, perilla, and chia seeds. Eur. J. Lipid Sci. Technol. 2012, 114, 794–800. [Google Scholar] [CrossRef]
- Nitrayova, S.; Brestensky, M.; Heger, J.; Patras, P.; Rafay, J.; Sirotkin, A. Amino acids and fatty acids profile of chia (Salvia hispanica L.) and flax (Linum usitatissimum L.) seed. Potravinarstvo 2014, 8, 72–76. [Google Scholar] [CrossRef]
- Ayerza, R. Oil Content and fatty acid composition of Chia (Salvia hispanica L.) from five northwestern locations in Argentina. J. Am. Oil Chem. Soc. 1995, 72, 1079–1081. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind. Crop. Prod. 2011, 34, 1366–1371. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F. Fatty acid and nutritive quality of chia (Salvia hispanica L.) seeds and plant during growth. Anim. Feed Sci. Technol. 2009, 148, 267–275. [Google Scholar] [CrossRef]
- Villanueva-Bermejo, D.; Calvob, M.V.; Castro-Gómez, P.; Fornaria, T.; Fontecha, J. Production of omega 3-rich oils from underutilized chia seeds. Comparison between supercritical fluid and pressurized liquid extraction methods. Food Res. Int. 2019, 15, 400–407. [Google Scholar] [CrossRef]
- Grancieri, M.; Duarte Martino, H.S.; Gonzalez de Mejia, E. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 480–499. [Google Scholar] [CrossRef]
- USDA National Nutrient Database for Standard Reference, Release 28. 2018. Available online: http://www.ars.usda.gov/ba/bhnrc/ndl (accessed on 3 May 2019).
- Bushway, A.A.; Belyea, P.R.; Bushway, R.J. Chia seed as a source of oil, polysaccharide, and protein. J. Food Sci. 1981, 46, 1349–1350. [Google Scholar] [CrossRef]
- Jin, F.; Nieman, D.C.; Sha, W.; Xie, G.; Qiu, Y.; Jia, W. Supplementation of milled chia seeds increases plasma ALA and EPA in postmenopausal women. Plant Foods Hum. Nutr. 2012, 67, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Alves, S.C.; Vendramini-Costa, B.D.; Baú Betim Cazarin, C.; Maróstica, M.R., Jr.; Ferreira, J.P.B.; Silva, A.B.; Prado, M.A.; Bronze, M.R. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem. 2017, 232, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.J.; Costa de Camargo, A.; Shahidi, F. Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. J. Funct. Foods 2017, 35, 622–634. [Google Scholar] [CrossRef]
- Martínez-Cruz, O.; Paredes-López, O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra-high performance liquid chromatography. J. Chromatogr. A 2014, 1346, 43–48. [Google Scholar]
- Coelho, M.S.; Salas-Mellado, M.M. Chemical characterization of Chia (Salvia hispanica L.) for use in food products. J. Food Nutr. Res. 2014, 2, 263–269. [Google Scholar] [CrossRef]
- Teoh, S.L.; Lai, N.M.; Vanichkulpitak, P.; Vuksan, V.; Ho, H.; Chaiyakunapruk, N. Clinical evidence on dietary supplementation with chia seed (Salvia hispanica L.): A systematic review and meta-analysis. Nutr. Rev. 2018, 76, 219–242. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr. Polym. 2016, 136, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Menga, V.; Menga, V.; Amato, M.; Phillips, T.D.; Angelino, D.; Morreale, F.; Fares, C. Gluten-free pasta incorporating chia (Salvia hispanica L.) As thickening agent: An approach to naturally improve the nutritional profile and the in vitro carbohydrate digestibility. Food Chem. 2017, 221, 1954–1961. [Google Scholar] [CrossRef]
- Ding, Y.; Lin, H.W.; Lin, Y.L.; Yang, D.J.; Yu, Y.S.; Chen, J.W.; Wang, S.Y.; Chen, Y.C. Nutritional composition in the chia seed and its processing properties on restructured ham-like products. J. Food Drug Anal. 2018, 26, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Marineli, R.; Moura, C.S.; Moraes, É.A.; Lenquiste, S.A.; Lollo, P.C.; Morato, P.N.; Amaya-Farfan, J.; Maróstica, M.R., Jr. Chia (Salvia hispanica L.) enhances HSP, PGC-1α expressions and improves glucose tolerance in diet-induced obese rats. Nutrition 2015, 31, 740–748. [Google Scholar] [CrossRef]
- Silva, B.P.; Dias, D.M.; de Castro Moreira, M.E.; Toledo, R.C.; da Matt, S.L.; Lucia, C.M.; Martino, H.S.; Pinheiro-Sant’Ana, H.M. Chia seed shows good protein quality, hypoglycemic effect and improves the lipid profile and liver and intestinal morphology of wistar rats. Plant Foods Hum. Nutr. 2016, 71, 225–230. [Google Scholar] [CrossRef]
