Identification of Internal Tides in ECCO Estimates of Sea Surface Salinity in the Andaman Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. ECCO Estimates
2.2. Observations
2.3. Methodology
3. Results
3.1. Spatial Variation in Sea Surface Salinity from ECCO, SMOS, and Aquarius
3.2. Spatial Variation in Weekly Averaged ECCO Salinity in Different Seasons
3.3. Spatial Variations in 11–14 h and 22–26 h Bandpass-Filtered ECCO Salinity
3.4. Continuous Wavelet Power Spectra of Bandpass-Filtered ECCO Salinity
3.5. 2D–FFT Spectra of Bandpass-Filtered ECCO Salinity
3.6. Characteristics of Semi-Diurnal ITs for the Boxes A to C
3.7. Characteristics of Diurnal ITs for Boxes A to C
3.8. Cross-Wavelet Analysis between the Filtered ECCO Salinity Data among the Three Boxes
3.9. Inferences from BD12 OMNI Buoy Time Series Salinity and Temperature Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrett, C.; Munk, W.H. Space time scales of internal waves. Geophys. Fluid Dyn. 1972, 3, 225–264. [Google Scholar] [CrossRef]
- Garrett, C.; Munk, W.H. Space-time scales of internal waves: A progress report. J. Geophys. Res. 1975, 80, 291–297. [Google Scholar] [CrossRef]
- Garrett, C.; Munk, W.H. Internal Waves in the Ocean. Annu. Rev. Fluid Mech. 1979, 11, 339–369. [Google Scholar] [CrossRef]
- Levine, M.D. Internal Waves in the ocean: A review. Rev. Geophys. Space Phys. 1983, 21, 1206–1216. [Google Scholar] [CrossRef]
- Toorman, E.A.; Bruens, A.W.; Kranenburg, C.; Winterwerp, J.C. Interaction of suspended cohesive sediment and turbulence. Proc. Mar. Sci. 2002, 5, 7–23. [Google Scholar] [CrossRef]
- Rizal, S.; Damm, P.; Wahid, M.A.; Sundermann, J.; Ilhamsyah, Y.; Iskandar, T.; Muhammad, M. General Circulation in the Malacca Strait and Andaman Sea: A Numerical Model Study. Am. J. Environ. Sci. 2012, 8, 479–488. [Google Scholar] [CrossRef]
- Osborne, A.R.; Burch, T.L. Internal solitons in the Andaman Sea. Science 1980, 208, 451–460. [Google Scholar] [CrossRef]
- Alpers, W.; Vlasenko, V. Internal Waves in the Andaman Sea. In Remote Sensing of the Asian Seas; Barale, V., Gade, M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Meyer, A.; Polzin, K.L.; Sloyan, B.M.; Phillips, H.E. Internal waves and mixing near the Kerguelen Plateau. J. Phys. Oceanogr. 2015, 46, 417–437. [Google Scholar] [CrossRef]
- Apel, J.R. Principles of Ocean Physics; Academic Press: Cambridge, MA, USA, 1987; Volume 38, pp. 161–335. [Google Scholar]
- Apel, J.R.; Badley, M.; Chiu, C.S.; Finette, S.; Headrick, R.; Kemp, J.; Lynch, J.F.; Newhall, A.; Orr, M.H.; Pasewark, B.H.; et al. An overview of the 1995 SWARM Shallow-water internal wave acoustic scattering experiment. IEEE J. Ocean. Eng. 1997, 22, 465–500. [Google Scholar] [CrossRef]
- Small, J.; Hornby, B.; Prior, M.; Scott, J. Internal Solitons in the Ocean: Prediction from SAR. British Crown Copyright. 1998. Available online: https://www.whoi.edu/science/aope/people/tduda/isww/text/small/jsmall.htm#:~:text=The%20SAR%20prediction%20method%20gives,to%20the%20following%20two%20factors%3A&text=The%20knowledge%20of%20water%20depth,is%20critically%20dependent%20on%20depth (accessed on 4 September 2024).
