Integrating GRACE/GRACE Follow-On and Wells Data to Detect Groundwater Storage Recovery at a Small-Scale in Beijing Using Deep Learning
Abstract
:1. Introduction
- Three deep learning (DL) models (LSTM/GRU/MLP) were employed to reconstruct the six types of GRACE-derived TWSAs for the period from January 2004 to December 2021 in Beijing with a spatial resolution of 0.5° × 0.5°.
- Three strategies were explored to incorporate the in-situ data: for Method 1, we treated only the in-situ data as validation data of the downscaled results; for Method 2, we used the in-situ data to identify the downscaling target variables that correlate best with the in-situ data; for Method 3, we used the in-situ data as the downscaling target variable. The optimal DL model, i.e., that with the best performance in step 1, was used to downscale the 0.5° × 0.5° GRACE-derived GWSAs to a higher resolution of 0.25° × 0.25°.
- The spatiotemporal evolution of GRACE-derived GWSAs in Beijing before and after the implementation of the SNDWP-MR were analyzed and we quantified the contribution of the SNDWP-MR to the spatial evolution of the downscaled GRACE-derived GWSAs using the RF model.
2. Datasets
2.1. GRACE-Derived TWSAs
2.2. Precipitation (P)
2.3. Evapotranspiration (ET)
2.4. GLDAS
2.5. Well Data
3. Methodology
3.1. Deep Learning
3.2. Reconstruction of GRACE-Derived TWSAs
3.3. GWSA in Beijing and Its Downscaled Processing
3.3.1. Determine GWSA Based on Well Data
3.3.2. Downscale of GRACE-Derived GWSA
3.4. Random Forest (RF)
4. Results
4.1. Reconstruction of GRACE-Dervied TWSAs
4.2. Downscaling of GRACE-Derived GWSAs
4.3. Spatial and Temporal Analysis of GWSAs before and after SNDWP-MR
4.4. The Influence Factors on GWSA
5. Discussion
6. Conclusions
- Six different GRACE-derived TWSA time series were reconstructed for Beijing from 2004 to 2021, with the LSTM model performing the best, followed by GRU with slightly lower performance, and MLP, which performed the worst.
- On the regional average scale, the trends of GRACE-derived GWSAs in Beijing, estimated based on the three downscaling strategies, are consistent with the trend of measured well data, although the trend rates differ slightly. Before the implementation of SNDWP-MR, the trends all showed decreasing levels, but the rates of decline differed. The downscaled GRACE-derived GWSA based on Method 3 was the closest to the measured well data, at −17.68 ± 4.46 mm/y. After the implementation of the SNDWP-MR, the trends all showed recovering levels; the GRACE-derived GWSA based on Method 3 was also the best, with an increased rate of 10.00 ± 4.77 mm/y.
- Before the implementation of SNDWP-MR, the GWSA in Beijing showed a decreasing trend, to which human factors contributed 69.30% (21.40% for domestic water use and 16.10% for agricultural water use), while climate factors contributed 30.70%. After the implementation of SNDWP-MR, the GWSA showed obvious recovery, to which human factors contributed 57.70% (19.30% attributable to agricultural water use and 18.30% to the SNDWP-MR).
