Next Article in Journal
Mapping Burned Areas in Tropical Forests Using a Novel Machine Learning Framework
Next Article in Special Issue
Investigation on Reference Frames and Time Systems in Multi-GNSS
Previous Article in Journal
Comparative Analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area Index Estimations for Maize
Previous Article in Special Issue
Improved Modeling of Global Ionospheric Total Electron Content Using Prior Information
Open AccessArticle

Spatiotemporal Evaluation of GNSS-R Based on Future Fully Operational Global Multi-GNSS and Eight-LEO Constellations

Institute of Space Science, Shandong University, Weihai 264209, China
Author to whom correspondence should be addressed.
Remote Sens. 2018, 10(1), 67;
Received: 14 November 2017 / Revised: 24 December 2017 / Accepted: 3 January 2018 / Published: 5 January 2018
PDF [4539 KB, uploaded 5 January 2018]


Spaceborne GNSS-R (global navigation satellite system reflectometry) is an innovative and powerful bistatic radar remote sensing technique that uses specialized GNSS-R instruments on LEO (low Earth orbit) satellites to receive GNSS L-band signals reflected by the Earth’s surface. Unlike monostatic radar, the illuminated areas are elliptical regions centered on specular reflection points. Evaluation of the spatiotemporal resolution of the reflections is necessary at the GNSS-R mission design stage for various applications. However, not all specular reflection signals can be received because the size and location of the GNSS-R antenna’s available reflecting ground coverage depends on parameters including the on-board receiver antenna gain, the signal frequency and power, the antenna face direction, and the LEO’s altitude. Additionally, the number of available reflections is strongly related to the number of GNSS-R LEO and GNSS satellites. By 2020, the Galileo and BeiDou Navigation Satellite System (BDS) constellations are scheduled to be fully operational at global scale and nearly 120 multi-GNSS satellites, including Global Positioning System (GPS) and Global Navigation Satellite System (GLONASS) satellites, will be available for use as illuminators. In this paper, to evaluate the future capacity for repetitive GNSS-R observations, we propose a GNSS satellite selection method and simulate the orbit of eight-satellite LEO and partial multi-GNSS constellations. We then analyze the spatiotemporal distribution characteristics of the reflections in two cases: (1) When only GPS satellites are available; (2) when multi-GNSS satellites are available separately. Simulation and analysis results show that the multi-GNSS-R system has major advantages in terms of available satellite numbers and revisit times over the GPS-R system. Additionally, the spatial density of the specular reflections on the Earth’s surface is related to the LEO inclination and constellation construction. View Full-Text
Keywords: multi-GNSS; GNSS reflectometry; revisit time; L-band reflected signals multi-GNSS; GNSS reflectometry; revisit time; L-band reflected signals

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Gao, F.; Xu, T.; Wang, N.; Jiang, C.; Du, Y.; Nie, W.; Xu, G. Spatiotemporal Evaluation of GNSS-R Based on Future Fully Operational Global Multi-GNSS and Eight-LEO Constellations. Remote Sens. 2018, 10, 67.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top