- Sridevi, B.; Ramana Murty, T.V.; Sadhuram, Y.; Sarma, V.V.S.S.; Murty, V.S.N.; Prasad, K.V.S.R. Tidally-modulated high frequency internal waves in Gautami-Godavari estuary, East Coast of India. Indian J. Geo-Mar. Sci. 2014, 43, 1695–1707. [Google Scholar]
- Rao, A.D.; Babu, S.V.; Prasad, K.V.S.R.; Murty, T.R.; Sadhuram, Y.; Mahapatra, D.K. Investigation of the generation and propagation of low frequency internal waves: A case study for the east coast of India. Estuar. Coast. Shelf Sci. 2010, 88, 143–152. [Google Scholar] [CrossRef]
- da Silva, J.C.B.; Magalhaes, J.M. Internal solitons in the Andaman Sea: A new look at an old problem. SPIE Remote Sens. 2016, 9999, 52–54. [Google Scholar] [CrossRef]
- Gens, R. Oceanographic Applications of SAR Remote Sensing. Geosci. Remote Sens. 2013, 45, 275–305. [Google Scholar] [CrossRef]
- Jensen, T.G.; Magalhães, J.; Wijesekera, H.W.; Buijsman, M.; Helber, R.; Richman, J. Numerical modelling of tidally generated internal wave radiation from the Andaman Sea into the Bay of Bengal. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2020, 172, 104710. [Google Scholar] [CrossRef]
- Mohanty, S.; Rao, A.D.; Latha, G. Energetics of semidiurnal internal tides in the Andaman Sea. J. Geophys. Res. Ocean. 2018, 123, 6224–6240. [Google Scholar] [CrossRef]
- Raju, N.J.; Dash, M.K.; Dey, S.P.; Bhaskaran, P.K. Potential generation sites of internal solitary waves and their propagation characteristics in the Andaman Sea—A study based on MODIS true-colour and SAR observations. Environ. Monit. Assess. 2020, 191, 809. [Google Scholar] [CrossRef]
- Joshi, M.; Rao, A.D.; Mohanty, S.; Pradhan, H.K.; Murty, V.S.N.; Prasad, K.V.S.R. Internal waves over the shelf in the western Bay of Bengal: A case study. Ocean Dyn. 2017, 67, 147–161. [Google Scholar] [CrossRef]
- Perry, R.B.; Schmike, G.R. Large amplitude internal waves observed off the Northwestern coast of Sumatra. J. Geophys. Res. 1965, 70, 2319–2324. [Google Scholar] [CrossRef]
- Wyrtki, K. Physical Oceanography of the Southeast Asian Waters; Naga Report 2; The University of California: La Jolla, CA, USA, 1961; Volume 195. [Google Scholar]
- Mandal, S.; Sil, S.; Gangopadhyay, A.; Jena, B.K.; Venkatesan, R.; Glen, G. Seasonal and tidal variability of surface currents in the western Andaman Sea using HF Radars and Buoy Observations during 2016–2017. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7235–7244. [Google Scholar] [CrossRef]
- Sindhu, B.; Unnikrishnan, A.S. Characteristics of Tides in the Bay of Bengal. Mar. Geod. 2013, 36, 377–407. [Google Scholar] [CrossRef]
- Jensen, T.G.; Shulman, I.; Wijesekera, H.W.; Anderson, S.; Ladner, S. Sub-mesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal. Ocean Dyn. 2018, 68, 391–410. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Park, E.; Kästner, K. The Ayeyarwady River (Myanmar): Washload transport and its global role among rivers in the Anthropocene. PLoS ONE 2012, 16, e0251156. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, B.; Murty, V.S.N.; Hall, S.B. Characteristics of Internal Tides from ECCO Salinity Estimates and Observations in the Bay of Bengal. Remote Sens. 2023, 15, 3474. [Google Scholar] [CrossRef]
- Su, Z.; Wang, J.; Klein, P.; Thompson, A.F.; Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 2018, 9, 775. [Google Scholar] [CrossRef]
- Rameshbabu, V.; Sastry, J.S. Hydrography of the Andaman Sea during late winter. Indian. J. Mar. Sci. 1976, 5, 179–189. [Google Scholar]
