Whole Grain Consumption for the Prevention and Treatment of Breast Cancer
Abstract
:1. Introduction
2. Breast Cancer
2.1. General Aspect of Breast Cancer
2.2. Molecular Mechanism of Breast Cancer Treatment
2.2.1. Proliferation Inhibition
2.2.2. Immune System Modulation
2.2.3. Targeting Metastasis and Breast Cancer Stem Cells
3. Anti-Breast-Cancer Efficacy of Whole Grains
3.1. General Health Benefits of Whole Grains
3.2. Epidemiological and Clinical Studies of Whole Grain Consumption and Breast Cancer
3.3. Whole Grain Phytochemicals and Anti-Breast-Cancer Property
3.3.1. Wheat
3.3.2. Rice
3.3.3. Sorghum
3.3.4. Oat
3.3.5. Other Grain Species
3.3.6. Synergistic Effects of Whole Grain Phytochemicals and Anti-Breast-Cancer Therapy Agents
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
BC | breast cancer |
BCSC | breast cancer stem cells |
BRCAs | breast cancer growth suppressor proteins |
EMT | epithelial-mesenchymal transition |
ER | estrogen receptor |
ErbB2 | erythroblastic leukemia viral oncogene homolog 2 |
FAK | focal adhesion kinase |
Gal | galactose |
Glc | glucose |
HER-2 | human epidermal growth factor receptor-2 |
IGF-1R | insulin-like growth factor 1 receptor |
MMPs | matrix metallopeptidases |
PR | progesterone receptor |
RAF | rapidly accelerated fibrosarcoma |
MEK | MAPK/Erk kinase |
JNK | Jun N-terminal kinase |
u-PA | urokinase-type plasminogen activator |
SRC | steroid receptor coactivator |
STAT | signal transducer and activator of transcription |
VEGF | vascular endothelial growth factor |
p130Cas | p130 Crk-associated substrate |
References
- World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; World Cancer Research Fund/American Institute for Cancer Research: Washington, DC, USA, 2018. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.L. Dietary Patterns, Whole Plant Foods, Nutrients and Phytochemicals in Breast Cancer Prevention and Management. In Dietary Patterns and Whole Plant Foods in Aging and Disease; Dreher, M.L., Ed.; Humana Press: Cham, Switzerland, 2018; pp. 557–609. [Google Scholar]
- Khan, S.I.; Aumsuwan, P.; Khan, I.A.; Walker, L.A.; Dasmahapatra, A.K. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem. Res. Toxicol. 2012, 25, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.J.; Ke, Y.B.; Wu, S.; Huang, S.L.; Li, S.G.; Lv, Z.Q.; Yeoh, E.K.; Lao, X.Q.; Wong, S.; Kim, J.H.; et al. Association between whole grain intake and breast cancer risk: A systematic review and meta-analysis of observational studies. Nutr. J. 2018, 17, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Mourouti, N.; Kontogianni, M.D.; Papavagelis, C.; Psaltopoulou, T.; Kapetanstrataki, M.G.; Plytzanopoulou, P.; Vassilakou, T.; Malamos, N.; Linos, A.; Panagiotakos, D.B. Whole Grain Consumption and Breast Cancer: A Case-Control Study in Women. J. Am. Coll. Nutr. 2016, 35, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, E. Breast cancer in a Renaissance Book of the Dead. Lancet Oncol. 2018, 19, 1023–1024. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019. [Google Scholar] [CrossRef]
- Chen, W.Q.; Zheng, R.S.; Zhang, S.W.; Zeng, H.M.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Strasser-Weippl, K.; Li, J.J.; St Louis, J.; Finkelstein, D.M.; Yu, K.D.; Chen, W.Q.; Shao, Z.M.; Goss, P.E. Breast cancer in China. Lancet Oncol. 2014, 15, 279–289. [Google Scholar] [CrossRef]
- Jia, M.; Zheng, R.; Zhang, S.; Zeng, H.; Zou, X.; Chen, W. Female breast cancer incidence and mortality in 2011, China. J. Thorac. Dis. 2015, 7, 1221–1226. [Google Scholar] [CrossRef]
- Reeves, G.K.; Beral, V.; Green, J.; Gathani, T.; Bull, D. Hormonal therapy for menopause and breast-cancer risk by histological type: A cohort study and meta-analysis. Lancet Oncol. 2006, 7, 910–918. [Google Scholar] [CrossRef]
- Pharoah, P.D.P.; Day, N.E.; Duffy, S.; Easton, D.F.; Ponder, B.A.J. Family history and the risk of breast cancer: A systematic review and meta-analysis. Int. J. Cancer 2015, 71, 800–809. [Google Scholar] [CrossRef]
- Steward, B.W.; Wild, C.P. World Cancer Report 2014; International Agency for Research on Cancer, WHO Press: Lyon, France, 2014. [Google Scholar]
- Ronckers, C.M.; Erdmann, C.A.; Land, C.E. Radiation and breast cancer: A review of current evidence. Breast Cancer Res. 2005, 7, 21–32. [Google Scholar] [CrossRef]
- Rakha, E.A.; Green, A.R. Molecular classification of breast cancer: What the pathologist needs to know. Pathology 2017, 49, 111–119. [Google Scholar] [CrossRef]
- Perou, C.M.; Borresen-Dale, A.L. Systems biology and genomics of breast cancer. Cold Spring Harb. Perspect. Biol. 2011, 3, 1–17. [Google Scholar] [CrossRef]
