Glacier Changes from 1990 to 2022 in the Aksu River Basin, Western Tien Shan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Glacier Mapping
2.3.2. Pseudo-Repeat Track Method
2.3.3. Uncertainty Assessment
3. Results
3.1. Glacier Area Changes in the ARB
3.2. Glacier Elevation Changes in the ARB
3.3. Glacier Changes in Sub-Basin Scales
3.4. Changes in the Typical Glacier
4. Discussion
4.1. Uncertainty
4.2. Glacier Change in the ARB
4.3. Glacier Change Linked to Climate Change
4.4. Glacier Meltwater and Its Proportion in River Runoff
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s water tower: Past, present and future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef] [PubMed]
- Pieczonka, T.; Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Chang. 2015, 128, 1–13. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Liu, D. Glaciers in response to recent climate warming in western China. Quat. Sci. 2006, 26, 762r771. [Google Scholar]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and future climate change in northwest China. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Wortmann, M.; Krysanova, V.; Kundzewicz, Z.; Su, B.; Li, X. Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China. Hydrol. Process. 2014, 28, 6337–6350. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Li, H.; Li, K.; Liu, J.; Liu, G. Detection and attribution of trends in flood frequency under climate change in the Qilian Mountains, Northwest China. J. Hydrol. Reg. Stud. 2022, 42, 101153. [Google Scholar] [CrossRef]
- He, Y.; Yang, T.-B.; Ji, Q.; Chen, J.; Zhao, G.; Shao, W.-W. Glacier variation in response to climate change in Chinese Tianshan Mountains from 1989 to 2012. J. Mt. Sci. 2015, 12, 1189–1202. [Google Scholar] [CrossRef]
- Zhang, Q. Glacier Changes in the Tien Shan Region and Their Impact on River Runoff. Ph.D. Thesis, The University of the Chinese Academy of Sciences, Beijing, China, 2021. [Google Scholar]
- Pieczonka, T.; Bolch, T.; Junfeng, W.; Shiyin, L. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ. 2013, 130, 233–244. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, S.; Sun, W. Continuous estimates of glacier mass balance in high mountain Asia based on ICESat-1, 2 and GRACE/GRACE follow-on data. Geophys. Res. Lett. 2021, 48, e2020GL090954. [Google Scholar] [CrossRef]
- Zhang, G.; Bolch, T.; Allen, S.; Linsbauer, A.; Chen, W.; Wang, W. Glacial lake evolution and glacier–lake interactions in the Poiqu River basin, central Himalaya, 1964–2017. J. Glaciol. 2019, 65, 347–365. [Google Scholar] [CrossRef]
- Ouyang, R.; Cheng, W.; Wang, W.; Jiang, Y.; Zhang, Y.; Wang, Y. Research on runoff forecast approaches to the Aksu River basin. Sci. China Ser. D Earth Sci. 2007, 50, 16–25. [Google Scholar] [CrossRef]
- LIU, W.; Wei, W.; Yang, Q.; Tang, X.; Zhang, T. Study on climate change in the Aksu River basin since recent 40 years. Arid Zone Res. 2007, 24, 339–343. [Google Scholar] [CrossRef]
- Fu, L.-X.; Chen, Y.-N.; Li, W.-H.; He, B.; Xu, C.-C. Relation between Climate Change and Runoff Volume in the Headwatersof the Tarim River during the Last 50 Years. J. Desert Res. 2010, 30, 204–209. [Google Scholar] [CrossRef]
- Chen, A.; Li, Z.; He, J. Study of penetration depth for the SRTM C-band DEM in the glacier area over the High Mountain Asia. J. Glaciol. Geocryol. 2018, 40, 26–37. [Google Scholar]
