Bone Health, Body Composition, and Vitamin D Status of Black Preadolescent Children in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometrics
2.3. Body Composition and Bone Health
2.4. Vitamin D
2.5. Statistical Analysis
3. Results
3.1. Bone Health and Body Composition
3.2. Bone Health and Vitamin D Status
3.3. Vitamin D Status and Body Composition
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef]
- Sioen, I.; Lust, E.; De Henauw, S.; Moreno, L.A.; Jime’nez-Pavo’n, D. Associations Between Body Composition and Bone Health in Children and Adolescents: A Systematic Review. Calcif. Tissue Int. 2016, 99, 557–577. [Google Scholar] [CrossRef] [PubMed]
- Mithal, A.; Wahl, D.A.; Bonjour, J.P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj Fuleihan, G.; Josse, R.G.; Lips, P.; Morales-Torres, J. IOF Committee of Scientific Advisors (CSA) Nutrition Working Group. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int. 2009, 20, 1807–1820. [Google Scholar] [CrossRef]
- Wahl, D.A.; Cooper, C.; Ebeling, P.R.; Eggersdorfer, M.; Hilger, J.; Hoffmann, K.; Josse, R.; Kanis, J.A.; Mithal, A.; Pierroz, D.D.; et al. A global representation of vitamin D status in healthy populations. Arch. Osteoporos. 2012, 7, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef]
- Palacios, C.; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 2014, 144 Pt A, 138–145. [Google Scholar] [CrossRef]
- Norval, M.; Coussens, A.K.; Wilkinson, R.J.; Bornman, L.; Lucas, R.M.; Wright, C.Y. Vitamin D Status and Its Consequences for Health in South Africa. Int. J. Environ. Res. Publ Health 2016, 13, 1019. [Google Scholar] [CrossRef] [PubMed]
- Pekkinen, M.; Viljakainen, H.; Saarnio, E.; Lamberg-Allardt, C.; Mäkitie, O. Vitamin D Is a Major Determinant of Bone Mineral Density at School Age. PLoS ONE 2012, 7, e40090. [Google Scholar] [CrossRef]
- Lee, Y.A.; Kim, J.Y.; Kang, M.J.; Chung, S.J.; Shin, C.H.; Yang, S.W. Adequate vitamin D status and adiposity contribute to bone health in peripubertal nonobese children. J. Bone Miner. Metab. 2013, 31, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Hazell, T.J.; Pham, T.T.; Jean-Philippe, S.; Finch, S.L.; El Hayek, J.; Vanstone, C.A.; Agellon, S.; Rodd, C.J.; Weiler, H.A. Vitamin D status is associated with bone mineral density and bone mineral content in preschool-aged children. J. Clin. Densitom. 2015, 18, 60–67. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D.; Weber, D.R.; Zemel, B.S.; Denburg, M.R.; Herskovitz, R.; Long, J.; Leonard, M.B. Bone Mineral Accrual Is Associated with Parathyroid Hormone and 1,25-Dihydroxyvitamin D Levels in Children and Adolescents. J. Clin. Endocrinol. Metab. 2015, 100, 3814–3821. [Google Scholar] [CrossRef]
- Cranney, A.; Horsley, T.; O’Donnell, S.; Weiler, H.; Puil, L.; Ooi, D.; Atkinson, S.; Ward, L.; Moher, D.; Hanley, D.; et al. Effectiveness and safety of vitamin D in relation to bone health. Evid. Rep. Technol. Assess. 2007, 158, 1–235. [Google Scholar]
- Pourshahidi, L.K. Vitamin D and obesity: Current perspectives and future directions. Proc. Nutr. Soc. 2015, 74, 115–124. [Google Scholar] [CrossRef]
- Smotkin-Tangorra, M.; Purushothaman, R.; Gupta, A.; Nejati, G.; Anhalt, H.; Ten, S. Prevalence of vitamin D insufficiency in obese children and adolescents. J. Pediatr. Endocrinol. Metab. 2007, 20, 817–823. [Google Scholar] [CrossRef]
- Reinehr, T.; De Sousa, G.; Alexy, U.; Kersting, M.; Andler, W. Vitamin D status and parathyroid hormone in obese children before and after weight loss. Eur. J. Endocrinol. 2007, 157, 225–232. [Google Scholar] [CrossRef]
