Global Wavenumber Spectra of Sea Surface Salinity in the Mesoscale Range Using Satellite Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Satellite Sea Surface Salinity
2.1.2. Thermosalinograph Sea Surface Salinity
2.2. Methods
2.2.1. Wavenumber Spectra Estimation Using Aquarius Data
2.2.2. Wavenumber Spectra Estimation Using TSG Data
3. Results
3.1. Global Wavenumber Spectra of SSS Variance of Aquarius Data
3.2. Global Wavenumber Spectra of SSS Variance of TSG Observations
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reul, N.; Grodsky, S.A.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea Surface Salinity Estimates from Spaceborne L-Band Radiometers: An Overview of the First Decade of Observation (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar] [CrossRef]
- Vinogradova, N.; Lee, T.; Boutin, J.; Drushka, K.; Fournier, S.; Sabia, R.; Stammer, D.; Bayler, E.; Reul, N.; Gordon, A.; et al. Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Front. Mar. Sci. 2019, 6, 1–23. [Google Scholar] [CrossRef]
- Durack, P.J. Ocean Salinity and the Global Water Cycle. Oceanography 2015, 28, 20–31. [Google Scholar] [CrossRef]
- Schmitt, R.W. Salinity and the Global Water Cycle. Oceanography 2008, 21, 12–19. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E. Fifty-Year Trends in Global Ocean Salinities and Their Relationship to Broad-Scale Warming. J. Clim. 2010, 23, 4342–4362. [Google Scholar] [CrossRef]
- Vinogradova, N.; Ponte, R. In Search of Fingerprints of the Recent Intensification of the Ocean Water Cycle. J. Clim. 2017, 30, 5513–5528. [Google Scholar] [CrossRef]
- Yu, L.; Josey, S.A.; Bingham, F.M.; Lee, T. Intensification of the Global Water Cycle and Evidence from Ocean Salinity: A Synthesis Review. Ann. N. Y. Acad. Sci. 2020, 1472, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.E.; Subrahmanyam, B. Estimation of Surface Freshwater Fluxes in the Arctic Ocean Using Satellite-Derived Salinity. Remote Sens. Earth Syst. Sci. 2019, 2, 247–259. [Google Scholar] [CrossRef]
- Dong, J.; Jin, M.; Liu, Y.; Dong, C. Interannual Variability of Surface Salinity and Ekman Pumping in the Canada Basin during Summertime of 2003–2017. J. Geophys. Res. Oceans 2021, 126, e2021JC017176. [Google Scholar] [CrossRef]
- Fournier, S.; Lee, T.; Wang, X.; Armitage, T.W.K.; Wang, O.; Fukumori, I.; Kwok, R. Sea Surface Salinity as a Proxy for Arctic Ocean Freshwater Changes. J. Geophys. Res. Oceans 2020, 125, e2020JC016110. [Google Scholar] [CrossRef]
- Lukas, R.; Lindstrom, E. The Mixed Layer of the Western Equatorial Pacific Ocean. J. Geophys. Res. 1991, 96, 3343–3357. [Google Scholar] [CrossRef]
- Yang, Q.; Dixon, T.H.; Myers, P.G.; Bonin, J.; Chambers, D.; Van Den Broeke, M.R. Recent Increases in Arctic Freshwater Flux Affects Labrador Sea Convection and Atlantic Overturning Circulation. Nat. Commun. 2016, 7, 10525. [Google Scholar] [CrossRef] [PubMed]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Ferrari, R.; Wunsch, C. The Distribution of Eddy Kinetic and Potential Energies in the Global Ocean. Tellus Ser. Dyn. Meteorol. Oceanogr. 2010, 62, 92–108. [Google Scholar] [CrossRef]
- Droghei, R.; Buongiorno Nardelli, B.; Santoleri, R. Combining in Situ and Satellite Observations to Retrieve Salinity and Density at the Ocean Surface. J. Atmos. Ocean. Technol. 2016, 33, 1211–1223. [Google Scholar] [CrossRef]