- Eroles, P.; Bosch, A.; Perez-Fidalgo, J.A.; Lluch, A. Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat. Rev. 2012, 38, 698–707. [Google Scholar] [CrossRef]
- Reis-Filho, J.S.; Pusztai, L. Gene expression profiling in breast cancer: Classification, prognostication, and prediction. Lancet 2011, 378, 1812–1823. [Google Scholar] [CrossRef]
- Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J. Cancer 2017, 8, 3131–3141. [Google Scholar] [CrossRef] [Green Version]
- The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef]
- Curtis, C.; Shah, S.P.; Chin, S.-F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Berry, D.A.; Cronin, K.A.; Plevritis, S.K.; Fryback, D.G.; Clarke, L.; Zelen, M.; Mandelblatt, J.S.; Yakovlev, A.Y.; Habbema, J.D.; Feuer, E.J.; et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med. 2005, 353, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Nathan, M.R.; Schmid, P. The emerging world of breast cancer immunotherapy. Breast 2018, 37, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Ranzato, E.; Martinotti, S.; Myriam Calabrese, C.; Giorgio, C. Role of Nutraceuticals in Cancer Therapy. J. Food Res. 2014, 3, 18–25. [Google Scholar] [CrossRef]
- Thomadaki, H.; Talieri, M.; Scorilas, A. Treatment of MCF-7 cells with taxol and etoposide induces distinct alterations in the expression of apoptosis-related genes BCL2, BCL2L12, BAX, CASPASE-9 and FAS. Biol. Chem. 2006, 387, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Krajewski, K.; Cakar, B.; Ma, C.X. Targeted therapy for breast cancer. Am. J. Pathol. 2013, 183, 1096–1112. [Google Scholar] [CrossRef]
- Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.L.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 2005, 4, 988–1004. [Google Scholar] [CrossRef]
- Jiang, X.G.; Shapiro, D.J. The immune system and inflammation in breast cancer. Mol. Cell. Endocrinol. 2014, 382, 673–682. [Google Scholar] [CrossRef]
- Qian, B.Z.; Zhang, H.; Li, J.F.; Yeo, E.J.; Carragher, N.O.; Bresnick, A.R.; Lang, R.A.; Pollard, J.W. Macrophage FLT1 mediated inflammatory response determines breast cancer distal metastasis. Cancer Res. 2016, 76. [Google Scholar] [CrossRef]
- Meyer, M.A.; Baer, J.M.; Knolhoff, B.L.; Nywening, T.M.; Panni, R.Z.; Su, X.; Weilbaecher, K.N.; Hawkins, W.G.; Ma, C.; Fields, R.C.; et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat. Commun. 2018, 9, 1–19. [Google Scholar] [CrossRef]
- Karin, M. NF-kappa B as a Critical Link Between Inflammation and Cancer. Cold Spring Harb. Perspect. Biol. 2009, 1. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wicha, M.S. Targeting breast cancer stem cells. J. Clin. Oncol. 2010, 28, 4006–4012. [Google Scholar] [CrossRef] [PubMed]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechJournal of Food Researchanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Chuthapisith, S.; Eremin, J.; El-Sheemey, M.; Eremin, O. Breast cancer chemoresistance: Emerging importance of cancer stem cells. Surg. Oncol. 2010, 19, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Lewis, M.T.; Huang, J.; Gutierrez, C.; Osborne, C.K.; Wu, M.F.; Hilsenbeck, S.G.; Pavlick, A.; Zhang, X.M.; Chamness, G.C.; et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 2008, 100, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Morel, A.P.; Lievre, M.; Thomas, C.; Hinkal, G.; Ansieau, S.; Puisieux, A. Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition. PLoS ONE 2008, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhu, Y.F.; Chen, X.Y.; Han, B.; Li, F.; Chen, J.Y.; Peng, X.L.; Luo, L.P.; Chen, W.; Yu, X.P. Black rice-derived anthocyanins inhibit HER-2-positive breast cancer epithelial-mesenchymal transition-mediated metastasis in vitro by suppressing FAK signaling. Int. J. Mol. Med. 2017, 40, 1649–1656. [Google Scholar] [CrossRef]
- Kotiyal, S.; Bhattacharya, S. Breast cancer stem cells, EMT and therapeutic targets. Biochem. Biophys. Res. Commun. 2014, 453, 112–116. [Google Scholar] [CrossRef]
- Korkaya, H.; Paulson, A.; Charafe-Jauffret, E.; Ginestier, C.; Brown, M.; Dutcher, J.; Clouthier, S.G.; Wicha, M.S. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009, 7, e1000121. [Google Scholar] [CrossRef]
- Hallmans, G.; Zhang, J.-X.; Lundin, E.; Stattin, P.; Johansson, A.; Johansson, I.; Hultén, K.; Winkvist, A.; Lenner, P.; Åman, P.; et al. Rye, lignans and human health. Proc. Nutr. Soc. 2007, 62, 193–199. [Google Scholar] [CrossRef]
