Effects of Flight and Processing Parameters on UAS Image-Based Point Clouds for Plant Height Estimation
Highlights
- Plant height estimation accuracy varied across flight altitudes, image overlaps, and crop types, with point clouds consistently outperforming DSMs.
- Best accuracy occurred at 60–90 m (1.0–1.5 cm GSD), and moderately reduced overlaps produced accuracy comparable to full overlaps; processing parameters strongly influenced point cloud density, processing time, and height estimation performance.
- Reducing side overlap while maintaining high front overlap improves efficiency by lowering flight time and image count without sacrificing accuracy; point cloud-based estimation is especially beneficial for sparse or spiky canopy structures.
- Flying at 60–90 m (1.0–1.5 cm GSD) with reduced side overlap and optimized processing settings provides a strong balance between accuracy and efficiency, enabling faster and more cost-effective phenotyping and precision-agriculture workflows.
Abstract
1. Introduction
2. Materials and Methods
2.1. Layout of Experimental Plots
2.2. UAS Image Acquisition
2.3. Plant Height Measurement
2.4. Image Subsetting to Create Various Overlap Levels
2.5. Image Processing for Flight Height and Overlap Combinations
2.6. Creation of Point Clouds and DSMs Using Various Processing Parameters
2.7. Extraction of Plant Height from Point Clouds and DSMs
2.8. Accuracy Assessment
3. Results
3.1. Percentile-Based Plant Height Estimation Using Three Methods
3.2. Plant Height Estimation Under Different Flight Altitude and Overlap Combinations
3.3. Effects of Processing Parameters in Pix4Dmapper on Plant Height Estimation
4. Discussion
4.1. Performance Differences Between DSM- and Point Cloud-Based Plant Height Estimation
4.2. Estimation Accuracy and Efficiency as Affected by Flight Altitude and Image Overlap
4.3. DTM-Based Ground Elevation Compared with GNSS Measurements
4.4. Influence of Processing Parameters on Point Cloud and DSM Generation
4.5. Optimizing UAS-Based Plant Height Estimation in Precision Agriculture
4.6. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using Crop Surface Models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Chen, R.; Chu, T.; Landivar, J.A.; Yang, C.; Maeda, M.M. Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images. Precis. Agric. 2018, 19, 161–177. [Google Scholar] [CrossRef]
- Corti, M.; Cavalli, D.; Cabassi, G.; Bechini, L.; Pricca, N.; Paolo, D.; Marinoni, L.; Vigoni, A.; Degano, L.; Gallina, P.M. Improved estimation of herbaceous crop aboveground biomass using UAV-derived crop height combined with vegetation indices. Precis. Agric. 2023, 24, 587–606. [Google Scholar] [CrossRef]
- Chang, A.; Jung, J.; Maeda, M.M.; Landivar, J. Crop height monitoring with digital imagery from Unmanned Aerial System (UAS). Comput. Electron. Agric. 2017, 141, 232–237. [Google Scholar] [CrossRef]
- De Souza, C.H.W.; Lamparelli, R.A.C.; Rocha, J.V.; Magalhães, P.S.G. Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds. Int. J. Remote Sens. 2017, 38, 2218–2230. [Google Scholar] [CrossRef]
