Simultaneous Remote Sensing of HD16O/H216O Profile Using Differential Absorption Lidar: A Feasibility Analysis
Highlights
- The lower temperature sensitivity of the 1.5 μm band makes it suitable for H216O detection, minimizing measurement errors.
- Differential absorption lidar has been proven to be capable of simultaneous remote sensing of H216O, HD16O, and obtaining vertical profiles of the isotope ratio δD.
- The study contributes to improved temporal and spatial resolution in HD16O/H216O remote sensing, aiding in better observations of the lower troposphere.
- The realization of this research plays a key role in improving our understanding of the global water cycle.
Abstract
1. Introduction
2. Methodology
2.1. System Description
2.2. Spectral Selection
2.3. Algorithms
| Formula | ν0 (cm−1) | λ0 (nm) | γair (cm−1·atm−1) | γself (cm−1·atm−1) | S0 (cm−1/(molec·cm−2)) | E″ (cm−1) |
|---|---|---|---|---|---|---|
| H216O (1) | 6433.8877 | 1554.270 | 0.0950 | 0.352 | 3.00 × 10−25 | 782.41 |
| H216O (2) | 6434.1873 | 1554.198 | 0.0607 | 0.315 | 4.89 × 10−26 | 1631.25 |
| HD16O (1) | 6434.3160 | 1554.167 | 0.1002 | 0.469 | 1.05 × 10−25 | 46.17 |
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Soden, B.J.; Jackson, D.L.; Ramaswamy, V.; Schwarzkopf, M.D.; Huang, X. The radiative signature of upper tropospheric moistening. Science 2005, 310, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, J.; Yu, M.; Liu, Z.; Yin, R.; Zhou, S.; Zong, L.; Ning, G.; Xu, X.; Guo, Y.; et al. Role of Water Vapor Modulation From Multiple Pathways in the Occurrence of a Record-Breaking Heavy Rainfall Event in China in 2021. Earth Space Sci. 2022, 9, e2022EA002357. [Google Scholar] [CrossRef]
- Kindel, B.C.; Pilewskie, P.; Schmidt, K.S.; Thornberry, T.; Rollins, A.; Bui, T. Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands. Atmos. Meas. Tech. 2015, 8, 1147–1156. [Google Scholar] [CrossRef]
- Ismail, S.; Browell, E.V. Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis. Appl. Opt. 1989, 28, 3603–3615. [Google Scholar] [CrossRef] [PubMed]
- Galewsky, J.; Steen-Larsen, H.C.; Field, R.D.; Worden, J.; Risi, C.; Schneider, M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys. 2016, 54, 809–865. [Google Scholar] [CrossRef]
- Worden, J.; Bowman, K.; Noone, D.; Beer, R.; Clough, S.; Eldering, A.; Fisher, B.; Goldman, A.; Gunson, M.; Herman, R.; et al. Tropospheric Emission Spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization. J. Geophys. Res. Atmos. 2006, 111, D16309. [Google Scholar] [CrossRef]
- Wen, X.F.; Sun, X.M.; Zhang, S.C.; Yu, G.R.; Sargent, S.D.; Lee, X. Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. J. Hydrol. 2008, 349, 489–500. [Google Scholar] [CrossRef]
- Steen-Larsen, H.C.; Johnsen, S.J.; Masson-Delmotte, V.; Stenni, B.; Risi, C.; Sodemann, H.; Balslev-Clausen, D.; Blunier, T.; Dahl-Jensen, D.; Ellehøj, M.D.; et al. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmos. Chem. Phys. 2013, 13, 4815–4828. [Google Scholar] [CrossRef]
- Sodemann, H.; Aemisegger, F.; Pfahl, S.; Bitter, M.; Corsmeier, U.; Feuerle, T.; Graf, P.; Hankers, R.; Hsiao, G.; Schulz, H.; et al. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: Insight into vertical mixing processes from lower-tropospheric survey flights. Atmos. Chem. Phys. 2017, 17, 6125–6151. [Google Scholar] [CrossRef]