- The contributions of the GWSA before and after the implementation of SNDWP-MR showed that SNDWP-MR was effective in alleviating groundwater depletion in Beijing.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-Based Measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Siebert, S.; Henrich, V.; Frenken, K.; Burke, J. Update of the Digital Global Map of Irrigation Areas to Version 5; Rheinische Friedrich Wilhelms-Universität: Bonn, Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global Depletion of Groundwater Resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Zektser, I.S.; Everett, L.G. Groundwater Resources of the World and Their Use; International hydrological programme; UNESCO: Paris, France, 2004; ISBN 978-92-9220-007-7. [Google Scholar]
- Long, D.; Yang, W.; Scanlon, B.R.; Zhao, J.; Liu, D.; Burek, P.; Pan, Y.; You, L.; Wada, Y. South-to-North Water Diversion Stabilizing Beijing’s Groundwater Levels. Nat. Commun. 2020, 11, 3665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fei, Y.; Chen, Z.; Zhao, Z.; Xie, Z.; Wang, Y. Others Survey and Evaluation of Groundwater Sustainable Utilization in North China Plain; Geological House: Beijing, China, 2009. [Google Scholar]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater Depletion and Sustainability of Irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [PubMed]
- Döll, P.; Müller Schmied, H.; Schuh, C.; Portmann, F.T.; Eicker, A. Global-Scale Assessment of Groundwater Depletion and Related Groundwater Abstractions: Combining Hydrological Modeling with Information from Well Observations and GRACE Satellites. Water Resour. Res. 2014, 50, 5698–5720. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hu, L.; Yao, L.; Yin, W. Surrogate Models for Sub-Region Groundwater Management in the Beijing Plain, China. Water 2017, 9, 766. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The Global Groundwater Crisis. Nat. Clim. Change 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Chen, J.; Famigliett, J.S.; Scanlon, B.R.; Rodell, M. Groundwater Storage Changes: Present Status from GRACE Observations. Surv. Geophys. 2016, 37, 397–417. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, J.; Guo, S.; Yin, W.; Rao, W.; Chao, N.; Abhishek. Using GRACE to Detect Groundwater Variation in North China Plain after South–North Water Diversion. Groundwater 2022, 61, 402–420. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to Understanding Climate Change. Nat. Clim. Change 2019, 9, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Wang, C.; Dapeng, M.; Zhong, M.; Zhong, Y.; Xu, H. Groundwater Storage Variations in the North China Plain from GRACE with Spatial Constraints. Chin. J. Geophys. Acta Geophys. Sin. 2017, 60, 1630–1642. [Google Scholar] [CrossRef]
- Zhang, C.; Duan, Q.; Yeh, P.J.-F.; Pan, Y.; Gong, H.; Moradkhani, H.; Gong, W.; Lei, X.; Liao, W.; Xu, L.; et al. Sub-Regional Groundwater Storage Recovery in North China Plain after the South-to-North Water Diversion Project. J. Hydrol. 2021, 597, 126156. [Google Scholar] [CrossRef]
- Guo, Y.; Gan, F.; Yan, B.; Bai, J.; Wang, F.; Jiang, R.; Xing, N.; Liu, Q. Evaluation of Groundwater Storage Depletion Using GRACE/GRACE Follow-On Data with Land Surface Models and Its Driving Factors in Haihe River Basin, China. Sustainability 2022, 14, 1108. [Google Scholar] [CrossRef]
- Li, H.; Pan, Y.; Huang, Z.; Zhang, C.; Xu, L.; Gong, H.; Famiglietti, J.S. A New GRACE Downscaling Approach for Deriving High-Resolution Groundwater Storage Changes Using Ground-Based Scaling Factors. ESS Open Arch. 2023. [Google Scholar] [CrossRef]