- Gilliot, J.M.; Michelin, J.; Hadjard, D.; Houotet, S. An accurate method for predicting spatial variability of maize yield from UAV-based plant height estimation: A tool for monitoring agronomic field experiments. Precis. Agric. 2021, 22, 897–921. [Google Scholar] [CrossRef]
- Harandi, N.; Vandenberghe, B.; Vankerschaver, J.; Depuydt, S.; Van Messem, A. How to make sense of 3D representations for plant phenotyping: A compendium of processing and analysis techniques. Plant Methods 2023, 19, 60. [Google Scholar] [CrossRef]
- Martinez-Guanter, J.; Ribeiro, Á.; Peteinatos, G.G.; Pérez-Ruiz, M.; Gerhards, R.; Bengochea-Guevara, J.M.; Machleb, J.; Andújar, D. Low-cost three-dimensional modeling of crop plants. Sensors 2019, 19, 2883. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Liu, Y.; Han, K.; Rasdorf, W. Assessment and prediction of impact of flight configuration factors on UAS-based photogrammetric survey accuracy. Remote Sens. 2022, 14, 4119. [Google Scholar] [CrossRef]
- Du, X.; Zheng, L.; Zhu, J.; Cen, H.; He, Y. Evaluation of mosaic image quality and analysis of influencing factors based on UAVs. Drones 2024, 8, 143. [Google Scholar] [CrossRef]
- Jarahizadeh, S.; Salehi, B. A comparative analysis of UAV photogrammetric software performance for forest 3D modeling: A case study using Agisoft Photoscan, Pix4Dmapper, and DJI Terra. Sensors 2024, 24, 286. [Google Scholar] [CrossRef]
- Bendig, J.; Kang, Y.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- Madec, S.; Baret, F.; de Solan, B.; Thomas, S.; Dutartre, D.; Jezequel, S.; Hemmerlé, M.; Colombeau, G.; Comar, A. High-throughput phenotyping of plant height: Comparing unmanned aerial vehicles and ground LiDAR estimates. Front. Plant Sci. 2017, 8, 2002. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Li, J.; Yang, C.; Jiang, Z.; Chen, Y.; Guo, L.; Zhang, J. Crop height estimation based on UAV images: Methods, errors, and strategies. Comput. Electron. Agric. 2021, 185, 106155. [Google Scholar] [CrossRef]
- Pun Magar, L.; Sandifer, J.; Khatri, D.; Poudel, S.; KC, S.; Gyawali, B.; Gebremedhin, M.; Chiluwal, A. Plant height measurement using UAV-based aerial RGB and LiDAR images in soybean. Front. Plant Sci. 2025, 16, 1488760. [Google Scholar] [CrossRef]
- Forlani, G.; Dall’Asta, E.; Diotri, F.; Cella, U.M.; Roncella, R.; Santise, M. Quality assessment of DSMs produced from UAV flights georeferenced with on board RTK positioning. Remote Sens. 2018, 10, 311. [Google Scholar] [CrossRef]
- Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK/PPK method—An optimal solution for mapping inaccessible forested areas? Remote Sens. 2019, 11, 721. [Google Scholar] [CrossRef]
- Sefercik, U.G.; Kavzoğlu, T.; Çölkesen, İ.; Nazar, M.; Öztürk, M.Y.; Adalı, S.; Dinç, S. 3D positioning accuracy and land cover classification performance of multispectral RTK UAVs. Int. J. Eng. Geosci. 2023, 8, 119–128. [Google Scholar] [CrossRef]
- Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Coastal mapping using DJI Phantom 4 RTK in post-processing kinematic mode. Drones 2020, 4, 9. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Seidl, J.; Reindl, T.; Brouček, J. Photogrammetry using UAV-mounted GNSS RTK: Georeferencing strategies without GCPs. Remote Sens. 2021, 13, 1336. [Google Scholar] [CrossRef]
- Štroner, M.; Urban, R.; Reindl, T.; Seidl, J.; Brouček, J. Evaluation of the georeferencing accuracy of a photogrammetric model using a quadrocopter with onboard GNSS RTK. Sensors 2020, 20, 2318. [Google Scholar] [CrossRef] [PubMed]
- Maes, W.H. Practical guidelines for performing UAV mapping flights with snapshot sensors. Remote Sens. 2025, 17, 606. [Google Scholar] [CrossRef]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef]
- Kameyama, S.; Sugiura, K. Estimating tree height and volume using unmanned aerial vehicle photography and SfM technology, with verification of result accuracy. Drones 2020, 4, 19. [Google Scholar] [CrossRef]
- Grybas, H.; Congalton, R.G. Evaluating the impacts of flying height and forward overlap on tree height estimates using unmanned aerial systems. Forests 2022, 13, 1462. [Google Scholar] [CrossRef]
- Mao, P.; Jiang, B.; Shi, Z.; He, Y.; Shen, T.; Qiu, G.Y. Effects of UAV flight height on biomass estimation of desert shrub communities. Ecol. Indic. 2023, 154, 110698. [Google Scholar] [CrossRef]
- Adedeji, O.; Abdalla, A.; Ghimire, B.; Ritchie, G.; Guo, W. Flight altitude and sensor angle affect unmanned aerial system cotton plant height assessments. Drones 2024, 8, 746. [Google Scholar] [CrossRef]
- Bazrafkan, A.; Worral, H.; Perdigon, C.; Oduor, P.G.; Bandillo, N.; Flores, P. Evaluating sensor fusion and flight parameters for enhanced plant height measurement in dry peas. Sensors 2025, 25, 2436. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S.C.; Murray, S.C.; Putman, E.; Pugh, N.A.; Horne, D.W.; Richardson, G.; Sheridan, R.; Rooney, W.L.; Avant, R.; et al. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 31–42. [Google Scholar] [CrossRef]
- Kümmerer, R.; Noack, P.O.; Bauer, B. Using high-resolution UAV imaging to measure canopy height of diverse cover crops and predict biomass. Remote Sens. 2023, 15, 1520. [Google Scholar] [CrossRef]
- Chu, T.; Starek, M.J.; Brewer, M.J.; Murray, S.C.; Pruter, L.S. Characterizing canopy height with UAS structure-from-motion photogrammetry—Results analysis of a maize field trial with respect to multiple factors. Remote Sens. Lett. 2018, 9, 753–762. [Google Scholar] [CrossRef]
- Zhang, K.; Sekiyama, A.; Okazawa, H.; Yamazaki, Y.; Hayashi, K.; Tsuji, O.; Akimoto, M. Comparison of crop surface models and 3D point clouds by UAV imagery on estimating plant height and biomass volume of pasture grass. Int. J. Environ. Rural Dev. 2022, 13, 137–143. [Google Scholar] [CrossRef]
- Niederheiser, R.; Mokroš, M.; Lange, J.; Petschko, H.; Prasicek, G.; Elberink, S.O. Deriving 3D point clouds from terrestrial photographs—Comparison of different sensors and software. In Proceedings of the 23rd Congress of the International Society of Photogrammetry and Remote Sensing: From Human History to the Future with Spatial Information, Prague, Czech Republic, 12–19 July 2016; Volume 41-B5, pp. 685–692. [Google Scholar] [CrossRef]
