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Abstract: Groundwater depletion is adversely affecting Beijing’s ecology and environment. However,
the effective execution of the South-to-North Water Diversion Project’s middle route (SNDWP-
MR) is anticipated to mitigate Beijing’s groundwater depletion. Here, we propose a robust hybrid
statistical downscaling method aimed at enhancing the capability of the Gravity Recovery and
Climate Experiment (GRACE) to detect the small-scale groundwater storage anomaly (GWSA) in
Beijing. We used three deep learning (DL) methods to reconstruct the 0.5◦ × 0.5◦ terrestrial water
storage anomaly (TWSA) between 2004 and 2021. Moreover, multiple processing strategies were
used to downscale the GWSA to 0.25◦ from 2004 to 2021 by integrating wells and GRACE/GRACE
follow-on data from the optimal DL model. Additionally, we analyzed the spatiotemporal evolution
trends of GW in Beijing before and after the implementation of the SNDWP-MR. The results show
that the long short-term memory model delivers optimal performance in the TWSA reconstruction of
Beijing, with the correlation coefficient (CC), Nash–Sutcliffe coefficient (NSE), and root mean square
error (RMSE) being 0.98, 0.96, and 10.19 mm, respectively. The GWSA before and after downscaling
is basically consistent with wells data, but the CC and RMSE of downscaling the GWSA from 2004 to
2021 are improving by 34% and 31%, respectively. Before the SNDWP-MR (2004–2014), the trend of
GWSA in Beijing was −17.68 ± 4.46 mm/y, with a human contribution of 69.30%. After SNDWP-MR
(2015–2021), GWSA gradually increased by 10.00 mm per year, with the SNDWP-MR accounting for
18.30%. This study delivers a technical innovation reference for dynamically monitoring a small-scale
GWSA from GRACE/GRACE-FO data.

Keywords: GWSA; downscale; deep learning; GRACE/GRACE-FO; Beijing; SNDWP-MR

1. Introduction

Freshwater resources are crucial controlling factors for natural resources, ecology, and
the environment. Groundwater (GW) is a major component of overall freshwater resources,
being the main source of agriculture, industrial, and domestic use [1–4]. Recently, popu-
lation and economic growth have put pressure on GW, with extraction and consumption
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continuing to increase. Overexploitation of GW has caused serious hydrological and geolog-
ical disasters (such as land subsidence, soil salinization, etc.) that threaten the development
of major cities worldwide [5,6]. For example, land subsidence in Mexico City has reached
up to 30 cm per year [7]. Melbourne, Jakarta, São Paulo, and a number of cities in India are
all suffering severe water scarcity [8,9].

Beijing is the capital of China and serves as the country’s economic, political, and
cultural center. It is located on the northwestern margin of the North China Plain (NCP),
between longitude 115.7◦ and 117.4◦E and latitude 39.4◦ and 41.6◦N, with an area of
approximately 16,410 km2, backed by the Yanshan Mountains and adjacent to Tianjin City
and Hebei Province (Figure 1). Beijing plays a crucial role in the Beijing–Tianjin–Hebei
urban agglomeration. The western part is mountainous with relatively large topographical
fluctuations, while the eastern part is a flat plain [10]. The climate in the region is a typically
warm and semi-humid continental monsoon climate, characterized by dry, cold winters
and rainy, hot summers. Annual precipitation averages approximately 600 mm, gradually
decreasing from east to west. Over the past two decades, accelerated urbanization, dramatic
increases in urban water use, intensive agricultural irrigation, and the dry climate have
caused severe water scarcity and GW depletion [5].
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Figure 1. Study area. (a) Location of Hanjiang River basin, Beijing, and North China Plain. The
purple line represents the SNDWP-MR. (b) Location of GW monitoring wells. The pink lines are the
boundaries of the districts and counties in Beijing.