- Ho, H.; Lee, A.S.; Jovanovski, E.; Jenkins, A.L.; Desouza, R.; Vuksan, V. Effect of whole and ground Salba seeds (Salvia hispanica L.) on postprandial glycemia in healthy volunteers: A randomized controlled, dose-response trial. Eur. J. Clin. Nutr. 2013, 67, 786–788. [Google Scholar] [CrossRef] [PubMed]
- Vuksan, V.; Whitham, D.; Sievenpiper, J.L.; Jenkins, A.L.; Rogovik, A.L.; Bazinet, R.P.; Vidgen, E.; Hanna, A. Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: Results of a randomized controlled trial. Diabetes Care 2007, 30, 2804–2810. [Google Scholar] [CrossRef]
- Fonte-Faria, T.; Citelli, M.; Atella, G.C.; Raposo, H.F.; Zago, L.; de Souza, T.; da Silva, S.V.; Barja-Fidalgo, C. Chia oil supplementation changes body composition and activates insulin signaling cascade in skeletal muscle tissue of obese animals. Nutrition 2019, 58, 167–174. [Google Scholar] [CrossRef]
- Creus, A.; Benmelej, A.; Villafañe, N.; Lombardoa, Y.B. Dietary Salba (Salvia hispanica L.) improves the altered metabolic fate of glucose and reduces increased collagen deposition in the heart of insulin resistant rats. Prostaglandins Leukot. Essent. Fat. Acids 2017, 121, 30–39. [Google Scholar] [CrossRef]
- Chicco, A.G.; D’Alessandro, M.E.; Hein, G.J.; Oliva, M.E.; Lombardo, Y.B. Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br. J. Nutr. 2009, 101, 41–50. [Google Scholar] [CrossRef]
- Rossi, A.S.; Oliva, M.E.; Ferreira, M.R.; Chicco, A.; Lombardo, Y.B. Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme activities in dyslipidaemic insulin-resistant rats. Br. J. Nutr. 2013, 109, 1617–1627. [Google Scholar] [CrossRef]
- Sierra, L.; Roco, J.; Alarcon, G.; Medina, M.; Nieuwenhove, C.V.; Bruno, M.P.; Jerez, S. Dietary intervention with Salvia hispanica (Chia) oil improves vascular function in rabbits under hypercholesterolaemic conditions. J. Funct. Foods 2015, 14, 641–649. [Google Scholar] [CrossRef]
- Fernandez, I.; Vidueiros, S.M.; Ayerza, R.; Coates, W.; Pallaro, A. Impact of chia (Salvia hispanica L.) on the immune system: Preliminary study. Proc. Nutr. Soc. 2008, 67, E12. [Google Scholar] [CrossRef]
- Vertommen, J.; Van den Sompel, A.M.; Loenders, M.; Van der Velpen, C.; De Leeuw, I. Efficacy and safety of 1 month supplementation of SALBA (Salvia Hispanica Alba) grain to diet of normal adults on body parameters, blood pressure, serum lipids, minerals status and haematological parameters. Results of a pilot study. In Proceedings of the 24th International Symposium on Diabetes and Nutrition of the European Association for the Study of Diabetes, Salerno, Italy, 29 June–1 July 2006. [Google Scholar]
- Segura-Campos, M.R.; Salazar-Vega, I.M.; Chel-Guerrero, L.A.; Betancur-Ancona, D.V. Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT Food Sci. Technol. 2013, 50, 723–731. [Google Scholar] [CrossRef]
- Orona-Tomayo, D.; Valverde, M.E.; Nieto-Rendon, B.; Paredes-Lopez, O. Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. LWT Food Sci. Technol. 2015, 64, 236–242. [Google Scholar]
- Nieman, D.C.; Cayea, E.J.; Austin, M.D.; Henson, D.A.; McAnulty, S.R.; Jin, F. Chia seed does not promote weight loss or alter disease risk factors in overweight adults. Nutr. Res. 2009, 29, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Gillitt, N.; Jin, F.; Henson, D.A.; Kennerly, K.; Shanely, R.A.; Ore, B.; Su, M.; Schwartz, S. Chia seed supplementation and disease risk factors in overweight women: A metabolomics investigation. J. Altern. Complement. Med. 2012, 18, 700–708. [Google Scholar] [CrossRef]
- Sargi, S.C.; Silva, B.C.; Santos, H.M.C.; Montanher, P.F.; Boeing, J.S.; Santos, O.O.; Souza, N.E.; Visentainer, J.V. Antioxidant capacity and chemical composition in seeds rich in omega-3 chia, flax and perilla. Food Sci. Technol. 2013, 33, 541–548. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Bhagwat, S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. 2010. Available online: http://www.orac-info-portal.de/download/ORAC_R2.pdf (accessed on 28 April 2019).