- Oborne, M. Mission Planner Software. Available online: http://www.ardupilot.org/planner/ (accessed on 15 December 2025).
- Yang, C.; Fritz, B.K.; Suh, C.P.-C. Practical methods for aerial image acquisition and reflectance conversion using consumer-grade cameras on manned and unmanned aircraft. Precis. Agric. 2024, 25, 2831–2852. [Google Scholar] [CrossRef]
- Dhruva, A.; Hartley, R.J.L.; Redpath, T.A.N.; Estarija, H.J.C.; Cajes, D.; Massam, P.D. Effective UAV photogrammetry for forest management: New insights on side overlap and flight parameters. Forests 2024, 15, 2135. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Fu, L.; Rasheed, A.; Zheng, B.; Xia, X.; Xiao, Y.; He, Z. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods 2019, 15, 37. [Google Scholar] [CrossRef]
- Lu, W.; Okayama, T.; Komatsuzaki, M. Rice height monitoring between different estimation models using UAV photogrammetry and multispectral technology. Remote Sens. 2022, 14, 78. [Google Scholar] [CrossRef]
- Stanton, C.; Starek, M.J.; Elliott, N.; Brewer, M.; Maeda, M.M.; Chu, T. Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment. J. Appl. Remote Sens. 2017, 11, 026035. [Google Scholar] [CrossRef]
- Kawamura, K.; Asai, H.; Yasuda, T.; Khanthavong, P.; Soisouvanh, P.; Phongchanmixay, S. Field phenotyping of plant height in an upland rice field in Laos using low-cost small unmanned aerial vehicles (UAVs). Plant Prod. Sci. 2020, 23, 452–465. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A.; Osborn, J. The impact of the calibration method on the accuracy of point clouds derived using unmanned aerial vehicle multi-view stereopsis. Remote Sens. 2015, 7, 11933–11953. [Google Scholar] [CrossRef]
- Wang, D.; Li, R.; Zhu, B.; Liu, T.; Sun, C.; Guo, W. Estimation of wheat plant height and biomass by combining UAV imagery and elevation data. Agriculture 2023, 13, 9. [Google Scholar] [CrossRef]




| Percentile | Four Crops (Corn, Cotton, Sorghum, Soybean) | Three Crops (Cotton, Sorghum, Soybean) | ||||
|---|---|---|---|---|---|---|
| DSM-IDW a | DSM-TRI a | Point Cloud | DSM-IDW | DSM-TRI | Point Cloud | |
| At 30 m altitude (0.5 cm ground sampling distance, GSD), 67%/67% side/front overlap, 416 images | ||||||
| 98th 99th 100th | 0.442 (0.32) 0.426 (0.36) 0.423 (0.36) | 0.426 (0.34) 0.408 (0.35) 0.360 (0.35) | 0.329 (0.51) 0.321 (0.51) 0.302 (0.52) | 0.288 (0.68) 0.286 (0.68) 0.283 (0.68) | 0.287 (0.64) 0.276 (0.64) 0.235 (0.59) | 0.222 (0.73) 0.218 (0.72) 0.199 (0.74) |
| At 60 m altitude (1.0 cm GSD), 83%/83% side/front overlap, 445 images | ||||||
| 98th 99th 100th | 0.260 (0.70) 0.258 (0.71) 0.256 (0.71) | 0.196 (0.79) 0.166 (0.81) 0.215 (0.81) | 0.097 (0.94) 0.090 (0.94) 0.108 (0.88) | 0.138 (0.94) 0.137 (0.94) 0.135 (0.94) | 0.089 (0.95) 0.088 (0.92) 0.151 (0.79) | 0.064 (0.95) 0.063 (0.95) 0.105 (0.86) |
| At 90 m altitude (1.5 cm GSD), 89%/89% side/front overlap, 418 images | ||||||