- Chanson-Rolle, A.; Meynier, A.; Aubin, F.; Lappi, J.; Poutanen, K.; Vinoy, S.; Braesco, V. Systematic Review and Meta-Analysis of Human Studies to Support a Quantitative Recommendation for Whole Grain Intake in Relation to Type 2 Diabetes. PLoS ONE 2015, 10, e0131377. [Google Scholar] [CrossRef]
- Idehen, E.; Tang, Y.; Sang, S. Bioactive phytochemicals in barley. J. Food Drug Anal. 2017, 25, 148–161. [Google Scholar] [CrossRef]
- Chandra, D.; Chandra, S.; Pallavi; Sharma, A.K. Review of Finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Sci. Hum. Wellness 2016, 5, 149–155. [Google Scholar] [CrossRef]
- Shahidi, F.; Chandrasekara, A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. J. Funct. Foods 2013, 5, 570–581. [Google Scholar] [CrossRef]
- Seo, C.-R.; Yi, B.; Oh, S.; Kwon, S.-M.; Kim, S.; Song, N.-J.; Cho, J.Y.; Park, K.-M.; Ahn, J.-Y.; Hong, J.-W.; et al. Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. J. Funct. Foods 2015, 12, 208–218. [Google Scholar] [CrossRef]
- Luthria, D.L.; Lu, Y.; John, K.M.M. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. J. Funct. Foods 2015, 18, 910–925. [Google Scholar] [CrossRef]
- Koh-Banerjee, P.; Rimm, E.B. Whole grain consumption and weight gain: A review of the epidemiological evidence, potential mechanisms and opportunities for future research. Proc. Nutr. Soc. 2003, 62, 25–29. [Google Scholar] [CrossRef]
- Montonen, J.; Knekt, P.; Järvinen, R.; Aromaa, A.; Reunanen, A. Whole-grain and fiber intake and the incidence of type 2 diabetes. Am. J. Clin. Nutr. 2003, 77, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.C.; Tong, X.; Xu, J.Y.; Han, S.F.; Wan, Z.X.; Qin, J.B.; Qin, L.Q. Whole-grain intake and total, cardiovascular, and cancer mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 104, 164–172. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, Q.; Guo, W.; Bao, W.; Wang, X. Association of whole grain intake with all-cause, cardiovascular, and cancer mortality: A systematic review and dose–response meta-analysis from prospective cohort studies. Eur. J. Clin. Nutr. 2017, 72, 57–65. [Google Scholar] [CrossRef]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.; Greenwood, D.C.; Vieira, A.R.; Rosenblatt, D.A.; Vieira, R.; Norat, T. Dietary fiber and breast cancer risk: A systematic review and meta-analysis of prospective studies. Ann. Oncol. 2012, 23, 1394–1402. [Google Scholar] [CrossRef]
- Makarem, N.; Bandera, E.V.; Lin, Y.; McKeown, N.M.; Hayes, R.B.; Parekh, N. Associations of Whole and Refined Grain Intakes with Adiposity-Related Cancer Risk in the Framingham Offspring Cohort (1991–2013). Nutr. Cancer 2018, 70, 776–786. [Google Scholar] [CrossRef]
- Makarem, N.; Nicholson, J.M.; Bandera, E.V.; McKeown, N.M.; Parekh, N. Consumption of whole grains and cereal fiber in relation to cancer risk: A systematic review of longitudinal studies. Nutr. Rev. 2016, 74, 353–373. [Google Scholar] [CrossRef]
- Tayyem, R.F.; Bawadi, H.A.; Shehadah, I.; Agraib, L.M.; Al-Awwad, N.J.; Heath, D.D.; Bani-Hani, K.E. Consumption of Whole Grains, Refined Cereals, and Legumes and Its Association With Colorectal Cancer Among Jordanians. Integr. Cancer Ther. 2016, 15, 318–325. [Google Scholar] [CrossRef]
- Okarter, N.; Liu, R.H. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 2010, 50, 193–208. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Liu, R.H. Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet. Food Chem. 2015, 174, 495–501. [Google Scholar] [CrossRef]
- Abdal Dayem, A.; Choi, H.Y.; Yang, G.M.; Kim, K.; Saha, S.K.; Cho, S.G. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms. Nutrients 2016, 8, e581. [Google Scholar] [CrossRef]
- Crascì, L.; Lauro, M.R.; Puglisi, G.; Panico, A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. Crit. Rev. Food Sci. Nutr. 2018, 58, 893–904. [Google Scholar] [CrossRef]
- Zhu, Y.; Conklin, D.R.; Chen, H.; Wang, L.; Sang, S. 5-alk(en)ylresorcinols as the major active components in wheat bran inhibit human colon cancer cell growth. Bioorg. Med. Chem. 2011, 19, 3973–3982. [Google Scholar] [CrossRef]
- Agil, R.; Patterson, Z.R.; Mackay, H.; Abizaid, A.; Hosseinian, F. Triticale Bran Alkylresorcinols Enhance Resistance to Oxidative Stress in Mice Fed a High-Fat Diet. Foods 2016, 5, e5–e21. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E. Health benefits of oat: Current evidence and molecular mechanisms. Curr. Opin. Food Sci. 2017, 14, 26–31. [Google Scholar] [CrossRef]
- Sang, S.; Chu, Y. Whole grain oats, more than just a fiber: Role of unique phytochemicals. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- De Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef]