- Brunswick Laboratories, Omega 3 Chia LLC Report (PDF). Available online: https://brunswicklabs.com (accessed on 4 October 2008).
- Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D.; Korczak, J.; Helak, B.; Dziedzic, K.; Górecka, D. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chem. 2016, 211, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Kmiecik, D.; Korczak, J.; Rudzińska, M.; Gramza-Michałowska, A.; Hęś, M.; Kobus-Cisowska, J. Stabilisation of phytosterols by natural and synthetic antioxidants in high temperature conditions. Food Chem. 2015, 173, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Kobus-Cisowska, J.; Flaczyk, E.; Rudzińska, M.; Kmiecik, D. Antioxidant properties of extracts from Ginkgo biloba leaves in meatballs. Meat Sci. 2014, 97, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, A.; Akyol, A.; Inan-Eroglu, E.; Cetin, A.K.; Samur, G.; Akbiyik, F. Chia seed (Salvia hispanica L.) added yogurt reduces short-term food intake and increases satiety: Randomised controlled trial. Nutr. Res. Pract. 2017, 11, 412–418. [Google Scholar] [CrossRef]
- Gallo, L.R.R.; Botelho, R.B.A.; Ginani, V.C.; de Oliveira, L.L.; Riquette, R.F.R.; Leandro, E.S. Chia (Salvia hispanica L.) gel as egg replacer in chocolate cakes: Applicability and microbial and sensory qualities after storage. J. Culin. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Felisberto, M.H.F.; Wahanik, A.L.; Gomes-Ruffi, C.R.; Clerici, M.T.P.S.; Chang, Y.K.; Steel, C.J. Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT Food Sci. Technol. 2015, 63, 1049–1055. [Google Scholar] [CrossRef]
- Munoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- Borneo, R.; Aguirre, A.; León, A.E. Chia (Salvia hispanica L.) gel can be used as egg or oil replacer in cake formulations. J. Am. Diet. Assoc. 2010, 110, 946–949. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Novack, M.E.; Santos, C.P.; Kubota, E.; Rosa, C.S. Evaluation of replacing wheat flour with chia flour (Salvia hispanica L.) in pasta. Semin. Ciênc. Agrár. 2015, 36, 2545. [Google Scholar] [CrossRef]
- Coelho, M.S.; Salas-Mellado, M.M. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT Food Sci. Technol. 2015, 60, 729–736. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Salas-Mellado, M.M. Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chem. 2017, 227, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Coorey, R.; Grant, A.; Jayasena, V. Effects of chia flour incorporation on the nutritive quality and consumer acceptance of chips. J. Food Res. 2012, 1, 85–95. [Google Scholar] [CrossRef]
- Campos, B.E.; Ruivo, T.D.; Scapin, M.; Madrona, G.S.; Bergamasco, R.C. Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. LWT Food Sci. Technol. 2016, 65, 874–883. [Google Scholar] [CrossRef]
- Pintado, T.; Herrero, A.M.; Jimenez-Colmenero, J.; Ruiz-Capillas, C. Strategies for incorporation of chia (Salvia hispanica L.) in frankfurters as a health-promoting ingredient. Meat Sci. 2016, 114, 75–84. [Google Scholar] [CrossRef]
- Antruejo, A.; Azcona, J.O.; Garcia, P.T.; Gallinger, C.; Rosmini, M.; Ayerza, R.; Coates, W.; Perez, C.D. Omega-3 enriched egg production: The effect of α-linolenic ω-3 fatty acid sources on laying hen performance and yolk lipid content and fatty acid composition. Br. Poult. Sci. 2011, 52, 750–760. [Google Scholar] [CrossRef]
- Ixtaina, V.Y.; Nolasco, S.M.; Tomas, M.C. Oxidative stability of chia (Salvia hispanica L.) seed oil: Effect of antioxidants and storage conditions. J. Am. Oil Chem. Soc. 2012, 89, 1077–1090. [Google Scholar] [CrossRef]
- Valdivia-López, M.Á.; Tecante, A. Chia (Salvia hispanica): A review of native Mexican seed and its nutritional and functional properties. Adv. Food Nutr. Res. 2015, 75, 53–75. [Google Scholar]
- Zettel, V.; Hitzmann, B. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci. Technol. 2018, 80, 43–50. [Google Scholar] [CrossRef]
- van der Meulen, B.; van der Velde, M. European Food Law Handbook; Wageningen Academic Publishers: Wageningen, Holland, 2009. [Google Scholar]
- Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R2283&from=en (accessed on 3 May 2019).
- Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 Establishing the Union List of Novel Foods in Accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R2470&from=EN (accessed on 3 May 2019).
Nutrient | Value | |||
---|---|---|---|---|
USDA [33] | Jin et al. [35] | |||
Energy | 486.0 | kcal | 562 | kcal |
Protein | 16.5 | g/100 g | 24.2 | g/100 g |
Total lipid | 30.7 | 40.2 | ||
Ash | 4.8 | 4.77 | ||
Carbohydrate | 42.1 | 26.9 | ||
Dietary fibre | 34.4 | 30.2 | ||
Calcium | 631.0 | mg/100 g | 456 | mg/100 g |
Iron | 7.7 | 9.18 | ||
Magnesium | 335.0 | 449 | ||
Phosphorus | 860.0 | 919 | ||
Potassium | 407.0 | 726 | ||
Sodium | 16.0 | 0.26 | ||
Zinc | 4.6 | 6.47 | ||
Copper | 0.9 | 1.86 | ||
Manganese | 2.7 | 3.79 | ||
Vitamin C | 1.6 | |||
Thiamine | 0.6 | |||
Riboflavin | 0.2 | n.e. | ||
Niacin | 8.8 | |||
Vitamin E | 0.5 | |||
Folate | 49.0 | µg/100 g | n.e. | µg/100 g |
Fatty Acids | Chia | Flax | ||
---|---|---|---|---|
Ciftci et al. [26] | Nitrayova et al. [27] | Ciftci et al. [26] | Nitrayova et al. [27] | |
Saturated Fats (SFA) | ||||
Lauric acid (12:0) | n.e. | 0.03 | n.e. | 0.03 |
Myristic acid (C14:0) | 0.06 | 0.06 | 0.07 | 0.04 |
Pentadecanoic acid (C15:0) | 0.04 | n.e. | 0.05 | n.e. |
Palmitic acid (C16:0) | 7.1 | 7.04 | 5.1 | 5.39 |
Margaric acid (C17:0) | 0.06 | n.e. | 0.08 | n.e. |
Stearic acid (C18:0) | 3.24 | 2.84 | 3.3 | 3.17 |
Arachidic acid (20:0) | 0.24 | 0.02 | 0.18 | 0.15 |
Behenic acid (22:0) | 0.08 | n.e. | 0.14 | n.e. |
Lignoceric acid (24:0) | 0.1 | n.e. | 0.09 | n.e. |
Monounsaturated Fats (MUFA) | ||||
Palmitoleic acid (C16:1) | 0.2 | 0.03 | 0.09 | 0.02 |
Margaric acid (C17:0) | 0.06 | n.e. | 0.08 | n.e |
Oleic acid (C18:1 – ω-9) | 10.53 | 7.3 | 18.1 | 18.7 |
Eicosenoic acid (20:1) | 0.16 | n.e. | 0.2 | n.e. |
Polyunsaturated Fats | ||||
Linoleic acid (C18:2 – ω-6) | 20.37 | 18.89 | 15.3 | 16.13 |
Linolenic acid (C18:3 – ω-3) | 59.76 | 63.79 | 58.2 | 56.37 |
Eicosadienoic acid (20:2) | 0.08 | n.e. | n.e. | n.e. |
Summary | ||||
SFA | 8.65 | 9.99 | 7.87 | 8.78 |
MUFA | 10.95 | 7.33 | 18.5 | 18.72 |
PUFA | 80.4 | 82.68 | 73.63 | 72.5 |
Ratio n-6/n-3 | 0.35 | 0.3 | 0.27 | 0.29 |
Amino Acid | Content (g/100 g) | |
---|---|---|
USDA [33] | Nitrayova et al. [27] | |
Essential amino acids | ||
Arginine | 2.14 | 2.00 |
Histidine | 0.53 | 0.61 |
Isoleucine | 0.80 | 0.74 |
Leucine | 1.37 | 1.42 |
Lysine | 0.97 | 0.93 |
Methionine | 0.59 | 0.67 |
Phenylalanine | 1.02 | 1.6 |
Threonine | 0.71 | 0.54 |
Tryptophan | 0.44 | n/d |
Valine | 0.95 | 0.79 |
Non-essential amino acids | ||
Cystine | 0.41 | 0.42 |
Tyrosine | 0.56 | 0.61 |
Alanine | 1.04 | 0.94 |
Aspartic acid | 1.69 | 1.28 |
Glutamic acid | 3.50 | 2.87 |
Glycine | 0.94 | 0.91 |
Proline | 0.78 | 1.28 |
Serine | 1.05 | 0.94 |
Compound | µg/g Seed | Reference | |
---|---|---|---|