| 98th 99th 100th | 0.424 (0.22) 0.422 (0.23) 0.411 (0.25) | 0.241 (0.71) 0.204 (0.81) 0.128 (0.90) | 0.116 (0.92) 0.103 (0.92) 0.091 (0.93) | 0.162 (0.94) 0.161 (0.94) 0.160 (0.94) | 0.105 (0.95) 0.099 (0.95) 0.090 (0.92) | 0.063 (0.95) 0.062 (0.95) 0.071 (0.94) |
| At 120 m altitude (2.0 cm GSD), 92%/92% side/front overlap, 438 images | ||||||
| 98th 99th 100th | 0.477 (0.24) 0.475 (0.24) 0.474 (0.24) | 0.334 (0.48) 0.318 (0.52) 0.296 (0.56) | 0.175 (0.79) 0.157 (0.81) 0.140 (0.82) | 0.229 (0.94) 0.227 (0.94) 0.226 (0.94) | 0.152 (0.92) 0.148 (0.92) 0.140 (0.92) | 0.089 (0.91) 0.085 (0.91) 0.088 (0.89) |
| Percentile | June 2022 | July 2022 | ||||
|---|---|---|---|---|---|---|
| DSM-IDW a | DSM-TRI a | Point Cloud | DSM-IDW | DSM-TRI | Point Cloud | |
| At 30 m altitude, 75%/75% side/front overlap, 381 images (June) and 358 images (July) | ||||||
| 98th 99th 100th | 0.126 (0.63) 0.123 (0.65) 0.109 (0.70) | 0.107 (0.70) 0.100 (0.72) 0.144 (0.64) | 0.094 (0.74) 0.082 (0.83) 0.090 (0.85) | 0.084 (0.80) 0.083 (0.80) 0.083 (0.80) | 0.080 (0.80) 0.078 (0.81) 0.143 (0.68) | 0.078 (0.82) 0.080 (0.82) 0.094 (0.83) |
| At 60 m altitude, 87%/87% side/front overlap, 378 images (June) and 365 images (July) | ||||||
| 98th 99th 100th | 0.100 (0.86) 0.100 (0.86) 0.099 (0.86) | 0.082 (0.85) 0.079 (0.85) 0.087 (0.80) | 0.074 (0.89) 0.075 (0.89) 0.085 (0.88) | 0.089 (0.82) 0.089 (0.82) 0.088 (0.82) | 0.076 (0.84) 0.075 (0.84) 0.075 (0.82) | 0.074 (0.85) 0.074 (0.85) 0.077 (0.86) |
| At 90 m altitude, 92%/92% side/front overlap, 377 images (June) and 361 images (July) | ||||||
| 98th 99th 100th | 0.178 (0.75) 0.177 (0.75) 0.176 (0.75) | 0.108 (0.80) 0.105 (0.80) 0.093 (0.81) | 0.084 (0.80) 0.084 (0.80) 0.090 (0.80) | 0.124 (0.78) 0.123 (0.78) 0.122 (0.78) | 0.086 (0.80) 0.085 (0.80) 0.084 (0.78) | 0.081 (0.83) 0.083 (0.83) 0.096 (0.82) |
| At 120 m altitude, 94%/92% side/front overlap, 376 images (June) and 365 images (July) | ||||||
| 98th 99th 100th | 0.299 (0.79) 0.298 (0.79) 0.297 (0.79) | 0.221 (0.76) 0.213 (0.77) 0.196 (0.77) | 0.142 (0.70) 0.137 (0.70) 0.133 (0.70) | 0.322 (0.77) 0.321 (0.77) 0.321 (0.77) | 0.241 (0.72) 0.233 (0.73) 0.220 (0.72) | 0.158 (0.69) 0.144 (0.70) 0.131 (0.71) |
| Side/Front Overlap | Number of Images | Number of 3D Points Total (Sample) | Process Time | Four Crops (48 Samples) | Three Crops (36 Samples) | ||
|---|---|---|---|---|---|---|---|
| RMSE (m) | R2 | RMSE (m) | R2 | ||||
| 30 m (0.5 cm GSD) 67%/67% 60 m (1.0 cm GSD) 67%/67% 67%/83% 83%/67% 83%/83% 90 m (1.5 cm GSD) 67%/67% 67%/83% 67%/89% 83%/67% 83%/83% 83%/89% 89%/67% 89%/83% 89%/89% 120 m (2.0 cm GSD) 67%/67% 67%/83% 67%/89% 67%/92% 83%/67% 83%/83% 83%/89% 83%/92% 89%/67% 89%/83% 89%/89% 89%/92% 92%/67% 92%/83% 92%/89% 92%/92% | 416 117 234 223 445 54 80 160 75 112 222 140 209 418 33 44 65 131 43 55 83 167 58 77 115 231 110 146 219 438 | 77.4 M (9845) 25.2 M (2689) 36.3 (4533) 33.4 (3847) 55.8 M (7719) 12.5 M (1170) 16.1 M (1603) 22.6 M (2464) 14.5 M (1447) 18.5 M (1960) 26.8 M (3080) 20.3 M (2280) 25.4 M (3032) 43.9 M (5765) 7.8 M (710) 9.7 M (810) 11.9 M (1086) 16.4 M (1506) 8.9 M (745) 10.5 M (886) 13.1 M (1574) 18.8 M (1783) 10.5 M (910) 12.4 M (1022) 15.2 M (1419) 22.7 M (2113) 14.5 M (1367) 17.1 M (1678) 21.8 M (2134) 35.3 M (3872) | 5 h 27 min 1 h 06 min 2 h 11 min 2 h 10 min 6 h 02 min 0 h 29 min 0 h 40 min 1 h 28 min 0 h 39 min 0 h 58 min 2 h 00 min 1 h 07 min 1 h 47 min 5 h 51 min 0 h 17 min 0 h 23 min 0 h 32 min 1 h 10 min 0 h 22 min 0 h 25 min 0 h 43 min 1 h 36 min 1 h 28 min 0 h 37 min 1 h 00 min 2 h 14 min 1 h 00 min 0 h 53 min 2 h 28 min 7 h 09 min | 0.321 0.543 0.116 0.232 0.089 0.534 0.182 0.142 0.420 0.181 0.101 0.112 0.128 0.103 0.439 0.350 0.202 0.141 0.440 0.363 0.175 0.232 0.259 0.263 0.174 0.159 0.218 0.204 0.192 0.157 | 0.51 0.31 0.88 0.71 0.94 0.22 0.79 0.84 0.28 0.76 0.92 0.91 0.89 0.92 0.39 0.56 0.78 0.84 0.30 0.41 0.79 0.58 0.68 0.62 0.77 0.83 0.69 0.68 0.72 0.81 | 0.218 0.491 0.069 0.162 0.063 0.392 0.122 0.072 0.282 0.109 0.077 0.078 0.071 0.062 0.313 0.254 0.148 0.091 0.395 0.212 0.118 0.116 0.164 0.163 0.115 0.093 0.105 0.100 0.094 0.085 | 0.72 0.29 0.93 0.83 0.95 0.48 0.87 0.93 0.59 0.86 0.92 0.92 0.94 0.95 0.67 0.77 0.83 0.90 0.25 0.76 0.88 0.84 0.86 0.83 0.85 0.92 0.90 0.90 0.90 0.91 |
| Side/Front Overlap | Number of Images | Number of 3D Points Total (Sample) | Process Time | RMSE (m) | R2 |
|---|---|---|---|---|---|
| 30 m (0.5 cm GSD) 75%/75% 60 m (1.0 cm GSD) 75%/75% 75%/87% 87%/75% 87%/87% 90 m (1.5 cm GSD) 75%/75% 75%/87% 75%/92% 87%/75% 87%/87% 87%/92% 92%/75% 92%/87% 92%/92% 120 m (2.0 cm GSD) 75%/75% 75%/87% 75%/92% 75%/94% 87%/75% 87%/87% 87%/92% 87%/94% 92%/75% 92%/87% 92%/92% 92%/94% 94%/75% 94%/87% 94%/92% 94%/94% | 381 103 204 189 378 48 73 145 69 105 207 126 189 377 32 41 61 119 37 49 73 144 54 71 106 209 95 126 189 376 | 60.3 M (16,810) 17.8 M (4379) 26.1 M (6972) 23.8 M (4614) 37.1 M (8390) 9.1 M (1623) 11.5 M (2099) 16.8 M (3199) 11.0 M (1889) 13.9 M (2550) 20.5 M (3963) 15.2 M (2864) 19.2 M (3770) 28.9 M (5554) 6.5 M (831) 7.4 M (965) 9.0 M (1269) 12.7 M (1784) 6.8 M (898) 8.0 M (1077) 9.8 M (1305) 14.3 M (1864) 8.3 M (1107) 9.7 M (1305) 12.1 M (1542) 17.8 M (2295) 11.2 M (1596) 13.2 M (1771) 16.6 M (2140) 27.2 M (3354) | 4 h 16 min 0 h 47 min 1 h 48 min 1 h 45 min 4 h 15 min 0 h 22 min 0 h 33 min 1 h 07 min 0 h 29 min 0 h 51 min 1 h 54 min 1 h 00 min 1 h 47 min 4 h 33 min 0 h 13 min 0 h 18 min 0 h 27 min 1 h 00 min 0 h 17 min 0 h 23 min 0 h 32 min 1 h 24 min 0 h 23 min 0 h 31 min 0 h 51 min 2 h 17 min 0 h 47 min 1 h 07 min 1 h 54 min 6 h 50 min | 0.082 0.099 0.075 0.076 0.075 0.144 0.126 0.084 0.114 0.096 0.093 0.100 0.090 0.084 0.171 0.164 0.163 0.130 0.197 0.158 0.171 0.144 0.174 0.140 0.138 0.129 0.145 0.127 0.147 0.137 | 0.83 0.76 0.89 0.88 0.89 0.59 0.63 0.82 0.64 0.77 0.76 0.71 0.78 0.80 0.68 0.64 0.69 0.68 0.65 0.68 0.68 0.68 0.69 0.73 0.72 0.72 0.67 0.71 0.70 0.70 |
| Side-Front Overlap | Number of Images | Number of 3D Points Total (Sample) | Process Time | RMSE (m) | R2 |
|---|---|---|---|---|---|