- Alemzadeh, R.; Kichler, J.; Babar, G.; Calhoun, M. Hypovitaminosis D in obese children and adolescents: Relationship with adiposity, insulin sensitivity, ethnicity, and season. Metab. Clin. Exp. 2008, 57, 183–191. [Google Scholar] [CrossRef]
- Rodríques- Rodríques, E.; Navia-Lombán, B.; López-Sobaler, A.M.; Ortega, R.M. Associations between abdominal fat and body mass index on vitamin D status in a group of Spanish schoolchildren. Eur. J. Clin. Nutr. 2010, 64, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Poopedi, M.A.; Norris, S.A.; Pettifor, J.M. Factors influencing the vitamin D status of 10-year-old urban South African children. Public Health Nutr. 2011, 14, 334–339. [Google Scholar] [CrossRef]
- Sioen, I.; Mouratidou, T.; Kaufman, J.M.; Bammann, K.; Michels, N.; Pigeot, I.; Vanaelst, B.; Vyncke, K.; De Henauw, S. IDEFICS consortium. Determinants of vitamin D status in young children: Results from the Belgian arm of the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants) Study. Public Health Nutr. 2012, 15, 1093–1099. [Google Scholar] [CrossRef]
- Greene-Finestone, L.S.; Garriguet, D.; Brooks, S.; Langlois, K.; Whiting, S.J. Overweight and obesity are associated with lower vitamin D status in Canadian children and adolescents. Paediatr. Child. Health 2017, 22, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.D.; Kiely, M. Towards prevention of vitamin D deficiency and beyond: Knowledge gaps and research needs in vitamin D nutrition and public health. Br. J. Nutr. 2011, 106, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Child Growth Standards: Methods and Development. Available online: http://www.who.int/childgrowth/standards/technical_report/en/. (accessed on 4 April 2016).
- National Department of Health (NDoH); Statisics South Africa (Stats SA); South African Medical Research Council (SAMRC); ICF. South Africa Demographic and Health Survey 2016: Key Indicators; NDoH: Pretoria, South Africa; Stats SA: Pretoria, South Africa; SAMRC: Pretoria, South Africa; ICF: Rockville, MD, USA, 2017. [Google Scholar]
- Crabtree, N.J.; Arabi, A.; Bachrach, L.K.; Fewtrell, M.; Fuleihan, G.E.; Kecskemethy, H.H.; Jaworski, M.; Gordon, C.M.; International Society for Clinical Densitometry. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: The revised 2013 ISCD pediatric official positions. J. Clin. Densitom. 2014, 17, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Estrada, A.; Ramnitz, M.S.; Gafni, R.I. Bone densitometry in children and adolescents. Curr. Opin. Obstet. Gynecol. 2014, 26, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Vidulich, L.; Norris, S.A.; Cameron, N.; Pettifor, J.M. Bone mass and bone size in pre-or early pubertal 10-year-old black and white South African children and their parents. Calcif. Tissue Int. 2011, 88, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.M.; Leonard, M.B.; Zemel, B.S. 2013 pediatric position development conference: Executive summary and reflections. J. Clin. Densitom. 2014, 17, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Zemel, B.S.; Kalkwarf, H.J.; Gilsanz, V.; Lappe, J.M.; Oberfield, S.; Shepherd, J.A.; Frederick, M.M.; Huang, X.; Lu, M.; Mahboubi, S.; et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: Results of the bone mineral density in childhood study. J. Clin. Endocrinol. Metab. 2011, 96, 3160–3169. [Google Scholar] [CrossRef]