In 2002, the Chinese government launched the South-to-North Water Diversion
Projects (SNDWP), aiming to divert freshwater from the Yangtze River to the north arid
regions through three canal pipeline systems: the eastern route of SNDWP (SNDWP-ER),
the middle route of SNDWP (SNDWP-MR), and the western middle of SNDWP (SNDWP-
WR). The SNDWP-ER is designed to transport water to Hebei Province and the Tianjin
Municipality. The SNDWP-WR planned to transport water to the Yellow River in northwest
China, but it has not yet started to transport water. The SNDWP-MR was launched in
December 2014, aiming to alleviate GW depletion in the NCP, especially for Beijing. By
December 2022, it had diverted 58.6 billion m3 of freshwater resources from Danjiangkou
Reservoir on the Hanjiang River to the NCP, with around 24% diverted to Beijing. The
scheme has been in operation for nearly nine years, so it should be possible to quantify
and evaluate its effect on GW in Beijing. It is crucial to obtain long time series and high
spatial resolution data for GW in Beijing and to accurately quantify spatial and temporal
variations in GW before and after SNDWP-MR. The results will enable further optimization
of water resource allocation and management.

Traditional GW monitoring methods suffer from several limitations. They tend to
be time-consuming and laborious and are capable only of coarse spatial and temporal
resolution. These factors make it difficult to accurately quantify changes in GW [11].
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Countries such as the United States and Australia have relatively dense networks of
GW monitoring wells, but the specific yields of unconfined aquifers and the storage
coefficients of confined aquifers are difficult to determine precisely, leading to inaccurate
conversion of water levels from wells into the groundwater storage anomaly (GWSA)
expressed as equivalent water height (EWH). Traditional monitoring methods also have
other issues, such as high costs, inconsistent data formats, logging errors, and restrictive
data-sharing policies between countries and regions worldwide, all of which hinder the
effective utilization of measured data for GW studies [12,13].

The successful launch of the Gravity Recovery and Climate Experiment (GRACE) and
GRACE follow-on (GRACE-FO) has introduced an innovative and effective approach to
global GWSA monitoring [14,15]. GRACE/GRACE-FO have achieved long-term monitor-
ing of the global terrestrial water storage anomaly (TWSA) across the globe from April
2002 to the present with a year of data gaps. Many studies have shown that GRACE/-FO
satellites would effectively monitor GWSAs on a large scale [1,8,12,16–20]. For example,
Swenson et al. (2003) established a correlation between the accuracy of GRACE-derived
GWSA and the sizes of regional study areas. Their findings revealed that the error in
GRACE-derived GWSAs remains below 1 cm when the study area exceeds 400,000 km2 [21].
Moreover, the accuracy of the results increases with the expansion of the study area, indi-
cating a positive relationship between study area size and accuracy. Richey et al. (2015)
estimated global GWSAs from 2003 to 2013 and confirmed that GW is overexploited in
many regions of the world [22]. Famiglietti et al. (2011) filtered and convolved the GRACE
spherical harmonic (SH) product to estimate TWSA in the watershed of Central Valley,
California, USA [23]. Chao et al. (2018) quantified the GWSA in the Tigris–Euphrates basin
by subtracting non-groundwater components from the GRACE TWSA using hydrologic
surface model data based on the water balance budget [24]. Yin et al. (2020) assimilated
GRACE-derived TWSA into the Community Atmosphere Biosphere Land Exchange model
to detect GWSAs in the NCP [25]. However, there were data gaps between GRACE and
GRACE-FO, and fragmented data because of GRACE’s battery-powered sensors and coarse
spatial resolution limited the hydrological application of the data in small-scale areas.

Two methods are commonly used to fill the GRACE/GRACE-FO data gaps. The first is
based on satellite laser ranging (SLR) and satellite data from the European Space Agency’s
(ESA) Swarm Earth Explorer mission (Swarm) [26]. However, the spatial resolution of
GRACE/GRACE-FO observations does not match the data produced by this method,
limiting the accuracy of the fill [27]. The second is a data-driven approach, which has been
widely used to reconstruct GRACE-derived TWSA on a local or global scale [27–30]. In
recent years, machine learning (ML) and deep learning (DL) have emerged as prevalent
approaches for implementing data-driven methods. ML and DL have facilitated significant
advances in satellite-based hydrology. For instance, Mo et al. (2022) employed the Bayesian
convolution neural network (BCNN) to reconstruct global GRACE-derived TWSA by
integrating meteorological observations and hydrological model data [27]. Uz et al. (2022)
reconstructed global GRACE-derived TWSAs using a convolution neural network (CNN),
BCNN, and deep convolutional autoencoder [30].