| 30 m (0.5 cm GSD) 75%/75% 60 m (1.0 cm GSD) 75%/75% 75%/87% 87%/75% 87%/87% 90 m (1.5 cm GSD) 75%/75% 75%/87% 75%/92% 87%/75% 87%/87% 87%/92% 92%/75% 92%/87% 92%/92% 120 m (2.0 cm GSD) 75%/75% 75%/87% 75%/92% 75%/94% 87%/75% 87%/87% 87%/92% 87%/94% 92%/75% 92%/87% 92%/92% 92%/94% 94%/75% 94%/87% 94%/92% 94%/94% | 358 98 195 183 365 48 69 138 64 96 190 121 181 361 27 37 55 110 36 47 71 140 48 65 97 195 92 122 183 365 | 55.1 M (15,163) 17.1 M (4344) 24.1 M (7174) 22.9 M (6550) 32.5 M (6554) 9.0 M (1315) 10.9 M (1910) 16.6 M (2956) 10.4 M (1608) 13.1 M (2303) 20.0 M (3754) 14.8 M (2750) 19.0 M (3654) 29.3 M (5607) 5.3 M (795) 6.6 M (903) 8.2 M (1136) 12.4 M (2302) 6.4 M (1110) 7.5 M (1066) 9.6 M (1754) 14.5 M (2715) 7.5 M (1346) 9.1 M (1650) 11.4 M (1639) 17.4 M (3367) 11.0 M (2084) 13.0 M (2505) 16.5 M (3157) 27.2 M (3670) | 3 h 22 min 0 h 48 min 1 h 50 min 1 h 39 min 4 h 18 min 0 h 21 min 0 h 31 min 1 h 08 min 0 h 27 min 0 h 40 min 1 h 41 min 0 h 59 min 1 h 37 min 4 h 29 min 0 h 11 min 0 h 16 min 0 h 24 min 0 h 54 min 0 h 16 min 0 h 21 min 0 h 31 min 1 h 14 min 0 h 20 min 0 h 28 min 0 h 44 min 1 h 59 min 0 h 44 min 1 h 05 min 1 h 52 min 6 h 46 min | 0.080 0.077 0.071 0.066 0.075 0.165 0.110 0.083 0.106 0.085 0.098 0.084 0.087 0.083 0.255 0.230 0.177 0.076 0.086 0.191 0.070 0.071 0.070 0.078 0.148 0.074 0.072 0.075 0.073 0.144 | 0.82 0.83 0.87 0.87 0.85 0.53 0.64 0.82 0.67 0.78 0.75 0.80 0.79 0.83 0.52 0.55 0.65 0.86 0.78 0.68 0.86 0.88 0.86 0.84 0.69 0.87 0.86 0.86 0.86 0.70 |
| Keypoint Image Scale | Densification Image Scale | Point Density | Minimum Number of Matches | Number of 3D Points (Million) | Process Time | RMSE (m) | R2 |
|---|---|---|---|---|---|---|---|
| 1 2 1/2 1/4 1/8 1 1 1 1 1 1 1 1 1 1/2 2 2 2 2 2 | 1/2 1/2 1/2 1/2 1/2 1 1/4 1/8 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1 1 1/2 1/2 | Optimal Optimal Optimal Optimal Optimal Optimal Optimal Optimal Low High Optimal Optimal Optimal Optimal Optimal Optimal Low High Low High | 3 3 3 3 3 3 3 3 3 3 2 4 5 6 3 3 3 3 3 3 | 49.9 49.8 50.0 49.8 50.2 177.7 11.7 2.9 14.0 175.7 67.2 41.0 35.1 30.9 178.6 180.9 54.9 598.8 13.9 175.4 | 02 h 38 min 02 h 48 min 02 h 28 min 01 h 23 min 01 h 04 min 05 h 14 min 01 h 55 min 01 h 47 min 01 h 56 min 04 h 13 min 02 h 40 min 02 h 31 min 02 h 25 min 02 h 23 min 05 h 21 min 05 h 18 min 02 h 42 min 16 h 04 min 02 h 05 min 04 h 23 min | 0.098 0.096 0.109 0.083 0.081 0.094 0.136 0.345 0.138 0.093 0.102 0.096 0.129 0.230 0.089 0.101 0.092 0.128 0.126 0.081 | 0.93 0.94 0.91 0.95 0.95 0.93 0.90 0.76 0.88 0.94 0.93 0.92 0.90 0.67 0.94 0.91 0.94 0.82 0.86 0.95 |
| Keypoint Image Scale | Densification Image Scale | Point Density | Minimum Number of Matches | June 2022 (378 Images) | July 2022 (365 Images) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Number of 3D Points (Million) | Process Time | RMSE (m) | R2 | Number of 3D Points (Million) | Process Time | RMSE (m) | R2 | ||||