- Boesch, H.; Deutscher, N.M.; Warneke, T.; Byckling, K.; Cogan, A.J.; Griffith, D.W.; Notholt, J.; Parker, R.J.; Wang, Z. HDO/H2O ratio retrievals from GOSAT. Atmos. Meas. Tech. 2013, 6, 599–612. [Google Scholar] [CrossRef]
- Ehhalt, D.H.; Rohrer, F.; Fried, A. Vertical profiles of HDO/H2O in the troposphere. J. Geophys. Res. Atmos. 2005, 110, D13301. [Google Scholar] [CrossRef]
- Wu, P.; Shan, C.; Wang, W.; Liu, C.; Zhu, Q.; Zeng, X.; Liang, B.; Xie, Y. Remote sensing of H2O and HDO column based on Fourier transform infrared spectroscopy. In Proceedings of the First International Conference on Spatial Atmospheric Marine Environmental Optics (SAME 2023), Shanghai, China, 7–9 April 2023; Volume 12706, pp. 20–29. [Google Scholar]
- Wu, P.; Shan, C.; Liu, C.; Xie, Y.; Wang, W.; Zhu, Q.; Zeng, X.; Liang, B. Ground-based remote sensing of atmospheric water vapor using high-resolution FTIR spectrometry. Remote Sens. 2023, 15, 3484. [Google Scholar] [CrossRef]
- Hamperl, J.; Capitaine, C.; Dherbecourt, J.B.; Raybaut, M.; Chazette, P.; Totems, J.; Grouiez, B.; Régalia, L.; Santagata, R.; Evesque, C.; et al. Differential absorption lidar for water vapor isotopologues in the 1.98 μm spectral region: Sensitivity analysis with respect to regional atmospheric variability. Atmos. Meas. Tech. 2021, 14, 6675–6693. [Google Scholar] [CrossRef]
- Shi, T.; Han, G.; Ma, X.; Gong, W.; Pei, Z.; Xu, H.; Qiu, R.; Zhang, H.; Zhang, J. Potential of Ground-Based Multiwavelength Differential Absorption LiDAR to Measure δ13C in Open Detected Path. IEEE Geosci. Remote Sens. Lett. 2021, 19, 7003204. [Google Scholar] [CrossRef]
- Imaki, M.; Hirosawa, K.; Yanagisawa, T.; Kameyama, S.; Kuze, H. Wavelength selection and measurement error theoretical analysis on ground-based coherent differential absorption lidar using 1.53 µm wavelength for simultaneous vertical profiling of water vapor density and wind speed. Appl. Opt. 2020, 59, 2238–2247. [Google Scholar] [CrossRef]
- Howes, N.; Innocenti, F.; Finlayson, A.; Dimopoulos, C.; Robinson, R.; Gardiner, T. Remote Measurements of Industrial CO2 Emissions Using a Ground-Based Differential Absorption Lidar in the 2 µm Wavelength Region. Remote Sens. 2023, 15, 5403. [Google Scholar] [CrossRef]
- Mariani, Z.; Hicks-Jalali, S.; Strawbridge, K.; Gwozdecky, J.; Crawford, R.W.; Casati, B.; Lemay, F.; Lehtinen, R.; Tuominen, P. Evaluation of Arctic water vapor profile observations from a differential absorption lidar. Remote Sens. 2021, 13, 551. [Google Scholar]
- Liberti, G.L.; Dionisi, D.; Cheruy, F.; Risi, C. Feasibility study to measure HDO/H2O atmospheric profiles through a Raman Lidar. EPJ Web Conf. 2018, 176, 05032. [Google Scholar]
- Hamperl, J.; Dherbecourt, J.B.; Raybaut, M.; Totems, J.; Chazette, P.; Régalia, L.; Grouiez, B.; Geyskens, N.; Aouji, O.; Amarouche, N.; et al. Range-resolved detection of boundary layer stable water vapor isotopologues using a ground-based 1.98 µm differential absorption LIDAR. Opt. Express 2022, 30, 47199–47215. [Google Scholar] [CrossRef]
- Stroud, J.R.; Wagner, G.A.; Plusquellic, D.F. Multi-frequency differential absorption LIDAR (DIAL) system for aerosol and cloud retrievals of CO2/H2O and CH4/H2O. Remote Sens. 2023, 15, 5595. [Google Scholar]