- Kalkwarf, H.J.; Zemel, B.S.; Gilsanz, V.; Lappe, J.M.; Horlick, M.; Oberfield, S.; Mahboubi, S.; Fan, B.; Frederick, M.M.; Winer, K.; et al. The bone mineral density in childhood study: Bone mineral content and density according to age, sex and race. J. Clin. Endocrinol. Metab. 2007, 92, 2087–2099. [Google Scholar] [CrossRef]
- Newman, M.S.; Brandon, T.R.; Groves, M.N.; Gregory, W.L.; Kapur, S.; Zava, D.T. A liquid chromatography/tandem mass spectrometry method for determination of 25-hydroxy vitamin D2 and 25-hydroxy vitamin D3 in dried blood spots: A potential adjunct to diabetes and cardiometabolic risk screening. J. Diabetes Sci. Technol. 2009, 3, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Timpson, N.J.; Sayers, A.; Davey-Smith, G.; Tobias, J.H. How does body fat influence bone mass in childhood? A Mendelian randomization approach. J. Bone Miner. Res. 2009, 24, 522–533. [Google Scholar] [CrossRef]
- Clark, E.M.; Ness, A.R.; Tobias, J.H. Adipose tissue stimulates bone growth in prepubertal children. J. Clin. Endocrinol. Metab. 2006, 91, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Cole, Z.A.; Harvey, N.C.; Kim, M.; Ntani, G.; Robinson, S.M.; Inskip, H.M.; Godfrey, K.M.; Cooper, C.M.; Dennison, E.M.; Southampton Women’s Survey Study Group. Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children. Bone 2012, 50, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Goulding, A.; Taylor, R.W.; Jones, I.E.; McAuley, K.A.; Manning, P.J.; Williams, S.M. Overweight and obese children have low bone mass and area for their weight. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forero-Bogotá, M.A.; Ojeda-Pardo, M.L.; García-Hermoso, A.; Correa-Bautista, J.E.; González-Jiménez, E.; Schmidt-RíoValle, J.; Navarro-Pérez, C.F.; Gracia-Marco, L.; Vlachopoulos, D.; Martínez-Torres, J.; et al. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study. Nutrients 2017, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Turner, C. Three rules for bone adaptation to mechanical stimuli. Bone 1998, 23, 399–407. [Google Scholar] [CrossRef]
- Wetzsteon, R.J.; Petit, M.A.; Macdonald, H.M.; Hughes, J.M.; Beck, T.J.; McKay, H.A. Bone structure and volumetric BMD in overweight children: A longitudinal study. J. Bone and Miner. Res. 2008, 23, 1946–1953. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ma, F.; Lou, H.; Liu, Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health 2013, 13, 629. [Google Scholar] [CrossRef]
- Lehtonen-Veromaa, M.K.; Mottonen, T.T.; Nuotio, I.O.; Irjala, K.M.; Leino, A.E.; Viikari, J.S. Vitamin D and attainment of peak bone mass among peripubertal finnish girls: A 3-y prospective study. Am. J. Clin. Nutr. 2002, 76, 1446–1453. [Google Scholar] [CrossRef]
- Marwaha, R.K.; Tandon, N.; Reddy, D.R.H.K.; Aggarwal, R.; Singh, R.; Sawhney, R.C.; Saluja, B.; Ganie, M.A.; Singh, S. Vitamin D and bone mineral density status of healthy schoolchildren in northern India. Am. J. Clin. Nutr. 2005, 82, 477–482. [Google Scholar] [CrossRef]
- Rovner, A.J.; Stallings, V.A.; Rutstein, R.; Schall, J.I.; Leonard, M.B.; Zemel, B.S. Effect of high-dose cholecalciferol (vitamin D3) on bone and body composition in children and young adults with HIV infection: A randomized, double-blind, placebo-controlled trial. Osteoporos. Int. 2017, 28, 201–209. [Google Scholar] [CrossRef]
- Rajakumar, K.; Moore, C.G.; Yabes, J.; Olabopo, F.; Haralam, M.A.; Comer, D.; Bogusz, J.; Nucci, A.; Sereika, S.; Dunbar-Jacob, J.; et al. Effect of Vitamin D3 Supplementation in Black and in White Children: A Randomized, Placebo-Controlled Trial. J. Clin. Endocrinol. Metab. 2015, 100, 3183–3192. [Google Scholar] [CrossRef]