| 1 2 1/2 1/4 1/8 1 1 1 1 1 1 1 1 1 1/2 2 2 2 2 2 | 1/2 1/2 1/2 1/2 1/2 1 1/4 1/8 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1 1 1/2 1/2 | Optimal Optimal Optimal Optimal Optimal Optimal Optimal Optimal Low High Optimal Optimal Optimal Optimal Optimal Optimal Low High Low High | 3 3 3 3 3 3 3 3 3 3 2 4 5 6 3 3 3 3 3 3 | 33.7 36.1 33.4 34.5 34.6 92.8 8.6 2.0 10.2 118.4 50.7 26.6 23.1 23.3 93.8 93.8 30.5 418.3 13.9 114.4 | 02 h 36 min 03 h 09 min 02 h 21 min 01 h 52 min 01 h 44 min 06 h 37 min 01 h 48 min 01 h 41 min 01 h 49 min 05 h 10 min 02 h 38 min 02 h 39 min 02 h 41 min 01 h 58 min 07 h 18 min 08 h 19 min 05 h 40 min 11 h 13 min 02 h 55 min 05 h 24 min | 0.074 0.080 0.073 0.077 0.075 0.079 0.086 0.190 0.084 0.081 0.077 0.076 0.081 0.082 0.091 0.081 0.096 0.104 0.080 0.084 | 0.89 0.87 0.88 0.87 0.86 0.82 0.82 0.74 0.83 0.86 0.88 0.85 0.83 0.87 0.78 0.81 0.74 0.84 0.85 0.84 | 32.5 32.4 32.4 32.2 32.1 104.9 7.7 1.8 9.7 113.7 47.1 26.2 24.3 21.8 100.2 104.2 27.8 419.8 9.7 116.0 | 02 h 22 min 02 h 28 min 02 h 10 min 01 h 48 min 01 h 36 min 07 h 08 min 01 h 42 min 01 h 35 min 01 h 47 min 04 h 24 min 02 h 18 min 02 h 22 min 02 h 15 min 01 h 59 min 07 h 24 min 07 h 04 min 02 h 59 min 08 h 56 min 01 h 55 min 04 h 24 min | 0.077 0.075 0.075 0.069 0.072 0.080 0.084 0.186 0.078 0.075 0.077 0.074 0.071 0.076 0.083 0.089 0.079 0.080 0.083 0.079 | 0.85 0.85 0.85 0.87 0.83 0.81 0.78 0.72 0.84 0.86 0.84 0.85 0.85 0.82 0.80 0.77 0.81 0.84 0.82 0.84 |
| Keypoint Image Scale | Densification Image Scale | Point Density | Minimum Number of Matches | 30 m (0.5 cm GSD, 75%/75% Overlap, 358 Images) | 90 m (1.5 cm GSD, 92%/92% Overlap, 361 Images) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Number of 3D Points (Million) | Process Time (hh mm) | RMSE (m) | R2 | Number of 3D Points (Million) | Process Time | RMSE (m) | R2 | ||||
| 1 2 1/2 1/4 1/8 1 1 1 1 1 | 1/2 1/2 1/2 1/2 1/2 1 1/4 1/8 1/2 1/2 | Optimal Optimal Optimal Optimal Optimal Optimal Optimal Optimal Low High | 3 3 3 3 3 3 3 3 3 3 | 55.1 55.1 55.2 55.1 55.1 223.7 3.7 3.4 14.9 211.6 | 02 h 10 min 02 h 30 min 01 h 55 min 01 h 35 min 01 h 30 min 03 h 51 min 01 h 34 min 01 h 33 min 01 h 41 min 03 h 24 min | 0.080 0.081 0.077 0.079 0.072 0.084 0.086 0.092 0.078 0.075 | 0.84 0.83 0.84 0.83 0.84 0.83 0.76 0.77 0.84 0.85 | 28.8 28.9 29.5 29.3 28.6 104.6 6.1 1.2 8.3 113.7 | 02 h 34 min 02 h 14 min 02 h 28 min 01 h 59 min 01 h 42 min 05 h 36 min 01 h 59 min 01 h 55 min 02 h 02 min 04 h 56 min | 0.082 0.087 0.089 0.083 0.083 0.101 0.112 0.366 0.086 0.081 | 0.83 0.81 0.80 0.82 0.82 0.83 0.72 0.71 0.81 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, C.; Suh, C.P.-C.; Fritz, B.K. Effects of Flight and Processing Parameters on UAS Image-Based Point Clouds for Plant Height Estimation. Remote Sens. 2026, 18, 360. https://doi.org/10.3390/rs18020360
Yang C, Suh CP-C, Fritz BK. Effects of Flight and Processing Parameters on UAS Image-Based Point Clouds for Plant Height Estimation. Remote Sensing. 2026; 18(2):360. https://doi.org/10.3390/rs18020360
Chicago/Turabian StyleYang, Chenghai, Charles P.-C. Suh, and Bradley K. Fritz. 2026. "Effects of Flight and Processing Parameters on UAS Image-Based Point Clouds for Plant Height Estimation" Remote Sensing 18, no. 2: 360. https://doi.org/10.3390/rs18020360
APA StyleYang, C., Suh, C. P.-C., & Fritz, B. K. (2026). Effects of Flight and Processing Parameters on UAS Image-Based Point Clouds for Plant Height Estimation. Remote Sensing, 18(2), 360. https://doi.org/10.3390/rs18020360