- Chen, X. Functional Food-Related Bioactive Compounds Effect of Sorghum Phenolics on Cancer Cells. Ph.D. Dissertation, Kansas State University, Manhattan, KS, USA, 2017. [Google Scholar]
- Pintha, K.; Yodkeeree, S.; Limtrakul, P. Proanthocyanidin in Red Rice Inhibits MDA-MB-231 Breast Cancer Cell Invasion via the Expression Control of Invasive Proteins. Biol. Pharm. Bull. 2015, 38, 571–581. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhou, J.; Luo, L.P.; Han, B.; Li, F.; Chen, J.Y.; Zhu, Y.F.; Chen, W.; Yu, X.P. Black Rice Anthocyanins Suppress Metastasis of Breast Cancer Cells by Targeting RAS/RAF/MAPK Pathway. Biomed. Res. Int. 2015, 1–11. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [Google Scholar] [CrossRef]
- Imran, M.; Ahmad, N.; Anjum, F.M.; Khan, M.K.; Mushtaq, Z.; Nadeem, M.; Hussain, S. Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutr. J. 2015, 14, 71. [Google Scholar] [CrossRef]
- Awika, J.M. Sorghum Flavonoids: Unusual Compounds with Promising Implications for Health. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; Awika, J.M., Piironen, V., Bean, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 171–200. [Google Scholar]
- Zhu, Y.; Sang, S. Phytochemicals in whole grain wheat and their health-promoting effects. Mol. Nutr. Food Res. 2017, 61, e1600852. [Google Scholar] [CrossRef]
- Luyen, B.T.; Thao, N.P.; Tai, B.H.; Lim, J.Y.; Ki, H.H.; Kim, D.K.; Lee, Y.M.; Kim, Y.H. Chemical constituents of Triticum aestivum and their effects on adipogenic differentiation of 3T3-L1 preadipocytes. Arch. Pharm. Res. 2015, 38, 1011–1018. [Google Scholar] [CrossRef]
- Hallikainen, M.A.; Sarkkinen, E.S.; Uusitupa, M.I. Plant stanol esters affect serum cholesterol concentrations of hypercholesterolemic men and women in a dose-dependent manner. J. Nutr. 2000, 130, 767–776. [Google Scholar] [CrossRef]
- Pi-Sunyer, X. Do glycemic index, glycemic load, and fiber play a role in insulin sensitivity, disposition index, and type 2 diabetes? Diabetes Care 2005, 28, 2978–2979. [Google Scholar] [CrossRef]
- Shen, R.-L.; Wang, Z.; Dong, J.-L.; Xiang, Q.-S.; Liu, Y.-Q. Effects of oat soluble and insoluble β-glucan on 1,2-dimethylhydrazine-induced early colon carcinogenesis in mice. Food Agric. Immunol. 2016, 27, 657–666. [Google Scholar] [CrossRef]
- Upadhyay, J.; Misra, K. Towards the interaction mechanism of tocopherols and tocotrienols (vitamin E) with selected metabolizing enzymes. Bioinformation 2009, 3, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Farvid, M.S.; Eliassen, A.H.; Cho, E.; Liao, X.; Chen, W.Y.; Willett, W.C. Dietary Fiber Intake in Young Adults and Breast Cancer Risk. Pediatrics 2016, 137, e20151226. [Google Scholar] [CrossRef] [Green Version]
- Farvid, M.S.; Cho, E.; Eliassen, A.H.; Chen, W.Y.; Willett, W.C. Lifetime grain consumption and breast cancer risk. Breast Cancer Res. Treat. 2016, 159, 335–345. [Google Scholar] [CrossRef]
- Tajaddini, A.; Pourzand, A.; Sanaat, Z.; Pirouzpanah, S. Dietary Resistant Starch Contained Foods and Breast Cancer Risk: A Case-Control Study in Northwest of Iran. Asian Pac. J. Cancer Prev. 2015, 16, 4185–4192. [Google Scholar] [CrossRef]
- Dong, J.Y.; He, K.; Wang, P.; Qin, L.Q. Dietary fiber intake and risk of breast cancer: A meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2011, 94, 900–905. [Google Scholar] [CrossRef]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- Song, M.; Wu, K.; Meyerhardt, J.A.; Ogino, S.; Wang, M.; Fuchs, C.S.; Giovannucci, E.L.; Chan, A.T. Fiber intake and survival after colorectal cancer diagnosis. JAMA Oncol. 2018, 4, 71–79. [Google Scholar] [CrossRef]
- Song, M.; Garrett, W.S.; Chan, A.T. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015, 148, 1244–1260. [Google Scholar] [CrossRef]
- Kyro, C.; Olsen, A.; Landberg, R.; Skeie, G.; Loft, S.; Aman, P.; Leenders, M.; Dik, V.K.; Siersema, P.D.; Pischon, T.; et al. Plasma Alkylresorcinols, Biomarkers of Whole-Grain Wheat and Rye Intake, and Incidence of Colorectal Cancer. J. Natl. Cancer Inst. 2014, 106, djt352. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Dimberg, L.; Åman, P.; Landberg, R. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014, 59, 294–311. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary Natural Products for Prevention and Treatment of Breast Cancer. Nutrients 2017, 9, 728. [Google Scholar] [CrossRef]
- Cho, K.; Lee, C.W.; Ohm, J.-B. In Vitro Study on Effect of Germinated Wheat on Human Breast Cancer Cells. Cereal Chem. 2016, 93, 647–649. [Google Scholar] [CrossRef]