However, the above DL models are more suitable for spatially correlated datasets, such
as images. On the other hand, GRACE-derived TWSAs display clear trends, periodicity,
and temporal relationships. DL models should effectively capture these time-related
signals. Two commonly utilized variants of recurrent neural networks (RNN), long short-
term memory (LSTM) [31] and gated recurrent unit (GRU) [32], address the challenges
of vanishing and exploding gradients encountered in traditional RNNs. They excel in
handling long-term time series data and possess superior gradient propagation and memory
capabilities. LSTM and GRU have an explicit structure, resulting in more easily interpreted
prediction outcomes. Multi-layer perceptron (MLP) is another widely used model featuring
powerful expressiveness through multiple hidden layers [29]. Although it lacks gate
structures and memory cells like LSTM and GRU, MLP can be constructed with multiple
hidden layers, each comprising numerous neurons, which imparts powerful expressive
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capabilities [33]. Network parameters are continuously and dynamically optimized through
a backpropagation algorithm. To fill the data gaps in GRACE, we developed three DL
models, LSTM, GRU, and MLP, to reconstruct GRACE-derived TWSAs in Beijing.

Additionally, there are two common methods for downscaling GRACE/GRACE-FO
data: dynamic downscaling and statistical downscaling [34–36]. Dynamic downscaling
employs regional numerical models with high spatial resolution [25,34], benefiting from
incorporating physical mechanisms but requiring complex data from multiple sources and
slower calculations [34]. Statistical downscaling is a simpler and more widely applied
method which determines the relationship between large-scale factors and small-scale
observational data using long-term observational datasets [37]. It is computationally
efficient and has been successfully applied by many researchers [20,38–43]. For instance,
Ning et al. (2014) improved the spatial resolution of GRACE-derived TWSAs using an
empirical regression model based on the water balance budget [41]. Seyoum et al. (2019)
incorporated measured groundwater levels (GWL) to downscale GRACE-derived GWSAs
in Illinois using the machine learning (ML) model, boosted regression tree, demonstrating
that the model is capable of accurately reproducing the temporal and spatial changes in
GWL anomalies [20]. Ali et al. (2021) downscaled 1◦ GRACE data (TWSA and GWSA)
from the India River Basin to 0.25◦ using the random forest model (RF) and an artificial
neural network (ANN), with the results showing that these two DL models can accurately
simulate high-resolution GRACE-derived GWSAs.

Although numerous studies have investigated GWSAs in the NCP [16,17,25,34,44–47],
this research is the first to focus specifically on detecting GWSAs on a small scale in
Beijing from downscaled GRACE/GRACE-FO data. The issue is how to incorporate good
observations to improve the accuracy and spatial resolution of GRACE-derived GWSAs on
such a small scale. This study proposes a robust hybrid statistical downscaling approach
to generate high-resolution GRACE-derived GWSAs, which will facilitate the precise
assessment of the impact of the SNDWP-MR on GWSA recovery in Beijing. The primary
focuses of this study are as follows:

1. Three deep learning (DL) models (LSTM/GRU/MLP) were employed to reconstruct
the six types of GRACE-derived TWSAs for the period from January 2004 to December
2021 in Beijing with a spatial resolution of 0.5◦ × 0.5◦.

2. Three strategies were explored to incorporate the in-situ data: for Method 1, we
treated only the in-situ data as validation data of the downscaled results; for Method
2, we used the in-situ data to identify the downscaling target variables that correlate
best with the in-situ data; for Method 3, we used the in-situ data as the downscaling
target variable. The optimal DL model, i.e., that with the best performance in step 1,
was used to downscale the 0.5◦ × 0.5◦ GRACE-derived GWSAs to a higher resolution
of 0.25◦ × 0.25◦.

3. The spatiotemporal evolution of GRACE-derived GWSAs in Beijing before and after
the implementation of the SNDWP-MR were analyzed and we quantified the contri-
bution of the SNDWP-MR to the spatial evolution of the downscaled GRACE-derived
GWSAs using the RF model.

2. Datasets

This study incorporates five distinct datasets: (1) GRACE-derived TWSAs; (2) TWSAs,
runoff, surface temperature, soil moisture storage (SMS), snow water equivalent (SNS),
and canopy water storage (CNS) provided by the Global Land Data Assimilation System
(GLDAS) of the Catchment Land Surface Model (CLSM); (3) precipitation (P) from the
ERA5-Land reanalysis product; (4) evaporation (ET) data inferred from the Global Land
Evaporation Amsterdam Model (GLEAM); (5) observed data from GW monitoring wells.
The temporal resolution of these datasets was standardized to monthly, with spatial resolu-
tions of 0.5◦ × 0.5◦ and 0.25◦ × 0.25◦. Table 1 lists the variables used for the reconstruction
of GRACE-derived TWSAs, downscaling GRACE-derived GWSAs, and the in situ GWSAs
used for validation.
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Table 1. The detailed information of datasets.