- Kolodziejczyk, N.; Hernandez, O.; Boutin, J.; Reverdin, G. SMOS Salinity in the Subtropical North Atlantic Salinity Maximum: 2. Two-Dimensional Horizontal Thermohaline Variability. J. Geophys. Res. Oceans 2015, 120, 972–987. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS L: New Tool for Monitoring Key Elements Ofthe Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Lagerloef, G.; Boutin, J.; Chao, Y.; Delcroix, T.; Font, J.; Niiler, P.; Reul, N.; Riser, S.; Schmitt, R.; Stammer, D.; et al. Resolving the Global Surface Salinity Field and Variations by Blending Satellite and In Situ Observations; ESA Publisher WPP: Venice, Italy, 2010; Volume 2, p. 306. [Google Scholar]
- Delcroix, T.; Chaigneau, A.; Soviadan, D.; Boutin, J.; Pegliasco, C. Eddy-Induced Salinity Changes in the Tropical Pacific. J. Geophys. Res. Oceans 2019, 124, 374–389. [Google Scholar] [CrossRef]
- Lee, T.; Lagerloef, G.; Gierach, M.M.; Kao, H.-Y.; Yueh, S.; Dohan, K. Aquarius Reveals Salinity Structure of Tropical Instability Waves. Geophys. Res. Lett. 2012, 39, L12610. [Google Scholar] [CrossRef]
- Melnichenko, O.; Amores, A.; Maximenko, N.; Hacker, P.; Potemra, J. Signature of Mesoscale Eddies in Satellite Sea Surface Salinity Data. J. Geophys. Res. Oceans 2017, 122, 1416–1424. [Google Scholar] [CrossRef]
- Lin, X.; Qiu, Y.; Sun, D. Thermohaline Structures and Heat/Freshwater Transports of Mesoscale Eddies in the Bay of Bengal Observed by Argo and Satellite Data. Remote Sens. 2019, 11, 2989. [Google Scholar] [CrossRef]
- Melnichenko, O.; Hacker, P.; Müller, V. Observations of Mesoscale Eddies in Satellite Sss and Inferred Eddy Salt Transport. Remote Sens. 2021, 13, 315. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y.; Zeng, L.; Wang, Q. Eddy-Induced Sea Surface Salinity Changes in the South China Sea. Front. Mar. Sci. 2023, 10, 1113752. [Google Scholar] [CrossRef]
- Vinogradova, N.T.; Ponte, R.M. Assessing Temporal Aliasing in Satellite-Based Surface Salinity Measurements. J. Atmos. Ocean. Technol. 2012, 29, 1391–1400. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.L.; Marchand, S.; D’Amico, F.; Hasson, A.; Kolodziejczyk, N.; Reul, N.; Reverdin, G.; Vialard, J. New SMOS Sea Surface Salinity with Reduced Systematic Errors and Improved Variability. Remote Sens. Environ. 2018, 214, 115–134. [Google Scholar] [CrossRef]
- Kao, H.Y.; Lagerloef, G.S.E.E.; Lee, T.; Melnichenko, O.; Meissner, T.; Hacker, P. Assessment of Aquarius Sea Surface Salinity. Remote Sens. 2018, 10, 1341. [Google Scholar] [CrossRef]
- Chen, S.; Qiu, B. Sea Surface Height Variability in the 30–120 Km Wavelength Band From Altimetry Along-Track Observations. J. Geophys. Res. Oceans 2021, 126, e2021JC017284. [Google Scholar] [CrossRef]
- Dufau, C.; Orsztynowicz, M.; Dibarboure, G.; Morrow, R.; Le Traon, P. Mesoscale Resolution Capability of Altimetry: Present and Future. J. Geophys. Res. Oceans 2016, 121, 4910–4927. [Google Scholar] [CrossRef]
- Melnichenko, O.; Hacker, P.; Maximenko, N.; Lagerloef, G.; Potemra, J. Spatial Optimal Interpolation of Aquarius Sea Surface Salinity: Algorithms and Implementation in the North Atlantic. J. Atmos. Ocean. Technol. 2014, 31, 1583–1600. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, L.L. The Effects of Altimeter Instrument Noise on the Estimation of the Wavenumber Spectrum of Sea Surface Height. J. Phys. Oceanogr. 2012, 42, 2229–2233. [Google Scholar] [CrossRef]