- Kubatka, P.; Kello, M.; Kajo, K.; Kruzliak, P.; Vybohova, D.; Smejkal, K.; Marsik, P.; Zulli, A.; Gonciova, G.; Mojzis, J.; et al. Young Barley Indicates Antitumor Effects in Experimental Breast Cancer In Vivo and In Vitro. Nutr. Cancer 2016, 68, 611–621. [Google Scholar] [CrossRef]
- Lee, Y.R.; Noh, E.M.; Oh, H.J.; Hur, H.; Kim, J.M.; Han, J.H.; Hwang, J.K.; Park, B.H.; Park, J.W.; Youn, H.J.; et al. Dihydroavenanthramide D inhibits human breast cancer cell invasion through suppression of MMP-9 expression. Biochem. Biophys. Res. Commun. 2011, 405, 552–557. [Google Scholar] [CrossRef]
- Hastings, J.; Kenealey, J. Avenanthramide-C reduces the viability of MDA-MB-231 breast cancer cells through an apoptotic mechanism. Cancer Cell Int. 2017, 17, 93–105. [Google Scholar] [CrossRef]
- Shan, Y.; Cheng, Y.; Zhang, Y.; Guan, F.Q.; Sun, H.; Ren, X.C.; Chen, Y.; Feng, X.; Yang, J.M. Triticuside A, a dietary flavonoid, inhibits proliferation of human breast cancer cells via inducing apoptosis. Nutr. Cancer 2013, 65, 891–899. [Google Scholar] [CrossRef]
- Eitsuka, T.; Tatewaki, N.; Nishida, H.; Kurata, T.; Nakagawa, K.; Miyazawa, T. Synergistic inhibition of cancer cell proliferation with a combination of delta-tocotrienol and ferulic acid. Biochem. Biophys. Res. Commun. 2014, 453, 606–611. [Google Scholar] [CrossRef]
- Ghoneum, M.; El-Din, N.K.B.; Ali, D.A.; El-Dein, M.A. Modified Arabinoxylan from Rice Bran, MGN-3Biobran Sensitizes Metastatic Breast Cancer Cells to Paclitaxel In Vitro. Anticancer Res. 2014, 34, 81–88. [Google Scholar]
- Pintha, K.; Yodkeeree, S.; Pitchakarn, P.; Limtrakul, P. Anti-invasive Activity against Cancer Cells of Phytochemicals in Red Jasmine Rice (Oryza sativa L.). Asian Pac. J. Cancer Prev. 2014, 15, 4601–4607. [Google Scholar] [CrossRef]
- Kannan, A.; Hettiarachchy, N.S.; Lay, J.O.; Liyanage, R. Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 2010, 31, 1629–1634. [Google Scholar] [CrossRef]
- Park, J.H.; Darvin, P.; Lim, E.J.; Joung, Y.H.; Hong, D.Y.; Park, E.U.; Park, S.H.; Choi, S.K.; Moon, E.S.; Cho, B.W.; et al. Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts. PLoS ONE 2012, 7, e40531. [Google Scholar] [CrossRef]
- Suganyadevi, P.; Saravanakumar, K.M.; Mohandas, S. Evaluation of Antiproliferative Activity of Red Sorghum Bran Anthocyanin on a Human Breast Cancer Cell Line (MCF-7). Int. J. Breast Cancer 2011, 2011, 891481. [Google Scholar] [CrossRef]
- Suganyadevi, P.; Saravanakumar, K.M.; Mohandas, S. The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P53-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sci. 2013, 92, 379–382. [Google Scholar] [CrossRef]
- Luo, L.P.; Han, B.; Yu, X.P.; Chen, X.Y.; Zhou, J.; Chen, W.; Zhu, Y.F.; Peng, X.L.; Zou, Q.; Li, S.Y. Anti-metastasis Activity of Black Rice Anthocyanins Against Breast Cancer: Analyses Using an ErbB2 Positive Breast Cancer Cell Line and Tumoral Xenograft Model. Asian Pac. J. Cancer Prev. 2014, 15, 6219–6225. [Google Scholar] [CrossRef] [Green Version]
- Bonjean, A.P.; Angus, W.J. The World Wheat Book: A History of Wheat Breeding; Lavoisier Publishing: Paris, France, 2001; p. 1131. [Google Scholar]
- Landberg, R.; Marklund, M.; Kamal-Eldin, A.; Aman, P. An update on alkylresorcinols—Occurrence, bioavailability, bioactivity and utility as biomarkers. J. Funct. Foods 2014, 7, 77–89. [Google Scholar] [CrossRef]
- Biskup, I.; Kyro, C.; Marklund, M.; Olsen, A.; van Dam, R.M.; Tjonneland, A.; Overvad, K.; Lindahl, B.; Johansson, I.; Landberg, R. Plasma alkylresorcinols, biomarkers of whole-grain wheat and rye intake, and risk of type 2 diabetes in Scandinavian men and women. Am. J. Clin. Nutr. 2016, 104, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Kyro, C.; Olsen, A.; Bueno-de-Mesquita, H.B.; Skeie, G.; Loft, S.; Aman, P.; Leenders, M.; Dik, V.K.; Siersema, P.D.; Pischon, T.; et al. Plasma alkylresorcinol concentrations, biomarkers of whole-grain wheat and rye intake, in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Br. J. Nutr. 2014, 111, 1881–1890. [Google Scholar] [CrossRef] [Green Version]
- Gliwa, J.; Gunenc, A.; Ames, N.; Willmore, W.G.; Hosseinian, F.S. Antioxidant activity of alkylresorcinols from rye bran and their protective effects on cell viability of PC-12 AC cells. J. Agric. Food Chem. 2011, 59, 11473–11482. [Google Scholar] [CrossRef]
- Zhu, Y.; Soroka, D.N.; Sang, S. Synthesis and inhibitory activities against colon cancer cell growth and proteasome of alkylresorcinols. J. Agric. Food Chem. 2012, 60, 8624–8631. [Google Scholar] [CrossRef]