Variables Dataset Time Span Temporal Resolution Spatial Resolution Data Source

CSR Mascon TWSA CSR RL06 2002.4~2022.6 Monthly 0.25◦ × 0.25◦ https://www2.csr.utexas.edu/grace/RL06_mascons.html (accessed on
5 October 2023)

GSFC Mascon TWSA GSFC RL06 2002.4~2022.6 Monthly 1◦ × 1◦ https://earth.gsfc.nasa.gov/geo/data/grace-mascons (accessed on
5 October 2023)

JPL Mascon TWSA JPL RL06 2002.4~2022.6 Monthly 0.5◦ × 0.5◦ https://grace.jpl.nasa.gov/data/get-data/ (accessed on 5 October 2023)

CSR SH TWSA CSR RL06 2002.4~2022.6 Monthly 0.25◦ × 0.25◦ https://grace.jpl.nasa.gov/data/choosing-a-solution/ (accessed on
5 October 2023)

GFZ SH TWSA GFZ RL06 2002.4~2022.6 Monthly 0.25◦ × 0.25◦ https://www.gfz-potsdam.de/grace (accessed on 5 October 2023)
JPL SH TWSA JPL RL06 2002.4~2022.6 Monthly 0.25◦ × 0.25◦ https://grace.jpl.nasa.gov/data/get-data/ (accessed on 5 October 2023)

ERA5-Land Precipitation ERA5-Land 1950.1~Present Monthly 0.1◦ × 0.1◦ https://cds.climate.copernicus.eu/ (accessed on 5 October 2023)
GLEAM

Evapotranspiration GLEAM v3 1980.1~2021.12 Monthly 0.25◦ × 0.25◦ https://www.gleam.eu/ (accessed on 5 October 2023)

CLSM TWSA CLSM L4 2003.2~2022.12 Daily 0.25◦ × 0.25◦ https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023)
CLSM Runoff CLSM L4 2003.2~2022.12 Daily 0.25◦ × 0.25◦ https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023)

CLSM Temperature CLSM L4 2003.2~2022.12 Daily 0.25◦ × 0.25◦ https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023)
CLSM SMS CLSM L4 2003.2~2022.12 Daily 0.25◦ × 0.25◦ https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023)
CLSM CNS CLSM L4 2003.2~2022.12 Daily 0.25◦ × 0.25◦ https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023)
CLSM SNS CLSM L4 2003.2~2022.12 Daily 0.25◦ × 0.25◦ https://ldas.gsfc.nasa.gov/gldas (accessed on 5 October 2023)

In situ Groundwater Level \ 2005.1~2016.12
2004~2021 Monthly/Yearly 41 Wells https://swj.beijing.gov.cn/ (accessed on 5 October 2023)

https://en.cgs.gov.cn/ (accessed on 5 October 2023)

https://www2.csr.utexas.edu/grace/RL06_mascons.html
https://earth.gsfc.nasa.gov/geo/data/grace-mascons
https://grace.jpl.nasa.gov/data/get-data/
https://grace.jpl.nasa.gov/data/choosing-a-solution/
https://www.gfz-potsdam.de/grace
https://grace.jpl.nasa.gov/data/get-data/
https://cds.climate.copernicus.eu/
https://www.gleam.eu/
https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
https://swj.beijing.gov.cn/
https://en.cgs.gov.cn/
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2.1. GRACE-Derived TWSAs

The GRACE/GRACE-FO mass concentration (Mascon) and spherical harmonic (SH)
datasets were used from January 2004 to December 2021 provided by the Center for Space
Research (CSR) at the University of Texas (https://www2.csr.utexas.edu/grace/RL06_
mascons.html) (accessed on 5 October 2023), the Jet Propulsion Laboratory (JPL) (https://
grace.jpl.nasa.gov/data/get-data/) (accessed on 5 October 2023), the Goddard Space Flight
Center (GSFC) (https://earth.gsfc.nasa.gov/geo/data/grace-mascons) (accessed on 5 Octo-
ber 2023), and the German Research Center for Geoscience (GFZ)
(https://www.gfz-potsdam.de/grace) (accessed on 5 October 2023). The Level 2 SH
datasets were post-preprocessed to estimate the GRACE-derived TWSA at a 0.25◦ × 0.25◦