- Seyoum, W.; Kwon, D.; Milewski, A. Downscaling GRACE TWSA Data into High-Resolution Groundwater Level Anomaly Using Machine Learning-Based Models in a Glacial Aquifer System. Remote Sens. 2019, 11, 824. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J.; Milly, P.C.D. Estimated Accuracies of Regional Water Storage Variations Inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2003, 39, 1223. [Google Scholar] [CrossRef]
- Richey, A.S.; Thomas, B.F.; Lo, M.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying Renewable Groundwater Stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; de Linage, C.R.; Rodell, M. Satellites Measure Recent Rates of Groundwater Depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38, L046442. [Google Scholar] [CrossRef]
- Chao, N.; Luo, Z.; Wang, Z.; Jin, T. Retrieving Groundwater Depletion and Drought in the Tigris-Euphrates Basin Between 2003 and 2015. Groundwater 2018, 56, 770–782. [Google Scholar] [CrossRef]
- Yin, W.; Han, S.-C.; Zheng, W.; Yeo, I.-Y.; Hu, L.; Tangdamrongsub, N.; Ghobadi-Far, K. Improved Water Storage Estimates within the North China Plain by Assimilating GRACE Data into the CABLE Model. J. Hydrol. 2020, 590, 125348. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Knudsen, D.; Haagmans, R. Swarm—An Earth Observation Mission Investigating Geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Mo, S.; Zhong, Y.; Forootan, E.; Mehrnegar, N.; Yin, X.; Wu, J.; Feng, W.; Shi, X. Bayesian Convolutional Neural Networks for Predicting the Terrestrial Water Storage Anomalies during GRACE and GRACE-FO Gap. J. Hydrol. 2022, 604, 127244. [Google Scholar] [CrossRef]
- Li, F.; Kusche, J.; Rietbroek, R.; Wang, Z.; Forootan, E.; Schulze, K.; Lück, C. Comparison of Data-Driven Techniques to Reconstruct (1992–2002) and Predict (2017–2018) GRACE-Like Gridded Total Water Storage Changes Using Climate Inputs. Water Resour. Res. 2020, 56, e2019WR026551. [Google Scholar] [CrossRef]
- Long, D.; Shen, Y.; Sun, A.; Hong, Y.; Longuevergne, L.; Yang, Y.; Li, B.; Chen, L. Drought and Flood Monitoring for a Large Karst Plateau in Southwest China Using Extended GRACE Data. Remote Sens. Environ. 2014, 155, 145–160. [Google Scholar] [CrossRef]
- Uz, M.; Atman, K.G.; Akyilmaz, O.; Shum, C.K.; Keleş, M.; Ay, T.; Tandoğdu, B.; Zhang, Y.; Mercan, H. Bridging the Gap between GRACE and GRACE-FO Missions with Deep Learning Aided Water Storage Simulations. Sci. Total Environ. 2022, 830, 154701. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Pal, S.K.; Mitra, S. Multilayer Perceptron, Fuzzy Sets, and Classification. IEEE Trans. Neural Netw. 1992, 3, 683–697. [Google Scholar] [CrossRef]
- Yin, W.; Hu, L.; Zhang, M.; Wang, J.; Han, S.-C. Statistical Downscaling of GRACE-Derived Groundwater Storage Using ET Data in the North China Plain. J. Geophys. Res. Atmos. 2018, 123, 5973–5987. [Google Scholar] [CrossRef]
- Yin, W.; Zhang, G.; Han, S.-C.; Yeo, I.-Y.; Zhang, M. Improving the Resolution of GRACE-Based Water Storage Estimates Based on Machine Learning Downscaling Schemes. J. Hydrol. 2022, 613, 128447. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, W.; Yin, W.; Kang, G.; Huang, Q.; Shen, Y. Improving the Resolution of GRACE/InSAR Groundwater Storage Estimations Using a New Subsidence Feature Weighted Combination Scheme. Water 2023, 15, 1017. [Google Scholar] [CrossRef]