- Callies, J.J.J.; Ferrari, R. Interpreting Energy and Tracer Spectra of Upper-Ocean Turbulence in the Submesoscale Range (1–200Km). J. Phys. Oceanogr. 2013, 43, 2456–2474. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Sov. Phys. Usp. 1968, 10, 734–746. [Google Scholar] [CrossRef]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics; Cambridge University Press: Cambridge, MA, USA, 2006; pp. 337–370. [Google Scholar]
- Charney, J.G. Geostrophic Turbulence. J. Atmos. Sci. 1971, 28, 1087–1095. [Google Scholar] [CrossRef]
- Blumen, W. Uniform Potential Vorticity Flow: Part I. Theory of Wave Interactions and Two-Dimensional Turbulence. J. Atmos. Sci. 1978, 35, 774–783. [Google Scholar] [CrossRef]
- Buongiorno Nardelli, B.; Droghei, R.; Santoleri, R. Multi-Dimensional Interpolation of SMOS Sea Surface Salinity with Surface Temperature and in Situ Salinity Data. Remote Sens. Environ. 2016, 180, 392–402. [Google Scholar] [CrossRef]
- Delcroix, T.; Alory, G.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; et al. Sea Surface Salinity data from Voluntary Observing Ships Network. 2002. Available online: https://www.pigma.org/geonetwork/5a8srv/api/records/acbe0443-19c1-5fa6-e309-50e6fdf732f3 (accessed on 19 April 2024).
- Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; et al. The French Contribution to the Voluntary Observing Ships Network of Sea Surface Salinity. Deep Sea Res. Part Oceanogr. Res. Pap. 2015, 105, 1–18. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, L.L. Global Variability of the Wavenumber Spectrum of Oceanic Mesoscale Turbulence. J. Phys. Oceanogr. 2011, 41, 802–809. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K. Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations. J. Hydrometeorol. 2002, 3, 660–687. [Google Scholar] [CrossRef]
- Qu, T.; Yu, J.Y. ENSO Indices from Sea Surface Salinity Observed by Aquarius and Argo. J. Oceanogr. 2014, 70, 367–375. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, L.; Qu, T.; Yin, B.; Xu, Z.; Yang, D.; Li, D.; Qin, Y. Salinity Variability in the Tropical Pacific during the Central-Pacific and Eastern-Pacific El Niño Events. J. Mar. Syst. 2019, 199, 103225. [Google Scholar] [CrossRef]
- Cole, S.T.; Rudnick, D.L. The Spatial Distribution and Annual Cycle of Upper Ocean Thermohaline Structure. J. Geophys. Res. Oceans 2012, 117, C02027. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, D.L.; Wang, P. Global Wavenumber Spectra of Sea Surface Salinity in the Mesoscale Range Using Satellite Observations. Remote Sens. 2024, 16, 1753. https://doi.org/10.3390/rs16101753
Yi DL, Wang P. Global Wavenumber Spectra of Sea Surface Salinity in the Mesoscale Range Using Satellite Observations. Remote Sensing. 2024; 16(10):1753. https://doi.org/10.3390/rs16101753
Chicago/Turabian StyleYi, Daling Li, and Peng Wang. 2024. "Global Wavenumber Spectra of Sea Surface Salinity in the Mesoscale Range Using Satellite Observations" Remote Sensing 16, no. 10: 1753. https://doi.org/10.3390/rs16101753
APA StyleYi, D. L., & Wang, P. (2024). Global Wavenumber Spectra of Sea Surface Salinity in the Mesoscale Range Using Satellite Observations. Remote Sensing, 16(10), 1753. https://doi.org/10.3390/rs16101753