spatial resolution [48]. The detailed post-preprocessing steps can be found in the Supple-
mentary Information (SI). The GRACE Mascon Level 3 products provide monthly TWSAs
(CSR, GSFC, JPL) at a grid resolution of 0.25◦ × 0.25◦ or 1◦ × 1◦ or 0.5◦ × 0.5◦ (Table 1),
and their actual spatial resolution is 3◦ × 3◦. However, existing research has demonstrated
the effectiveness of the grid resolution of 0.5◦ × 0.5◦ [49]. They have already undergone
standard corrections, including the C20 and C30 replaced by SRL observations [50], GIA
correction by the ICE-6GD (VM5a) model [51,52], ellipsoidal correction, and signal recov-
ery [48,53]. GRACE-derived TWSAs (CSR Mascon, GSFC Mascon, CSR SH, GFZ SH, JPL
SH) were resampled to the spatial resolution of 0.5◦ × 0.5◦.

2.2. Precipitation (P)

ERA5-Land monthly reanalysis data, released by the European Weather Forecast
Center (ECMWF) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-land-monthly means) (accessed on 5 October 2023), combined modeled data with in
situ data from various locations worldwide into a globally comprehensive and consistent
dataset. The data are compiled on a monthly scale and cover the period from 1950 to the
present. In this study, ERA5-Land reanalysis precipitation was resampled to 0.5◦ and 0.25◦

to reconstruct GRACE-derived TWSA and GWSA downscaling.

2.3. Evapotranspiration (ET)

The GLEAM model used inversions of observations from different satellites to ob-
tain the actual evaporation of different terrestrial features [54,55] and it is available for
free download at the ESA’s Digital Twin Hydrology project (https://www.gleam.eu/)
(accessed on 5 October 2023). In 2017, GLEAM v3 was released, which proposes a new data
assimilation scheme optimized for global-scale applications, validated in Australia.

2.4. GLDAS

GLDAS comprises three land surface process models, CLSM, Mosaic LSM, and the
Noah land surface model (NOAH), spanning the period from 2003 to the present. It
was released by the National Aeronautics and Space Administration’s (NASA’s) Gotha
Aeronautics Center (https://ldas.gsfc.nasa.gov/gldas) (accessed on 5 October 2023). The
CLSM has the best performance in capturing spatiotemporal variations and long-term
trends of TWSA [9,13], so the simulated TWSA, runoff, surface temperature, SMS, SNS, and
CNS by the CLSM L4 daily model were used to reconstruct six types of GRACE-derived
TWSAs and downscale GRACE-derived GWSAs.

2.5. Well Data

We obtained monthly average GW depths, provided by the Beijing Water Authority
(BWA) (https://swj.beijing.gov.cn/) (accessed on 5 July 2023), for each district on the
Beijing Plain from January 2007 to December 2021 and yearly average GW depths from
2004 to 2021. Moreover, the monthly GW depths recorded by 41 monitoring wells in
Beijing from January 2005 to December 2016 were obtained from the groundwater yearbook
published by China Geological Survey Bureau (CGSB) (https://en.cgs.gov.cn/) (accessed
on 5 July 2023). The positions of these monitoring wells are depicted in Figure 1b.

https://www2.csr.utexas.edu/grace/RL06_mascons.html
https://www2.csr.utexas.edu/grace/RL06_mascons.html
https://grace.jpl.nasa.gov/data/get-data/
https://grace.jpl.nasa.gov/data/get-data/
https://earth.gsfc.nasa.gov/geo/data/grace-mascons
https://www.gfz-potsdam.de/grace
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly
https://www.gleam.eu/
https://ldas.gsfc.nasa.gov/gldas
https://swj.beijing.gov.cn/
https://en.cgs.gov.cn/
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3. Methodology

We first used three DL models (LSTM/GRU/MLP) to reconstruct six types of 0.5◦ × 0.5◦