- Andersson, U.; Dey, E.S.; Holm, C.; Degerman, E. Rye bran alkylresorcinols suppress adipocyte lipolysis and hormone-sensitive lipase activity. Mol. Nutr. Food Res. 2011, 55 (Suppl. 2), S290–S293. [Google Scholar] [CrossRef] [PubMed]
- Oishi, K.; Yamamoto, S.; Itoh, N.; Nakao, R.; Yasumoto, Y.; Tanaka, K.; Kikuchi, Y.; Fukudome, S.-I.; Okita, K.; Takano-Ishikawa, Y. Wheat Alkylresorcinols Suppress High-Fat, High-Sucrose Diet-Induced Obesity and Glucose Intolerance by Increasing Insulin Sensitivity and Cholesterol Excretion in Male Mice. J. Nutr. 2015, 145, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Winter, K.M.; Stevenson, L.; Morris, C.; Leach, D.N. Wheat bran lipophilic compounds with in vitro anticancer effects. Food Chem. 2012, 130, 156–164. [Google Scholar] [CrossRef]
- Liu, J.; Hao, Y.; Wang, Z.; Ni, F.; Wang, Y.; Gong, L.; Sun, B.; Wang, J. Identification, Quantification, and Anti-inflammatory Activity of 5- n-Alkylresorcinols from 21 Different Wheat Varieties. J. Agric. Food Chem. 2018, 66, 9241–9247. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J.; Aboul-Enein, B.; Bernstein, J.; Marchlewicz, M. Dietary alkylresorcinols and cancer prevention: A systematic review. Eur. Food Res. Technol. 2017, 243, 1693–1710. [Google Scholar] [CrossRef]
- Sanchez, L.A.; Olmedo, D.; Luis Lopez-Perez, J.; Williams, T.D.; Gupta, M.P. Two New Alkylresorcinols from Homalomena wendlandii and Their Cytotoxic Activity. Nat. Prod. Commun. 2012, 7, 1043–1046. [Google Scholar] [CrossRef]
- Lee, C.I.; Lee, C.L.; Hwang, J.F.; Lee, Y.H.; Wang, J.J. Monascus-fermented red mold rice exhibits cytotoxic effect and induces apoptosis on human breast cancer cells. Appl. Microbiol. Biotechnol. 2013, 97, 1269–1278. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol. 2017, 174, 1378–1394. [Google Scholar] [CrossRef]
- Ortiz-Martinez, M.; Winkler, R.; Garcia-Lara, S. Preventive and therapeutic potential of peptides from cereals against cancer. J. Proteomics 2014, 111, 165–183. [Google Scholar] [CrossRef]
- Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004, 65, 1199–1221. [Google Scholar] [CrossRef]
- Patil, J.V. Millets and Sorghum: Biology and Genetic Improvement; Wiley-Blackwell Publishing: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yang, L.; Browning, J.D.; Awika, J.M. Sorghum 3-Deoxyanthocyanins Possess Strong Phase II Enzyme Inducer Activity and Cancer Cell Growth Inhibition Properties. J. Agric. Food Chem. 2009, 57, 1797–1804. [Google Scholar] [CrossRef]
- Shih, C.H.; Siu, S.O.; Ng, R.; Wong, E.; Chiu, L.C.M.; Chu, I.K.; Lo, C. Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings. J. Agric. Food Chem. 2007, 55, 254–259. [Google Scholar] [CrossRef]
- Hargrove, J.L.; Greenspan, P.; Hartle, D.K.; Dowd, C. Inhibition of Aromatase and alpha-Amylase by Flavonoids and Proanthocyanidins from Sorghum bicolor Bran Extracts. J. Med. Food 2011, 14, 799–807. [Google Scholar] [CrossRef]
- Choromanska, A.; Kulbacka, J.; Rembialkowska, N.; Pilat, J.; Oledzki, R.; Harasym, J.; Saczko, J. Anticancer properties of low molecular weight oat beta-glucan—An in vitro study. Int. J. Biol. Macromol. 2015, 80, 23–28. [Google Scholar] [CrossRef]
- Boffetta, P.; Thies, F.; Kris-Etherton, P. Epidemiological studies of oats consumption and risk of cancer and overall mortality. Br. J. Nutr. 2014, 112 (Suppl. 2), S14–S18. [Google Scholar] [CrossRef] [Green Version]
- Demir, G.; Klein, H.O.; Mandel-Molinas, N.; Tuzuner, N. Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. Int. Immunopharmacol. 2007, 7, 113–116. [Google Scholar] [CrossRef]
- Yang, J.; Wang, P.; Wu, W.; Zhao, Y.; Idehen, E.; Sang, S. Steroidal Saponins in Oat Bran. J. Agric. Food Chem. 2016, 64, 1549–1556. [Google Scholar] [CrossRef]
- Bar-Sela, G.; Tsalic, M.; Fried, G.; Goldberg, H. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: A pilot study. Nutr. Cancer 2007, 58, 43–48. [Google Scholar] [CrossRef]
- Gollapudi, S.; Ghoneum, M. MGN-3/Biobran, modified arabinoxylan from rice bran, sensitizes human breast cancer cells to chemotherapeutic agent, daunorubicin. Cancer Detect. Prev. 2008, 32, 1–6. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Bautista-Castano, I. Relationship between bread and obesity. Br. J. Nutr. 2015, 113 (Suppl. 2), S29–S35. [Google Scholar] [CrossRef]
- Cioffi, I.; Ibrugger, S.; Bache, J.; Thomassen, M.T.; Contaldo, F.; Pasanisi, F.; Kristensen, M. Effects on satiation, satiety and food intake of wholegrain and refined grain pasta. Appetite 2016, 107, 152–158. [Google Scholar] [CrossRef]