- McMillan, M.; Shepherd, A.; Gourmelen, N.; Dehecq, A.; Leeson, A.; Ridout, A.; Flament, T.; Hogg, A.; Gilbert, L.; Benham, T. Rapid dynamic activation of a marine-based Arctic ice cap. Geophys. Res. Lett. 2014, 41, 8902–8909. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Liu, T.; Du, W. Impacts of climate change on glacial retreat during 1990–2021 in the Chinese Altay Mountains. Catena 2023, 228, 107156. [Google Scholar] [CrossRef]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Ji, Q.; Yang, T.B.; Dong, J.; He, Y. Glacier variations in response to climate change in the eastern Nyainqêntanglha Range, Tibetan Plateau from 1999 to 2015. Arct. Antarct. Alp. Res. 2018, 50, e1435844. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Kaldybayev, A.; Chen, Y.; Vilesov, E. Glacier change in the Karatal river basin, Zhetysu (Dzhungar) Alatau, Kazakhstan. Ann. Glaciol. 2016, 57, 11–19. [Google Scholar] [CrossRef]
- Flament, T.; Rémy, F. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. J. Glaciol. 2012, 58, 830–840. [Google Scholar] [CrossRef]
- McMillan, M.; Shepherd, A.; Sundal, A.; Briggs, K.; Muir, A.; Ridout, A.; Hogg, A.; Wingham, D. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 2014, 41, 3899–3905. [Google Scholar] [CrossRef]
- Wouters, B.; Martin-Español, A.; Helm, V.; Flament, T.; van Wessem, J.M.; Ligtenberg, S.R.; Van den Broeke, M.R.; Bamber, J.L. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 2015, 348, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Weiming, C.; Nan, W.; Shangmin, Z.; Yue, F.; Min, Z. Growth of the Sayram Lake and retreat of its water-supplying glaciers in the Tianshan Mountains from 1972 to 2011. J. Arid Land 2016, 8, 13–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Pang, Y.; Cui, D.; Ma, Y.; Chen, L. Accuracy Assessment of the ICESat-2/ATL06 Product in the Qilian Mountains Based on CORS and UAV Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1558–1571. [Google Scholar] [CrossRef]
- Hall, D.K.; Bayr, K.J.; Schöner, W.; Bindschadler, R.A.; Chien, J.Y. Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sens. Environ. 2003, 86, 566–577. [Google Scholar] [CrossRef]
- Williams Jr, R.; Hall, D.; Sigurƒsson, O.; Chien, J. Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajökull. Iceland 1973, 1992, 72–80. [Google Scholar] [CrossRef]
- Krysanova, V.; Wortmann, M.; Bolch, T.; Merz, B.; Duethmann, D.; Walter, J.; Huang, S.; Tong, J.; Buda, S.; Kundzewicz, Z.W. Analysis of current trends in climate parameters, river discharge and glaciers in the Aksu River basin (Central Asia). Hydrol. Sci. J. 2015, 60, 566–590. [Google Scholar] [CrossRef]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Melack, J.M. Precipitation, melt and runoff in the northern Tien Shan. J. Hydrol. 1996, 186, 229–251. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.M.; Dozier, J.; Melack, J.M.; Sexton, D.D.; Nesterov, V.N. Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif. J. Glaciol. 1997, 43, 503–512. [Google Scholar] [CrossRef]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Glob. Planet. Chang. 2007, 56, 328–340. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Li, Z.-Q.; Cao, M.; Li, H.-L. Variation of Qingbingtan glacier No. 72 in Mt. Tuomuer region during past 45 years. Sci. Geogr. Sin./Dili Kexue 2010, 30, 962–967. [Google Scholar]