- Arshad, A.; Zhang, W.; Zhang, Z.; Wang, S.; Zhang, B.; Cheema, M.J.M.; Shalamzari, M.J. Reconstructing High-Resolution Gridded Precipitation Data Using an Improved Downscaling Approach over the High Altitude Mountain Regions of Upper Indus Basin (UIB). Sci. Total Environ. 2021, 784, 147140. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pham, Q.B.; Rahaman, M.; Dang, T.D.; Anh, D.T. Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sens. 2021, 13, 3513. [Google Scholar] [CrossRef]
- Chen, L.; He, Q.; Liu, K.; Li, J.; Jing, C. Downscaling of GRACE-Derived Groundwater Storage Based on the Random Forest Model. Remote Sens. 2019, 11, 2979. [Google Scholar] [CrossRef]
- Milewski, A.M.; Thomas, M.B.; Seyoum, W.M.; Rasmussen, T.C. Spatial Downscaling of GRACE TWSA Data to Identify Spatiotemporal Groundwater Level Trends in the Upper Floridan Aquifer, Georgia, USA. Remote Sens. 2019, 11, 2756. [Google Scholar] [CrossRef]
- Ning, S.; Ishidaira, H.; Wang, J. Statistical Downscaling of Grace-Derived Terrestrial Water Storage Using Satellite and GLDAS Products. J. JSCE Ser. B1 2014, 70, I_133–I_138. [Google Scholar] [CrossRef]
- Sahour, H.; Sultan, M.; Vazifedan, M.; Abdelmohsen, K.; Karki, S.; Yellich, J.; Gebremichael, E.; Alshehri, F.; Elbayoumi, T. Statistical Applications to Downscale GRACE-Derived Terrestrial Water Storage Data and to Fill Temporal Gaps. Remote Sens. 2020, 12, 533. [Google Scholar] [CrossRef]
- Sun, J.; Hu, L.; Chen, F.; Sun, K.; Yu, L.; Liu, X. Downscaling Simulation of Groundwater Storage in the Beijing, Tianjin, and Hebei Regions of China Based on GRACE Data. Remote Sens. 2023, 15, 1490. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.-F.; Li, X.; Zhou, D.; Zhao, W. Subregional-Scale Groundwater Depletion Detected by GRACE for Both Shallow and Deep Aquifers in North China Plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [Google Scholar] [CrossRef]
- Liu, R.; Zhong, B.; Li, X.; Zheng, K.; Liang, H.; Cao, J.; Yan, X.; Lyu, H. Analysis of Groundwater Changes (2003–2020) in the North China Plain Using Geodetic Measurements. J. Hydrol. Reg. Stud. 2022, 41, 101085. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Han, S.-C.; Tian, S.; Schmied, H.M.; Sutanudjaja, E.H.; Ran, J.; Feng, W. Evaluation of Groundwater Storage Variations Estimated from GRACE Data Assimilation and State-of-the-Art Land Surface Models in Australia and the North China Plain. Remote Sens. 2018, 10, 483. [Google Scholar] [CrossRef]
- Tao, T.; Xie, G.; He, R.; Tao, Z.; Ma, M.; Gao, F.; Zhu, Y.; Qu, X.; Li, S. Groundwater Storage Variation Characteristics in North China before and after the South-to-North Water Diversion Project Based on GRACE and GPS Data. Water Resour. 2023, 50, 58–67. [Google Scholar] [CrossRef]
- Feng, W. GRAMAT: A Comprehensive Matlab Toolbox for Estimating Global Mass Variations from GRACE Satellite Data. Earth Sci. Inform. 2019, 12, 389–404. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, W.; Yin, W.; Li, X.; Ma, M. Improving Spatial Resolution of GRACE-Derived Water Storage Changes Based on Geographically Weight Regression Downscaled Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4261–4275. [Google Scholar] [CrossRef]
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s Oblateness. J. Geophys. Res. Solid Earth 2013, 118, 740–747. [Google Scholar] [CrossRef]
- Geruo, A.; Wahr, J.; Zhong, S. Computations of the Viscoelastic Response of a 3-D Compressible Earth to Surface Loading: An Application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 2012, 192, 557–572. [Google Scholar] [CrossRef]