- Ullrich, I.H.; Albrink, M.J. The effect of dietary fiber and other factors on insulin response: Role in obesity. J. Environ. Pathol. Toxicol. Oncol. 1985, 5, 137–155. [Google Scholar]
- Hutter, C.; Zenklusen, J.C. The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. Cell 2018, 173, 283–285. [Google Scholar] [CrossRef]
- Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 2018, 173, 291–304.e296. [Google Scholar] [CrossRef]
Molecular Subtype | IHC Marker (ER/PR/HER2) | Frequency (%) | Proliferation Cluster | Gene Markers | Histologic Grade | Prognosis |
---|---|---|---|---|---|---|
Luminal A | ER+ PR+ HER-2- | 50–60 | Low | ESR1, GATA3, KRT8, XBP1, FOXA1, TFF3, CCND1, LIV1 | Low | Excellent |
Luminal B | ER+ PR+/- HER-2+ | 10–20 | High | ESR1, GATA3, KRT8, XBP1, FOXA1, TFF3, SQLE, LAPTM4B | Intermediate/High | Intermediate/Bad |
Basal-like | ER- PR-/+ HER-2-/+ | 10–20 | High | KRT5, CDH3, ID4, FABP7, KRT17, LAMC2, TRIM29 | High | Bad |
HER2-enriched | ER-/+ PR-/+ HER-2+ | 10–15 | High | ERBB2, GRB7 | High | Bad |
Normal breast-like | ER+/- PR+/- HER-2- | 5–10 | Low | VIM, MMP2/14, COL3A1, TIMP1, CD36, FABP4, ITGA7 | Low | Intermediate |
Claudin-low | ER- PR- HER-2-/+ | 12–14 | High | CD24(-), CD44(+) | High | Bad |
Bioactive Phytochemicals | Major Sources | Potential Health Benefits | References |
---|---|---|---|
Alkylresorcinols | Wheat, rye | Cancer prevention; obesity reduction | [64,65] |
Avenanthramide | Oat | Neutralizing free radicals, cancer prevention | [66,67] |
Phenolics | |||
Anthocyanins | Barley, rice, sorghum | Neutralizing free radicals; inflammatory inhibition; cancer prevention | [40,45,68,69,70,71] |
Lignans | Wheat, rye | Cancer prevention; hormone modulation; reducing the risk of cardiovascular disease | [72,73] |
Flavones | Rye, barley, sorghum | Neutralizing free radicals; cancer prevention. | [45,68,69,74] |
Tannins | Barley, sorghum | Improve urinary tract health; reducing risk of cardiovascular disease | [45,68] |
Carotenoids | |||
α-carotene/β-carotene | Wheat, barley, millet | Neutralizing free radicals; reducing heart disease risks | [61,75] |
Phytosterols | |||
Sterols | Wheat, barley, oat | Lowering blood cholesterol levels; reducing lipid accumulation; cancer prevention; reducing cardiovascular disease risks | [66,76,77] |
Stanols | Wheat, maize, barley | Lowering blood cholesterol levels; reducing lipid accumulation; cancer prevention; reducing cardiovascular disease risks | [66,76,77] |
Non-starchy Polysaccharide | |||
Insoluble dietary fiber | Wheat | Cancer prevention; lowering plasma cholesterol; reducing insulin resistance level | [75,78] |
β-Glucans | Oat, barley | Reducing the risk of cardiovascular disease; lowering the level of low-density lipoprotein and total cholesterol, cancer prevention | [45,66,67,79] |
Tocols | |||
Tocopherols | Barley, oat | Inhibiting lipid peroxidation; reducing the risk of cardiovascular disease; reducing stroke risks | [66,80] |
Tocotrienols | Barley, oat | Inhibiting lipid peroxidation; reducing the risk of cardiovascular disease; reducing stroke risks | [66,80] |
Natural Product (diet) | Study Type | Case/Participants | OR/RR (95%CI) | Conclusion | Reference |
---|---|---|---|---|---|
Whole grain | Meta-analysis of cohort and case-control studies | 11,589/131,151 (4 cohort and 7 case-control studies) | Summary RR: 0.84 (0.74–0.96, P= 0.009, I2 = 63.8%) | High intake of whole grains might be inversely associated with reduced breast cancer risks, but the inverse association was only observed in case-control not cohort studies. | [5] |
Cereal dietary fiber | Meta-analysis of perspective studies | 14,694/502,082 (six prospective studies) | Summary RR: 0.96 (0.90–1.02, I2 = 5%) | Cereal dietary fibers have an inverse association with breast cancer risk. | [55] |
Dietary fiber | Meta-analysis of perspective studies | 16,848/712,195 (10 prospective cohort studies) | Summary RR: 0.89 (0.83–0.96, I2 = 0%) | There was a significant inverse dose-response association between dietary fiber intake and breast cancer risk. | [84] |
Whole grain bread | Case-controlled study | 306/309 | OR:0.61 (0.37–0.99) | Resistant starch containing foods (whole grain wheat bread) may reduce breast cancer risk. | [83] |
Whole grains | Case-controlled study | 250/250 | OR:0.49 (0.29–0.82) | Whole grain consumption more than 7 times/week was associated with reduced risk of breast cancer. | [6] |
Dietary Fiber | Prospective cohort study | 2833/90534 (Follow-up: 20 years) | RR: 0.84(0.70–1.01; Ptrend = 0.04) | Higher fiber intakes during adolescence and early adulthood could reduce breast cancer risk. | [81] |