- Luo, Y.; Li, H.; Li, Z. The relationship between the mass balances and meteorological factors at the glacier of No. 72, Qingbingtan, Shenqi Peak, Tuomuer Area. J. Arid Land Resour. Environ. 2012, 26, 62–67. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Li, H.; Wang, W.; Zhou, P.; Wang, L. Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China. Glob. Planet. Chang. 2017, 159, 11–24. [Google Scholar] [CrossRef]
- Yanjun, C.; Mingjun, Z.; Zhongqin, L.; Shuang, J.; Wenbin, W.; Shengjie, W. Understanding the mass balance characteristics of Qingbingtan Glacier No. 72 during the period of 2008–2014. J. Glaciol. Geocryol. 2020, 42, 318–331. [Google Scholar] [CrossRef]
- Xing, W.; Li, Z.; Zhang, H.; Zhang, M.; Liang, P.; Mu, J. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959. Acta Geogr. Sin. 2017, 72, 1594–1605. [Google Scholar] [CrossRef]
- Oerlemans, J. Quantifying global warming from the retreat of glaciers. Science 1994, 264, 243–245. [Google Scholar] [CrossRef]
- Huai, B.; Li, Z.; Sun, M.; Zhou, P. Glaciers change in the Tailan River watershed in the last 40 years. Sci. Geogr. Sin. 2014, 34, 229–236. [Google Scholar]
- Wang, P.; Li, H.; Li, Z.; Yu, F.; He, J.; Dai, Y.; Wang, F.; Chen, P. Cryosphere changes and their impacts on regional water resources in the Chinese Altai Mountains from 2000 to 2021. Catena 2024, 235, 107644. [Google Scholar] [CrossRef]
- Li, C.; Yang, T.; Tian, H. Variation of west Kunlun mountains glacier during 1990–2011. Prog. Geogr. 2013, 32, 548–559. [Google Scholar]
- Tao, L.; Chao, L.; Xiang, S.; Liming, J.; Hansheng, W.; Gang, L.; Hui, L. Monitoring glacier mass balance of the West Kunlun Mountains over the past 20 years by bistatic InSAR and ICESat-2 altimetry measurements. Acta Geod. Cartogr. Sin. 2023, 52, 917. [Google Scholar]
- Yan, L.; Wang, J.; Shao, D. Glacier mass balance in the manas river using ascending and descending pass of sentinel 1a/1b data and srtm dem. Remote Sens. 2022, 14, 1506. [Google Scholar] [CrossRef]
- He, J.; Wang, N.; Chen, A.a.; Yang, X.; Hua, T. Glacier changes in the Qilian Mountains, Northwest China, between the 1960s and 2015. Water 2019, 11, 623. [Google Scholar] [CrossRef]
- Pan, B.; Zhang, G.; Wang, J.; Cao, B.; Geng, H.; Zhang, C.; Ji, Y. Glacier changes from 1966–2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai-Tibetan Plateau and their climatic forcing. Cryosphere 2012, 6, 1087–1101. [Google Scholar] [CrossRef]
- IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report: Climate Change 2013: The Physical Science Basis, Summary for Policymakers; IPCC UN: Geneva, Switzerland, 2013. [Google Scholar]
- Radić, V.; Hock, R.C. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat. Geosci. 2011, 4, 91–94. [Google Scholar] [CrossRef]
- Mo, Q.; Liu, S.; Ma, Y.; Li, M. Glacier elevation changes monitoring in Nyainq(e)ntanglha Range using ICESat. Sci. Surv. Mapp. 2018, 43, 59–65. [Google Scholar] [CrossRef]
- Ren, S.; Menenti, M.; Jia, L.; Zhang, J.; Zhang, J.; Li, X. Glacier mass balance in the Nyainqentanglha Mountains between 2000 and 2017 retrieved from ZiYuan-3 stereo images and the SRTM DEM. Remote Sens. 2020, 12, 864. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, J.; Qin, D.; Qin, X. Regional glacier volume changes derived from satellite data: A case study in the Qilian Mountains. J. Glaciol. Geocryol. 2013, 35, 583–592. [Google Scholar]