- Paulson, A.; Zhong, S.; Wahr, J. Limitations on the Inversion for Mantle Viscosity from Postglacial Rebound. Geophys. J. Int. 2007, 168, 1195–1209. [Google Scholar] [CrossRef]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.R.; Longuevergne, L. Global Analysis of Spatiotemporal Variability in Merged Total Water Storage Changes Using Multiple GRACE Products and Global Hydrological Models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-Based Land Evaporation and \hack\newlineroot-Zone Soil Moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global Land-Surface Evaporation Estimated from Satellite-Based Observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- The MathWorks, Inc. MATLAB, Version 9.11.0 (R2021b); The MathWorks, Inc.: Natick, MA, USA, 2022. [Google Scholar]
- Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil Organic Carbon Concentrations and Stocks on Barro Colorado Island—Digital Soil Mapping Using Random Forests Analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Graeler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PEERJ 2018, 6, e5518. [Google Scholar] [CrossRef] [PubMed]
- Kuehnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Improving the Accuracy of Rainfall Rates from Optical Satellite Sensors with Machine Learning—A Random Forests-Based Approach Applied to MSG SEVIRI. Remote Sens. Environ. 2014, 141, 129–143. [Google Scholar] [CrossRef]
- Armonk, N.I.C. SPSS, Version 28.0 (R2021); IBM: Armonk, NY, USA, 2021. [Google Scholar]
- Humphrey, V.; Gudmundsson, L. GRACE-REC: A Reconstruction of Climate-Driven Water Storage Changes over the Last Century. Earth Syst. Sci. Data 2019, 11, 1153–1170. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, B.; Yao, Y.; Wu, W.; Meng, G.; Chen, Q. Geodetic and Hydrological Measurements Reveal the Recent Acceleration of Groundwater Depletion in North China Plain. J. Hydrol. 2019, 575, 1065–1072. [Google Scholar] [CrossRef]
- Li, P.; Zha, Y.; Shi, L.; Zhong, H. Identification of the Terrestrial Water Storage Change Features in the North China Plain via Independent Component Analysis. J. Hydrol. Reg. Stud. 2021, 38, 100955. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M.; Kumar, S.; Beaudoing, H.K.; Getirana, A.; Zaitchik, B.F.; Goncalves, L.G.; Cossetin, C.; Bhanja, S.; Mukherjee, A.; et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour. Res. 2019, 55, 7564–7586. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Bishop, C. Pattern Recognition and Machine Learning (Information Science and Statistics; Springer: New York, NY, USA, 2007. [Google Scholar]
- Kumar, K.S.; AnandRaj, P.; Sreelatha, K.; Sridhar, V. Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins. Sci. Total Environ. 2023, 857, 159289. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.J.A.; Linoff, G.S. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
Variables | Dataset | Time Span | Temporal Resolution | Spatial Resolution | Data Source |
---|---|---|---|---|---|
CSR Mascon TWSA | CSR RL06 | 2002.4~2022.6 | Monthly | 0.25° × 0.25° | https://www2.csr.utexas.edu/grace/RL06_mascons.html (accessed on 5 October 2023) |
GSFC Mascon TWSA | GSFC RL06 | 2002.4~2022.6 | Monthly | 1° × 1° | https://earth.gsfc.nasa.gov/geo/data/grace-mascons (accessed on 5 October 2023) |
JPL Mascon TWSA | JPL RL06 | 2002.4~2022.6 | Monthly | 0.5° × 0.5° | https://grace.jpl.nasa.gov/data/get-data/ (accessed on 5 October 2023) |
CSR SH TWSA | CSR RL06 | 2002.4~2022.6 | Monthly | 0.25° × 0.25° | https://grace.jpl.nasa.gov/data/choosing-a-solution/ (accessed on 5 October 2023) |
GFZ SH TWSA | GFZ RL06 | 2002.4~2022.6 | Monthly | 0.25° × 0.25° | https://www.gfz-potsdam.de/grace (accessed on 5 October 2023) |