- Wall, M.; Schmidt, G.M.; Janjang, P.; Khokiattiwong, S.; Richter, C. Differential impact of monsoon and large amplitude internal waves on coral reef development in the Andaman Sea. PLoS ONE 2012, 7, e50207. [Google Scholar] [CrossRef]
- Murty, V.S.N.; Sarma, Y.Y.B.; Rao, D.P.; Murty, C.S. Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon. J. Mar. Res. 1992, 50, 207–228. [Google Scholar] [CrossRef]
- Ashin, K.; Girishkumar, M.S.; Suprit, K.; Thangaprakash, V.P. Observed upper ocean seasonal and intraseasonal variability in the Andaman Sea. J. Geophys. Res. Oceans 2019, 124, 6760–6786. [Google Scholar] [CrossRef]
- Varkey, M.J.; Murty, V.S.N.; Suryanarayana, A. Physical Oceanography of the Bay of Bengal and Andaman Sea. Oceanogr. Mar. Biol. Annu. Rev. 1996, 34, 1–70. [Google Scholar]
- Yadidya, B.; Rao, A.D.; Latha, G. Investigation of internal tides variability in the Andaman Sea: Observations and simulations. J. Geophys. Res. Oceans 2022, 127, e2021JC018321. [Google Scholar] [CrossRef]
- Smith, W.H.F.; Sandwell, D.T. Global seafloor topography from satellite altimetry and ship depth soundings. Science 1997, 277, 1957–1962. [Google Scholar] [CrossRef]
- Forget, G.; Campin, J.M.; Heimbach, P.; Hill, C.N.; Ponte, R.M.; Wunsch, C. ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 2015, 8, 3071–3104. [Google Scholar] [CrossRef]
- Ernst, P.A.; Subrahmanyam, B.; Trott, C.B.; Chaigneau, A. Characteristics of sub-mesoscale eddy structures within mesoscale eddies in the Gulf of Mexico from 1/48° ECCO estimates. Front. Mar. Sci. 2023, 10, 1181676. [Google Scholar] [CrossRef]
- Arbic, B.K.; Elipot, S.; Brasch, J.M.; Menemenlis, D.; Ponte, A.L.; Shriver, J.F.; Yu, X.; Zaron, E.D.; Alford, M.H.; Buijsman, M.C.; et al. Near-surface oceanic kinetic energy distributions from drifter observations and numerical models. J. Geophys. Res. Oceans 2002, 127, e2022JC018551. [Google Scholar] [CrossRef]
- Zhang, H.M.; Bates, J.J.; Reynolds, R.W. Assessment of composite global sampling: Sea surface wind speed. Geophys. Res. Lett. 2006, 33, L17714. [Google Scholar] [CrossRef]
- Boutin, J.; Martin, N.; Kolodziejczyk, N.; Reverdin, G. Interannual anomalies of SMOS sea surface salinity. Remote Sens. Environ. 2016, 180, 128–136. [Google Scholar] [CrossRef]
- Yueh, S.H.; Tang, W.; Hayashi, A.K.; Lagerloef, G.S.E. L-Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 51, 4619–4632. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Meyers, G.; Ando, K.; Masumoto, Y.; Murty, V.S.N.; Ravichandran, M.; Syamsudin, F.; Vialard, J.; Yu, L.; Yu, W. RAMA: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction. Bull. Am. Meteorol. Soc. 2009, 90, 459–480. [Google Scholar] [CrossRef]
- Venkatesan, R.; Shamji, V.; Latha, G.; Mathew, S.; Rao, R.; Muthiah, A.; Atmanand, M. In situ ocean subsurface time-series measurements from OMNI buoy network in the Bay of Bengal. Curr. Sci. 2013, 104, 1166–1177. [Google Scholar]
- Venkatesan, R.; Lix, J.K.; Phanindra Reddy, A.; Arul Muthiah, M.; Atmanand, M.A. Two decades of operating the Indian moored buoy network: Significance and impact. J. Oper. Oceanogr. 2016, 9, 45–54. [Google Scholar] [CrossRef]
- Kesavakumar, B.; Shanmugam, P.; Venkatesan, R. Enhanced Sea Surface Salinity estimates using Machine-Learning algorithm with SMAP and High-Resolution Buoy data. IEEE Access 2022, 10, 74304–74317. [Google Scholar] [CrossRef]