- Jiang, Z.; Liu, S.; Guo, W.; Li, J.; Long, S.; Wang, X.; Wei, J.; Zhang, Z.; Wu, K. Recent surface elevation changes of three representative glaciers in Ányêmaqên Mountains, source region of Yellow River. J. Glaciol. Geocryol. 2018, 40, 231–237. [Google Scholar]
- Liu, L.; Jiang, L.; Zhang, Z.; Wang, H.; Ding, X. Recent accelerating glacier mass loss of the Geladandong Mountain, Inner Tibetan Plateau, estimated from ZiYuan-3 and TanDEM-X measurements. Remote Sens. 2020, 12, 472. [Google Scholar] [CrossRef]
- Tian, H.-Z.; Yang, T.-B.; Lv, H.; Li, C.-X.; He, Y.-B. Climate change and glacier area variations in China during the past half century. J. Mt. Sci. 2016, 13, 1345–1357. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Koboltschnig, G.; Schöner, W. The relevance of glacier melt in the water cycle of the Alps: The example of Austria. Hydrol. Earth Syst. Sci. 2011, 15, 2039–2048. [Google Scholar] [CrossRef]
- Bolch, T.; Duethmann, D.; Wortmann, M.; Liu, S.; Disse, M. Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central Asia). Int. J. Sustain. Dev. World Ecol. 2022, 29, 209–218. [Google Scholar] [CrossRef]
- Zhao, Q.; Ye, B.; Ding, Y.; Zhang, S.; Yi, S.; Wang, J.; Shangguan, D.; Zhao, C.; Han, H. Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environ. Earth Sci. 2013, 68, 87–101. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Fu, Y. Runoff change and its influencing factors under changing environment in Tarim River. Bull. Soil Water Conserv. 2010, 30, 99–109. [Google Scholar] [CrossRef]
Year | Data | Path/Row | Sensor | Spatial Resolution |
---|---|---|---|---|
1990 | 22 August 1989 | 147/31 | Landsat TM | 30 m |
19 August 1991 | 148/31 | |||
25 September 1993 | 148/31 | |||
20 September 1990 | 148/32 | |||
7 August 1990 | 149/31 | |||
7 August 1990 | 149/32 | |||
2000 | 26 August 1999 | 147/31 | Landsat ETM+ | |
26 August 1999 | 148/31 | |||
22 August 1998 | 148/32 | Landsat TM | 30 m | |
23 August 1996 | 149/31 | |||
29 August 1998 | 149/32 | |||
2010 | 3 August 2011 | 147/31 | Landsat TM | 30 m |
11 September 2011 | 148/31 | |||
11 September 2011 | 148/32 | |||
27 August 2009 | 149/31 | |||
16 July 2011 | 149/32 | |||
2022 | 26 July 2022 | T44TKL | Sentinel MSI | 20 m |
26 July 2022 | T44TKM | |||
26 July 2022 | T44TLM | |||
26 July 2022 | T44TMM | |||
27 September 2022 | T43TEF | |||
27 September 2022 | T43TFF |
Year | Number | Area (km2) | Variation (km2) | Variation Percentage (%) | APAC (%·a−1) |
---|---|---|---|---|---|
1990 | 2571 | 3301.96 ± 6.43 | - | - | - |
2000 | 2527 | 3208.51 ± 6.32 | −93.45 | −2.83 | −0.28 |
2010 | 2485 | 3107.13 ± 6.21 | −101.39 | −3.16 | −0.32 |
2022 | 2430 | 2992.56 ± 0.73 | −114.57 | −3.69 | −0.31 |
Total | −141 | - | −309.40 | −9.37 | −0.29 |
Glacier Size (km2) | <0.1 | 0.1–0.5 | 0.5–1 | 1–2 | 2–5 | 5–10 | 10–20 | 20–30 | 30–50 | >50 |
---|---|---|---|---|---|---|---|---|---|---|
Number change | 145 | −141 | −51 | −61 | −20 | −11 | −4 | 3 | −2 | 0 |
Number change (%) | 27 | −12 | −14 | −27 | −15 | −18 | −22 | 60 | −75 | 0 |
Area change (%) | 78 | −7 | −8 | −20 | −9 | −17 | −18 | 68 | −14 | −9 |
Sub-Basin | Glacier Number | Glacier Area Proportion (%) | ||||||
---|---|---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2022 | 1990 | 2000 | 2010 | 2022 | |
TRB | 860 | 866 | 849 | 809 | 3.42 | 3.39 | 3.18 | 3.11 |