JPL SH TWSA | JPL RL06 | 2002.4~2022.6 | Monthly | 0.25° × 0.25° | https://grace.jpl.nasa.gov/data/get-data/ (accessed on 5 October 2023) |
ERA5-Land Precipitation | ERA5-Land | 1950.1~Present | Monthly | 0.1° × 0.1° | https://cds.climate.copernicus.eu/ (accessed on 5 October 2023) |
GLEAM Evapotranspiration | GLEAM v3 | 1980.1~2021.12 | Monthly | 0.25° × 0.25° | https://www.gleam.eu/ (accessed on 5 October 2023) |
CLSM TWSA | CLSM L4 | 2003.2~2022.12 | Daily | 0.25° × 0.25° | https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023) |
CLSM Runoff | CLSM L4 | 2003.2~2022.12 | Daily | 0.25° × 0.25° | https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023) |
CLSM Temperature | CLSM L4 | 2003.2~2022.12 | Daily | 0.25° × 0.25° | https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023) |
CLSM SMS | CLSM L4 | 2003.2~2022.12 | Daily | 0.25° × 0.25° | https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023) |
CLSM CNS | CLSM L4 | 2003.2~2022.12 | Daily | 0.25° × 0.25° | https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023) |
CLSM SNS | CLSM L4 | 2003.2~2022.12 | Daily | 0.25° × 0.25° | https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023) |
In situ Groundwater Level | \ | 2005.1~2016.12 2004~2021 | Monthly/Yearly | 41 Wells | https://swj.beijing.gov.cn/ (accessed on 5 October 2023) https://en.cgs.gov.cn/ (accessed on 5 October 2023) |
GRACE | Errors | Train Period (2004~2015) | Test Period (2016~2021) |
---|---|---|---|
CSR Mascon | CC | 0.99 | 0.88 |
NSE | 0.98 | 0.76 | |
RMSE (mm) | 6.16 | 14.46 | |
GSFC Mascon | CC | 0.97 | 0.84 |
NSE | 0.98 | 0.71 | |
RMSE (mm) | 7.83 | 16.16 | |
JPL Mascon | CC | 0.99 | 0.83 |
NSE | 0.98 | 0.68 | |
RMSE (mm) | 8.00 | 14.16 | |
CSR SH | CC | 0.96 | 0.86 |
NSE | 0.93 | 0.73 | |
RMSE (mm) | 8.77 | 14.68 | |
GFZ SH | CC | 0.95 | 0.87 |
NSE | 0.91 | 0.72 | |
RMSE (mm) | 12.56 | 14.05 | |
JPL SH | CC | 0.99 | 0.84 |
NSE | 0.98 | 0.70 | |
RMSE (mm) | 4.27 | 13.78 |
Trend (mm/y) * | Method 1 | Method 2 | Method 3 |
---|---|---|---|
Period I (2004~2014) | −4.07 ± 1.60 | −4.39 ± 2.48 | −17.68 ± 4.46 |
Period II (2015~2021) | 5.04 ± 5.00 | 20.25 ± 7.40 | 10.00 ± 4.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Chao, N.; Yang, Y.; Wang, J.; Yin, W.; Xie, J.; Duan, G.; Zhang, M.; Wan, X.; Li, F.; et al. Integrating GRACE/GRACE Follow-On and Wells Data to Detect Groundwater Storage Recovery at a Small-Scale in Beijing Using Deep Learning. Remote Sens. 2023, 15, 5692. https://doi.org/10.3390/rs15245692
Hu Y, Chao N, Yang Y, Wang J, Yin W, Xie J, Duan G, Zhang M, Wan X, Li F, et al. Integrating GRACE/GRACE Follow-On and Wells Data to Detect Groundwater Storage Recovery at a Small-Scale in Beijing Using Deep Learning. Remote Sensing. 2023; 15(24):5692. https://doi.org/10.3390/rs15245692
Chicago/Turabian StyleHu, Ying, Nengfang Chao, Yong Yang, Jiangyuan Wang, Wenjie Yin, Jingkai Xie, Guangyao Duan, Menglin Zhang, Xuewen Wan, Fupeng Li, and et al. 2023. "Integrating GRACE/GRACE Follow-On and Wells Data to Detect Groundwater Storage Recovery at a Small-Scale in Beijing Using Deep Learning" Remote Sensing 15, no. 24: 5692. https://doi.org/10.3390/rs15245692
APA StyleHu, Y., Chao, N., Yang, Y., Wang, J., Yin, W., Xie, J., Duan, G., Zhang, M., Wan, X., Li, F., Wang, Z., & Ouyang, G. (2023). Integrating GRACE/GRACE Follow-On and Wells Data to Detect Groundwater Storage Recovery at a Small-Scale in Beijing Using Deep Learning. Remote Sensing, 15(24), 5692. https://doi.org/10.3390/rs15245692