- Abshire, J.B.; Ramanathan, A.; Riris, H.; Mao, J.; Allan, G.R.; Hasselbrack, W.E.; Weaver, C.J.; Browell, E.V. Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar. Remote Sens. 2013, 6, 443–469. [Google Scholar]
- Yu, S.; Zhang, Z.; Xia, H.; Dou, X.; Wu, T.; Hu, Y.; Li, M.; Shangguan, M.; Wei, T.; Zhao, L.; et al. Photon-counting distributed free-space spectroscopy. Light Sci. Appl. 2021, 10, 212. [Google Scholar] [CrossRef]
- Shangguan, M.; Guo, X.; Lin, S.; Lee, Z. Simultaneous column-averaged CO2, temperature, and HDO measurement by absorption spectroscopy lidar: Algorithm. IEEE Trans. Geosci. Remote Sens. 2024, 63, 4100112. [Google Scholar]
- Yu, S.; Zhang, Z.; Li, M.; Xia, H. Multi-frequency differential absorption lidar incorporating a comb-referenced scanning laser for gas spectrum analysis. Opt. Express 2021, 29, 12984–12995. [Google Scholar] [CrossRef]
- Ahtee, V.; Merimaa, M.; Nyholm, K. Precision spectroscopy of acetylene transitions using an optical frequency synthesizer. Opt. Lett. 2009, 34, 2619–2621. [Google Scholar] [CrossRef]
- Park, S.E.; Kim, E.B.; Park, Y.H.; Yee, D.S.; Kwon, T.Y.; Park, C.Y.; Moon, H.S.; Yoon, T.H. Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb. Opt. Lett. 2006, 31, 3594–3596. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Guo, K.; Li, S.; Han, H.; Zhang, Z.; Xia, H. Three-dimensional detection of CO2 and wind using a 1.57 µm coherent differential absorption lidar. Opt. Express 2024, 32, 21134–21148. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, E.R.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Ehret, G.; Kiemle, C.; Wirth, M.; Amediek, A.; Fix, A.; Houweling, S. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis. Appl. Phys. B 2008, 90, 593–608. [Google Scholar] [CrossRef]







| Parameters | |
|---|---|
| probe wavelength range | 1554.0–1554.5 nm |
| Reference wavelength | 1554.5 nm |
| Pulse energy | 300 μJ |
| Pulse repetition frequency | 10 kHz |
| Pulse width | 800 ns |
| Receiver diameter | 256 mm |
| Field of view | 90 μrad |
| Transmitter transmittance | 79.5% |
| Receiver transmittance | 57.4% |
| Quantum efficiency | 51% |
| Dark counts | 100 counts per second |
| Noise equivalent power | 5.7 × 10−18 W/Hz1/2 |
| Sampling rate of the multi-channel scaler | 2 × 108 samples per second |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yu, S.; Zhang, Z.; Xia, H. Simultaneous Remote Sensing of HD16O/H216O Profile Using Differential Absorption Lidar: A Feasibility Analysis. Remote Sens. 2026, 18, 212. https://doi.org/10.3390/rs18020212
Yu S, Zhang Z, Xia H. Simultaneous Remote Sensing of HD16O/H216O Profile Using Differential Absorption Lidar: A Feasibility Analysis. Remote Sensing. 2026; 18(2):212. https://doi.org/10.3390/rs18020212
Chicago/Turabian StyleYu, Saifen, Zhen Zhang, and Haiyun Xia. 2026. "Simultaneous Remote Sensing of HD16O/H216O Profile Using Differential Absorption Lidar: A Feasibility Analysis" Remote Sensing 18, no. 2: 212. https://doi.org/10.3390/rs18020212
APA StyleYu, S., Zhang, Z., & Xia, H. (2026). Simultaneous Remote Sensing of HD16O/H216O Profile Using Differential Absorption Lidar: A Feasibility Analysis. Remote Sensing, 18(2), 212. https://doi.org/10.3390/rs18020212