- Docio, S.; Riancho, J.A.; Perez, A.; Olmos, J.M.; Amado, J.A.; Gonzales-Macias, J. Seasonal deficiency of vitamin D in children: A potential target for osteoporosis-preventing strategies? J. Bone Min. Res. 1998, 13, 544–548. [Google Scholar] [CrossRef]
- Cheng, S.; Tylavsky, F.; Kroger, H.; Karkkainen, M.; Lyytikainen, A.; Koistinen, A.; Mahonen, A.; Alen, M.; Halleen, J.; Väänänen, K.; et al. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal finnish girls. Am. J. Clin. Nutr. 2003, 78, 485–492. [Google Scholar] [CrossRef]
- Outila, T.A.; Karkkainen, M.U.; Lamberg-Allardt, C.J. Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: Associations with forearm bone mineral density. Am. J. Clin. Nutr. 2001, 74, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.S.; Koudoro, F.H.; Elliott, M.S.; Han, Z. Is There Pandemic Vitamin D Deficiency in the Black Population? A Review of Evidence. Open Nutr. J. 2015, 9, 5–11. [Google Scholar] [Green Version]
- Aloia, J.F. African Americans, 25-hydroxyvitamin D, and osteoporosis: A paradox. Am. J. Clin. Nutr. 2008, 88, 545S–550S. [Google Scholar] [CrossRef] [PubMed]
- Jemielita, T.; Leonard, M.; Baker, J.; Sayed, S.; Zemel, B.; Shults, J.; Herskovitz, R.; Denburg, M.R. Association of 25-hydroxyvitamin D with areal and volumetric measures of bone mineral density and parathyroid hormone: Impact of vitamin D-binding protein and its assays. Osteoporosis Int. 2016, 27, 617–626. [Google Scholar] [CrossRef]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin d from the institute of medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Vieth, R.; Holick, M.F. The IOM-Endocrine society controversy on recommended vitamin D targets: In support of the endocrine society position. In Vitamin D, 4th ed.; Feldman, D., Pike, J.W., Bouillon, R., Eds.; Elsevier: London, UK, 2018; pp. 1091–1107. [Google Scholar]
- Cornish, D.A.; Maluleke, V.; Mhlanga, T. An investigation into a possible relationship between vitamin D, parathyroid hormone, calcium and magnesium in a normally pigmented and an albino rural black population in the Northern Province of South Africa. BioFactors 2000, 11, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Larkin, E.K.; Gebretsadik, T.; Koestner, N.; Newman, M.S.; Liu, Z.; Carrol, K.N.; Minton, P.; Woodward, K.; Hertert, T.V. Agreement of Blood Spot Card Measurements of Vitamin D Levels with Serum, Whole Blood Specimen Types and a Dietary Recall Instrument. PLoS ONE 2011, 6, e16602. [Google Scholar] [CrossRef]
Parameters | Total (n = 84) | Boys (n = 40) | Girls (n = 44) | p |
Age (years) | 8.6 ± 1.4 1 | 8.6 ± 1.5 1 | 8.6 ± 1.3 1 | 0.98 |
Height (cm) | 1.32 ± 0.10 1 | 1.32 ± 0.10 1 | 1.32 ± 0.09 1 | 0.94 |
Weight (kg) | 33.5 ± 10.9 1 | 33.4 ± 11.1 1 | 33.7 ± 11.0 1 | 0.91 |
HAZ | 0.37 ± 0.94 1 | 0.34 ± 0.95 1 | 0.40 ± 0.14 1 | 0.76 |
BMI zsc | 1.02 ± 1.63 1 | 1.05 ± 1.82 1 | 0.99 ± 1.47 1 | 0.87 |
Healthy (BMI zsc −2–+1) | 50 (60%) 2 | 25 (63%) 2 | 25 (57%) 2 | |
Over-nourished (BMI zsc >+1) | 34 (40%) 2 | 15 (38%) 2 | 19 (43%) 2 | |
Body composition | ||||
Fat mass (kg) | 11.7 ± 7.0 1 | 10.3 ± 6.9 1 | 12.9 ± 7.0 1 | 0.10 |
Fat free mass (kg) | 21.5 ±4.9 1 | 22.6 ± 5.0 1 | 20.5 ± 4.7 1 | 0.04 |
Body fat (%) | 32.9 ± 9.7 1 | 28.9 ± 9.2 1 | 36.5 ± 8.8 1 | <0.01 |
Vitamin D status | Total (n = 59) | Boys (n = 28) | Girls (n = 31) | p |
25(OH)D (ng/mL) | 27.3 ± 5.3 1 | 28.4 ± 5.1 1 | 26.3 ± 5.2 1 | 0.90 |
Deficient (≤20 ng/mL) | 4 (7%) 2 | 2 (7%) 2 | 2 (6%) 2 | |