Polyphenols | Gallic acid | 0.05; 11 | Jin et al. [35]; Martínez-Cruz and Paredes-López [38] |
Caffeic acid | 27; 30.89 | Martínez-Cruz and Paredes-López [38]; Coelho and Salas-Mellado [39] | |
Chlorogenic acid | 4.68 | Coelho and Salas-Mellado [39] | |
Protocatechuic acid ethyl ester | 0.74 | ||
Ferulic acid | trace | ||
Quercetin | 0.17 | ||
Kaempferol | 0.013 | Jin et al. [35] | |
Kaempferol 3-O-glucoside | 0.029 | ||
Epicatechin | 0.029 | ||
Rutin | 0.22 | ||
p-Coumaric acid | 0.24 | ||
Apigenin | 0.005 | ||
Isoflavones | Daidzin | 6.6 | Martínez-Cruz and Paredes-López [38] |
Glycitin | 1.4 | ||
Genistin | 3.4 | ||
Glycitein | 0.5 | ||
Genistein | 5.1 |
Authorised Novel Food | Conditions under Which the Novel Food May Be Used | Additional Specific Labelling Requirements | |
---|---|---|---|
Chia seeds (Salvia hispanica) | Specified food category | Maximum levels | 1. The designation of the novel food on the labelling of the foodstuffs containing it shall be “Chia seeds (Salvia hispanica)” 2. Pre-packaged Chia (Salvia hispanica) seeds shall carry additional labelling to inform the consumer that the daily intake is no more than 15 g |
Bread products | 5% (whole or ground chia seeds) | ||
Baked products | 10% whole chia seeds | ||
Breakfast cereals | 10% whole chia seeds | ||
Fruits, nut and seed mixes | 10% whole chia seeds | ||
Fruit juice and fruit/vegetable blend beverages | 15 g/day for addition of whole, mashed or ground chia seeds | ||
Pre-packaged Chia seed as such | 15 g/day whole chia seeds | ||
Fruit spreads | 1% whole chia seeds | ||
Yoghurt | 1,3 g whole chia seeds per 100 g of yoghurt or 4,3 g whole chia seeds per 330 g of yoghurt (portion) | ||
Sterilised ready to eat meals based on cereal grains, pseudocereals grains and/or pulses | 5% whole chia seeds | ||
Chia oil from Salvia hispanica | Specified food category | Maximum levels | The designation of the novel food on the labelling of the foodstuffs containing it shall be “Chia oil (Salvia hispanica)” |
Fats and oils | 10% | ||
Pure chia oil | 2 g/day | ||
Food supplements as defined in Directive 2002/46/EC | 2 g/day |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients 2019, 11, 1242. https://doi.org/10.3390/nu11061242
Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients. 2019; 11(6):1242. https://doi.org/10.3390/nu11061242
Chicago/Turabian StyleKulczyński, Bartosz, Joanna Kobus-Cisowska, Maciej Taczanowski, Dominik Kmiecik, and Anna Gramza-Michałowska. 2019. "The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge" Nutrients 11, no. 6: 1242. https://doi.org/10.3390/nu11061242
APA StyleKulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., & Gramza-Michałowska, A. (2019). The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients, 11(6), 1242. https://doi.org/10.3390/nu11061242