Whole grain contained food | Prospective cohort study | 3235/90516 (Follow-up: 22 years) | RR: 0.82(0.70–0.97; Ptrend = 0.03) | High whole grain food intake may be associated with lower breast cancer risk before menopause. | [82] |
Whole and refined grain food | Prospective cohort study | 124/3184 (Follow-up: 22 years) | HR: 0.53(0.33–0.86) | Higher consumption of whole grain food may protect against breast cancer, with 47% lower breast cancer risk. | [56] |
Source | Constituents | Study Model (Cell Lines/Animal) | Mechanism | Reference |
---|---|---|---|---|
in vitro | ||||
Wheat | Germinated wheat flour | Human breast cancer ER-positive MCF-7& TNBC MDA-MB-231 | Up-regulation of apoptosis | [91] |
Barley | Young barley and its methanolic extract | Human breast cancer MCF-7 | Up-regulation of apoptosis, through lower metabolic activity, inhibition of proliferation, and cell cycle arrest in S phase | [92] |
Foxtail millet | Total phenolic extracts | Human breast cancer MDA-MB-231 | Proliferation inhibition | [61] |
Synthetic analog of oat avenanthramide | Dihydroavenanthramide D | Human breast cancer MCF-7 | Cancer cell invasion inhibition through the down regulation of MMP-9 activity and suppression of MAPK/NF-κB and MAPK/AP-1 pathway | [93] |
Oat | Avenanthramide-C | Human breast cancer MDA-MB-231 | Activation of apoptosis and caspases activity, positive annexin V staining and cell cycle arrest in sub G1 indicating DNA fragmentation | [94] |
Wheat bran | Triticuside A | Human breast cancer MCF-7& MDA-MB-231 | Activation of mitochondrial apoptosis pathway and Akt/mTOR signaling pathway, with downregulation of Mcl-1 and Bcl-2 and increase of cleavage of caspases-3, -7, -9, and PARP. Level of phospho-Akt and its downstream targets, mTOR, and P70 S6 kinase are also decreased | [95] |
Rice bran | δ-Tocotrienol and Ferulic acid | Human breast cancer MCF-7 | δ-tocotrienol and ferulic acid co-use synergistically inhibit cancer cell proliferation and induced cell arrest in the G1 phase | [96] |
Rice bran | Arabinoxylan | Human breast cancer MCF-7; murine metastatic breast cancer 4T-1 | Arabinoxylan increased the susceptibility of both types of cancer cells to paclitaxel by causing DNA damage, enhancing apoptosis, and inhibiting cell proliferation | [97] |
Red rice bran | crude ethanolic extract of red rice bran | Human breast cancer MDA-MB-231 | Decreased the secretion and activity of MMP-2 and MMP-9 reducing cells invasion | [98] |
Rice bran | Glu-Gln-Arg-Pro-Arg | Human breast cancer MCF-7& MDA-MB-231 | Anti-proliferation activity | [99] |
Sorghum | Total sorghum extracts | Human breast cancer MCF-7, MDA-MB-231 & HER-2+/ER-SKBR-3 | G1 phase arrest Down-regulation of the STAT5/IGF-1R and STAT3/VEGF pathway | [100] |
Red sorghum bran | Anthocyanins | Human breast cancer MCF-7 | Anti-proliferation activity | [101] |
Red sorghum bran | 3-Deoxyanthocyanins | Human breast cancer MCF-7 | Anti-proliferation activity P53 gene up-regulation; bcl-2 gene down-regulation | [102] |
in vivo | ||||
Sorghum (Hwanggeumchal sorghum) | Total sorghum extracts | BALB/c nude mice | Breast cancer tumor suppression; down-regulation of STAT5b/IGF-1R and STAT3/VEGF signal pathways; breast-to-lung metastasis blockage | [100] |
Black rice | Anthocyanins | BALB/c nude mice | Decreased activity of urokinase-type plasminogen activator (u-PA), and reduced transplanted tumor growth and inhibited pulmonary | [103] |
Barley | Young barley | Sprague-Dawley female rats | Decrease in tumor incidence and average tumor volume; Caspase-3/caspase-7 increased; Ki67 decreased | [92] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Liu, J.; Tsao, R.; Wang, Z.; Sun, B.; Wang, J. Whole Grain Consumption for the Prevention and Treatment of Breast Cancer. Nutrients 2019, 11, 1769. https://doi.org/10.3390/nu11081769
Xie M, Liu J, Tsao R, Wang Z, Sun B, Wang J. Whole Grain Consumption for the Prevention and Treatment of Breast Cancer. Nutrients. 2019; 11(8):1769. https://doi.org/10.3390/nu11081769
Chicago/Turabian StyleXie, Mingsi, Jie Liu, Rong Tsao, Ziyuan Wang, Baoguo Sun, and Jing Wang. 2019. "Whole Grain Consumption for the Prevention and Treatment of Breast Cancer" Nutrients 11, no. 8: 1769. https://doi.org/10.3390/nu11081769
APA StyleXie, M., Liu, J., Tsao, R., Wang, Z., Sun, B., & Wang, J. (2019). Whole Grain Consumption for the Prevention and Treatment of Breast Cancer. Nutrients, 11(8), 1769. https://doi.org/10.3390/nu11081769