Insufficient (21–29 ng/mL) | 35 (59%) 2 | 15 (54%) 2 | 20 (65%) 2 | |
Sufficient (≥30 ng/mL) | 20 (34%) 2 | 11 (39%) 2 | 9 (29%) 2 |
Bone Health Parameters | Body Weight (kg) | Lean Mass (kg) | Fat Mass (kg) | Body Fat (%) |
---|---|---|---|---|
TBLH-BMC (g) | 11.25 (1.04) | 29.83 (1.58) | 13.11 (2.01) | 4.76 (1.72) |
p | <0.001 | <0.001 | <0.001 | 0.007 |
R2 | 0.59 | 0.81 | 0.34 | 0.09 |
LS-BMC (g) | 0.18 (0.04) | 0.48 (0.08) | 0.19 (0.06) | 0.06 (0.05) |
p | <0.001 | <0.001 | 0.002 | 0.162 |
R2 | 0.22 | 0.32 | 0.11 | 0.02 |
TBLH-BMD (g/cm3) | 0.006 (0.0005) | 0.014 (0.0008) | 0.007 (0.001) | 0.003 (0.0008) |
p | <0.001 | <0.001 | <0.001 | 0.001 |
R2 | 0.59 | 0.79 | 0.37 | 0.12 |
LS-BMD (g/cm2) | 0.004 (0.0007) | 0.01 (0.002) | 0.006 (0.001) | 0.003 (0.0009) |
p | <0.001 | <0.001 | <0.001 | <0.001 |
R2 | 0.33 | 0.32 | 0.27 | 0.15 |
TBLH-Area (cm2) | 8.35 (0.94) | 22.68 (1.60) | 9.31 (1.74) | 2.91 (1.43) |
p | <0.001 | <0.001 | <0.001 | 0.045 |
R2 | 0.49 | 0.71 | 0.26 | 0.05 |
LS-Area (cm2) | 0.09 (0.04) | 0.34 (0.09) | 0.04 (0.06) | −0.04 (−0.05) |
p | 0.035 | <0.001 | 0.53 | 0.44 |
R2 | 0.05 | 0.16 | 0.005 | 0.007 |
Bone Health Parameters | Total Population (n = 59) | Deficient (≤20 ng/mL) (n = 4) | Insufficient (21–29 ng/mL) (n = 35) | Sufficient (≥30 ng/mL) (n = 20) | p |
---|---|---|---|---|---|
LS-BMC (g) | 18.5 ± 4.0 | 17.5 ± 3.4 | 18.4 ± 4.4 | 18.7 ± 3.5 | 0.86 |
LS-BMD (g/cm2) | 0.686 ± 0.080 | 0.640 ± 0.080 | 0.704 ± 0.077 | 0.665 ± 0.077 | 0.10 |
LS-BMAD (g/cm3) | 0.133 ± 0.016 | 0.123 ± 0.013 b | 0.139 ± 0.016 a | 0.126 ± 0.013 ab | <0.01 |
LS-area (cm2) | 26.8 ± 3.9 | 27.3 ± 3.0 | 26.0 ± 4.2 | 28.0 ± 3.1 | 0.18 |
TBLH-BMC (g) | 657.0 ± 153.9 | 623.4 ± 150.5 | 664.0 ± 160.9 | 651.3 ± 148.3 | 0.87 |
TBLH-BMD (g/cm2) | 0.637 ± 0.076 | 0.612 ± 0.076 | 0.643 ± 0.077 | 0.631 ± 0.075 | 0.68 |
TBLH-BMAD (g/cm3) | 0.083 ± 0.008 | 0.078 ± 0.005 | 0.084 ± 0.008 | 0.082 ± 0.008 | 0.35 |
TBLH-area (cm2) | 1019.9 ± 127.6 | 1066.1 ± 137.6 | 1020.9 ± 134.0 | 1021.0 ± 120.5 | 0.98 |
Body Composition Parameters | Vitamin D Insufficient (≤29 ng/mL) (n = 39) | Vitamin D Sufficient (≥30 ng/mL) (n = 20) | p |
---|---|---|---|
BMI zsc | 1.39 ± 1.8 1 | 0.97 ± 1.4 1 | 0.43 |
Lean mass/Fat Free Mass (kg) | 22.3 ± 5.1 1 | 21.3 ± 3.8 1 | 0.51 |
Fat mass (kg) | 13.0 ± 7.8 1 | 11.2 ± 5.3 1 | 0.43 |
Body fat (%) | 34.3 ± 10.4 1 | 33.1 ± 7.6 1 | 0.68 |
Healthy (BMI zsc −2–+1) | 19 (49%) 2 | 11 (55%) 2 | |
Over-nourished (BMI zsc > +1) | 20 (51%) 2 | 9 (45%) 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, Z.; White, S.; Dalvie, T.; Kruger, M.C.; Van Zyl, A.; Becker, P. Bone Health, Body Composition, and Vitamin D Status of Black Preadolescent Children in South Africa. Nutrients 2019, 11, 1243. https://doi.org/10.3390/nu11061243
White Z, White S, Dalvie T, Kruger MC, Van Zyl A, Becker P. Bone Health, Body Composition, and Vitamin D Status of Black Preadolescent Children in South Africa. Nutrients. 2019; 11(6):1243. https://doi.org/10.3390/nu11061243
Chicago/Turabian StyleWhite, Zelda, Samantha White, Tasneem Dalvie, Marlena C. Kruger, Amanda Van Zyl, and Piet Becker. 2019. "Bone Health, Body Composition, and Vitamin D Status of Black Preadolescent Children in South Africa" Nutrients 11, no. 6: 1243. https://doi.org/10.3390/nu11061243
APA StyleWhite, Z., White, S., Dalvie, T., Kruger, M. C., Van Zyl, A., & Becker, P. (2019). Bone Health, Body Composition, and Vitamin D Status of Black Preadolescent Children in South Africa. Nutrients, 11(6), 1243. https://doi.org/10.3390/nu11061243