- Apel, J.R.; Thompson, D.R.; Tilley, D.O.; van Dyke, P. Hydrodynamics and radar signatures of internal solitons in the Andaman Sea. Johns Hopkins APL Tech. Dig. 1985, 6, 330–337. [Google Scholar]
- Krishnamurti, T.N.; Dubey, S.; Kumar, V.; Deepa, R.; Bhardwaj, A. Scale interaction during an extreme rain event over southeast India. Q. J. R. Meteorol. Soc. 2017, 143, 1442–1458. [Google Scholar] [CrossRef]
- Roman-Stork, H.; Subrahmanyam, B.; Trott, C. Monitoring Intraseasonal Oscillations in the Indian Ocean Using Satellite Observations. J. Geophys. Res. Oceans 2020, 125, e2019JC015891. [Google Scholar] [CrossRef]
- Subrahmanyam, B.; Trott, C.B.; Murty, V.S.N. Detection of Intraseasonal Oscillations in SMAP salinity in the Bay of Bengal. Geophys. Res. Lett. 2018, 45, 7057–706556. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B. Detection of intraseasonal oscillations in the Bay of Bengal using altimetry. Atmos. Sci. Lett. 2019, 20, e920. [Google Scholar] [CrossRef]
- Nam, S.; Kim, D.J.; Lee, S.W.; Kim, B.G.; Kang, K.M.; Cho, Y.K. Nonlinear internal wave spirals in the northern East China Sea. Sci. Rep. 2018, 8, 3473. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Wagawa, T.; Igeta, Y. Near-inertial internal waves and multiple-inertial oscillations trapped by negative vorticity anomaly in the central Sea of Japan. Prog. Oceanogr. 2020, 181, 102240. [Google Scholar] [CrossRef]
- Zhao, J. Dynamic state estimation with Model uncertainties using H-infinity Extended Kalman Filter. IEEE Trans. Power Syst. 2017, 33, 1099–1100. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Morlet, J. Sampling Theory and Wave Propagation. In Issues in Acoustic Signal—Image Processing and Recognition; Chen, C.H., Ed.; NATO ASI Series (Series F: Computer and System Sciences); Springer: Berlin/Heidelberg, Germany, 1983; Volume 1. [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1988, 79, 61–78. [Google Scholar] [CrossRef]
- Paris, M.L.; Subrahmanyam, B.; Trott, C.B.; Murty, V.S.N. Influence of ENSO Events on the Agulhas Leakage Region. Remote Sens. Earth Syst. Sci. 2018, 1, 79–88. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B.; Washburn, C. Investigating the Response of Temperature and Salinity in the Agulhas Current Region to ENSO Events. Remote Sens. 2021, 13, 1829. [Google Scholar] [CrossRef]
- Hayes, M.H. Statistical Digital Signal Processing and Modeling; John Wiley & Sons: Chichester, UK, 1996. [Google Scholar]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson Prentice Hall: Hoboken, NJ, USA, 2005; 427p. [Google Scholar]
- Belonenko, T.V.; Kubryakov, A.A.; Stanichny, S.V. Spectral characteristics of Rossby waves in the Northwestern Pacific based on satellite altimetry. Izv. Atmos. Ocean. Phys. 2016, 52, 920–928. [Google Scholar] [CrossRef]
- Wang, M.; Xie, S.P.; Shen, S.S.; Du, Y. Rossby and Yanai Modes of Tropical Instability Waves in the Equatorial Pacific Ocean and a Diagnostic Model for Surface Currents. J. Phys. Oceanogr. 2020, 50, 3009–3024. [Google Scholar] [CrossRef]
- Girishkumar, M.S.; Ravichandran, M.; Han, W. Observed intraseasonal thermocline variability in the Bay of Bengal. J. Geophys. Res. Oceans 2013, 118, 3336–3349. [Google Scholar] [CrossRef]