KRB | 1711 | 1661 | 1636 | 1621 | 11.51 | 11.13 | 10.86 | 10.42 |
Sub-Basin | Changes in Glacier Elevation (m·a−1) | Changes in Mass Balance (m w.e.a−1) | ||
---|---|---|---|---|
2003–2009 | 2010–2021 | 2003–2009 | 2010–2021 | |
TRB | −0.32 ± 0.10 | −0.36 ± 0.11 | −0.27 ± 0.09 | −0.31 ± 0.09 |
KRB | −0.38 ± 0.12 | −0.46 ± 0.15 | −0.32 ± 0.10 | −0.39 ± 0.13 |
Year | Area (km2) | Variation (km2) | Variation Percentage (%) | APAC (%·a−1) |
---|---|---|---|---|
1990 | 6.96 | - | - | - |
2000 | 6.71 | −0.25 | −3.59 | −0.36 |
2010 | 6.60 | −0.11 | −1.64 | −0.16 |
2022 | 6.02 | −0.58 | −8.79 | −0.73 |
Total | - | −0.94 | −13.51 | −0.44 |
Region | Period | Area Variation Percentage (%) | APAC (%·a−1) | Elevation Change Rates (m·a−1) | Source |
---|---|---|---|---|---|
Tien Shan | 1959–2010 | −18.41 | −0.36 | - | [40] |
2003–2019 | - | - | −0.45 ± 0.10 | [12] | |
2000–2016 | - | - | −0.33 ± 0.24 | [11] | |
Western Tien Shan | 1960s–2000 | −20.00 | - | - | [1] |
2000–2012 | −8.10 | −0.68 | - | ||
ARB | 1975–2016 | −25.88 | −0.63 | - | [9] |
1990–2016 | −6.50 | −0.25 | - | [9] | |
1975–1999 | - | - | −0.35 ± 0.34 | [2] | |
1990–2022 | −9.37 | −0.29 | This study | ||
2003–2021 | - | - | −0.38 ± 0.12 | ||
TRB | 1990–2016 | −6.76 | −0.26 | - | [9] |
1990–2022 | −8.96 | −0.28 | This study | ||
2003–2021 | - | - | −0.34 ± 0.11 | ||
KRB | 1990–2016 | −6.24 | −0.24 | - | [9] |
1990–2022 | −9.44 | −0.30 | This study | ||
2003–2021 | - | - | −0.42 ± 0.14 | ||
Tailan River Basin | 1972–2011 | −50.06 | −0.29 | - | [42] |
Region | Period | Area Variation Percentage (%) | APAC (%·a−1) | Elevation Change Rates (m·a−1) | Source |
---|---|---|---|---|---|
Altai | 1990–2021 | −17.10 | −0.55 | - | [19] |
1976–2009 | - | - | −0.44 | [43] | |
Kunlun Mountain Pass | 1976–2011 | −12 | −0.34 | - | [44] |
West Kunlun Mountain | 2013–2019 | - | - | 0.23 ± 0.06 | [45] |
Manas River Basin | 2000–2020 | - | - | −0.18 ± 0.10 | [46] |
Qilian Mountains | 1960–2015 | −20.55 | −0.37 | - | [47] |
Sensitivity to Driving Factors | Accumulated Temperature (°C) | Precipitation (mm) | Ablation-Phase Accumulated Temperature (°C) | Cold Season Precipitation (mm) |
---|---|---|---|---|
Mass balance (m w.e.a−1) | −0.27 ± 0.09 | −0.32 ± 0.10 | −0.33 ± 0.10 | +0.27 ± 0.08 |
Volume (106 m3 w.e. a−1) | −1453.94 ± 0.82 | −1708.38 ± 0.96 | −1767.28 ± 0.99 | +1453.94 ± 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, P.; Pan, X.; Liu, T.; Huang, Y.; Chen, X.; Wang, X.; Chen, P.; Akmalov, S. Glacier Changes from 1990 to 2022 in the Aksu River Basin, Western Tien Shan. Remote Sens. 2024, 16, 1751. https://doi.org/10.3390/rs16101751
Ren P, Pan X, Liu T, Huang Y, Chen X, Wang X, Chen P, Akmalov S. Glacier Changes from 1990 to 2022 in the Aksu River Basin, Western Tien Shan. Remote Sensing. 2024; 16(10):1751. https://doi.org/10.3390/rs16101751
Chicago/Turabian StyleRen, Pei, Xiaohui Pan, Tie Liu, Yue Huang, Xi Chen, Xiaofei Wang, Ping Chen, and Shamshodbek Akmalov. 2024. "Glacier Changes from 1990 to 2022 in the Aksu River Basin, Western Tien Shan" Remote Sensing 16, no. 10: 1751. https://doi.org/10.3390/rs16101751
APA StyleRen, P., Pan, X., Liu, T., Huang, Y., Chen, X., Wang, X., Chen, P., & Akmalov, S. (2024). Glacier Changes from 1990 to 2022 in the Aksu River Basin, Western Tien Shan. Remote Sensing, 16(10), 1751. https://doi.org/10.3390/rs16101751