- Kiran, S.R. General Circulation and Principal Wave Modes in Andaman Sea from Observations. Indian J. Sci. Technol. 2017, 10, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, Y.; Hu, J.; Aung, C.; Lin, X.; Dong, Y. Springtime Upwelling and Its Formation Mechanism in Coastal Waters of Manaung Island, Myanmar. Remote Sens. 2020, 12, 3777. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, X.; Zhao, W.; Zhou, C.; Huang, S.; Zhang, Z.; Tian, J. Internal Solitary Waves in the Andaman Sea Revealed by Long-Term Mooring Observations. J. Phys. Oceanogr. 2021, 51, 3609–3627. [Google Scholar] [CrossRef]
- Nielsen, T.G.; Bjørnsen, P.K.; Boonruang, P.; Fryd, M.; Hansen, P.J.; Janekarn, V.; Limtrakulvong, V.; Munk, P.; Hansen, O.S.; Satapoomin, S.; et al. Hydrography, bacteria and protist communities across the continental shelf and shelf slope of the Andaman Sea (NE Indian Ocean). Mar. Ecol. Prog. Ser. 2004, 274, 69–86. [Google Scholar] [CrossRef]
- Raju, N.J.; Mihir, K.D.; Bhaskaran, P.K.; Pandey, P.C. Numerical Investigation of Bidirectional Mode-1 and Mode-2 Internal Solitary Wave generation from north and south of Batti Malv Island, Nicobar Islands, India. J. Phys. Oceanogr. 2021, 51, 47–62. [Google Scholar] [CrossRef]
- Wang, W.; Gong, Y.; Wang, Z.; Yuan, C. Numerical simulations of generation and propagation of internal tides in the Andaman Sea. Front. Mar. Sci. 2022, 9, 1047690. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, Q.; Chen, L.; Diao, Y.; Xiong, X.; Sun, J.; Lv, X. Observation of near-inertial waves in the wake of four typhoons in the northern South China Sea. Sci. Rep. 2023, 13, 3147. [Google Scholar] [CrossRef]
- Jithin, A.K.; Francis, P.A.; Unnikrishnan, A.S.; Ramakrishna, S.S.V.S. Modeling of internal tides in the western Bay of Bengal: Characteristics and energetics. J. Geophys. Res. Ocean. 2019, 124, 8720–8746. [Google Scholar] [CrossRef]
Box | Wavenumber (1/Degree) | Wavelength (km) | Frequency (1/Day) | Period (Hour) | Phase Speed (m/s) | Propagation Direction in the Box Domain |
---|---|---|---|---|---|---|
A | 2.623 | 42.318 | 1.959 | 12.251 | 0.960 | Eastward and Westward |
B | 8.393 | 13.225 | 1.794 | 13.378 | 0.275 | Northward |
C | 3.410 | 32.551 | 1.959 | 12.251 | 0.738 | Eastward and Westward |
Box | Wavenumber (1/Degree) | Wavelength (km) | Frequency (1/Day) | Period (Hour) | Phase Speed (m/s) | Dominant Propagation Direction from the Box Domain |
---|---|---|---|---|---|---|
A | 2.953 | 37.589 | 1.041 | 23.066 | 0.453 | Southwestward |
B | 3.158 | 35.149 | 1.046 | 22.956 | 0.425 | Northeastward |
C | 5.193 | 21.375 | 0.939 | 25.573 | 0.232 | Southwestward |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subrahmanyam, B.; Murty, V.S.N.; Hall, S.B.; Trott, C.B. Identification of Internal Tides in ECCO Estimates of Sea Surface Salinity in the Andaman Sea. Remote Sens. 2024, 16, 3408. https://doi.org/10.3390/rs16183408
Subrahmanyam B, Murty VSN, Hall SB, Trott CB. Identification of Internal Tides in ECCO Estimates of Sea Surface Salinity in the Andaman Sea. Remote Sensing. 2024; 16(18):3408. https://doi.org/10.3390/rs16183408
Chicago/Turabian StyleSubrahmanyam, Bulusu, V. S. N. Murty, Sarah B. Hall, and Corinne B. Trott. 2024. "Identification of Internal Tides in ECCO Estimates of Sea Surface Salinity in the Andaman Sea" Remote Sensing 16, no. 18: 3408. https://doi.org/10.3390/rs16183408
APA StyleSubrahmanyam, B., Murty, V. S. N., Hall, S. B., & Trott, C. B. (2024). Identification of Internal Tides in ECCO Estimates of Sea Surface Salinity in the Andaman Sea. Remote Sensing, 16(18), 3408. https://doi.org/10.3390/rs16183408