GRACE-derived TWSAs (three Mascon products and three SH products) at a regional aver-
aged scale for the period from 2004 to 2021. Then, the optimal DL model, LSTM, was selected
to reconstruct the six types of 0.5◦ × 0.5◦ GRACE-derived TWSAs mentioned above at a
grid scale. Second, we removed non-groundwater components from the six types of 0.5◦ ×
0.5◦ GRACE-derived TWSAs to obtain the six types of 0.5◦ × 0.5◦GRACE-derived GWSAs.
Thirdly, we combined the in-situ groundwater level (GWL) with 0.5◦ × 0.5◦ GRACE-derived
GWSAs in the optimal DL model, LSTM, and used the three strategies (Method 1, Method
2, and Method 3) outlined to determine the 0.25◦ × 0.25◦ GRACE-derived GWSAs in Bei-
jing from 2004 to 2021. Then, we analyzed the spatiotemporal changes in GRACE-derived
GWSAs before and after the implementation of the SNDWP-MR. Finally, the contribution of
the SNDWP-MR to the GWSA in Beijing was assessed using the random forest (RF) model.
The comprehensive methodology flowchart is presented in Figure 2.
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3.1. Deep Learning

The core of LSTM is a candidate state and three gates: forget gate, input gate, and
output gate. The unique gate structure and memory cells of LSTM provide advantages in
controlling information flow and capturing temporal signals such as trends, periodicity,
seasonality, and long-term dependencies in temporal data series.

GRU is another RNN model that operates in a similar way to LSTM, utilizing special-
ized gate structures for information propagation. GRU offers similar advantages to LSTM
but has a simpler structure and faster computation, making it well-suited for processing
time series data.

MLP is applicable for classification, regression, and unsupervised learning tasks,
supporting tasks such as data classification and establishing complex nonlinear map-
pings [29,33]. The construction of the DL models in this paper was performed using
MATLAB 2021(b) [56]. Comprehensive details regarding these three DL models can be
found in the supplementary materials.

3.2. Reconstruction of GRACE-Derived TWSAs

In order to fill the data gaps of GRACE-derived TWSAs, this study focuses on three
DL models (LSTM/GRU/MLP) using the same external driven input datasets, includ-
ing 0.5◦ × 0.5◦ CLSM TWSA, ERA5-Land P, and GLEAM ET, to reconstruct six types of
GRACE-derived TWSAs (CSR Mascon, GSFC Mascon, JPL Mascon, CSR SH, GFZ SH,
and JPL SH) in Beijing from 2004 to 2021. Firstly, at the regional scale, we used three
DL models (LSTM/GRU/MLP) to reconstruct the six types of GRACE-derived TWSAs
(CSR Mascon, GSFC Mascon, JPL Mascon, CSR SH, GFZ SH, and JPL SH). The training
period was from January 2004 to December 2015 (~67%), and the testing period covered
January 2016 to December 2021 (~33%). Subsequently, we evaluated the permeance of
these three DL models and employed the best-performing DL model, LSTM, to reconstruct
these six types of GRACE-derived TWSAs at a grid scale. For the reconstruction of GRACE-
derived TWSAs at a grid scale, the training dataset consisted of features and targets from
21 grid cells out of 30 grid cells (70%), while the test dataset comprised the remaining 9 grid
cells (30%). Therefore, both the training and testing period extended from January 2004 to
December 2021.

In this study, the training and testing sets were divided based on grid cells rather
than time steps. The reason for this choice is that the research time period (216 months)
is relatively short for the DL model, and dividing the data into time periods with shorter
time steps can lead to overfitting.

3.3. GWSA in Beijing and Its Downscaled Processing

Due to the lack of vertical resolution in GRACE/GRACE-FO observations, TWSAs
determined in this way represent the total water storage anomaly and do not distinguish
between surface water, soil water, and groundwater components. In these cases, the GWSA
can be determined by subtracting contributions of other hydrological elements from the
GRACE-derived TWSA, typically based on the water balance budget [24]:

GWSA = TWSA− SMSA− SNSA− CNSA− SWSA, (1)

where SMSA, SNSA, CNSA, and SWSA are the soil moisture, snow water, canopy water,
and surface water storage anomalies, respectively. The TWSA was determined from the six
types of GRACE data (CSR Mascon, GSFC Mascon, JPL Mascon, CSR SH, GFZ SH, and
JPL SH). The SMSA, SNSA, and CNSA were obtained from the GLDAS CLSM-v2.2. As
almost all major rivers in northern China are exploited for municipal and industrial use,
they contribute little to TWSA and were therefore ignored [25]. Therefore, the SWSA can
be ignored.
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3.3.1. Determine GWSA Based on Well Data

Specific yield is described as the volume of water that must be released per unit area
of the aquifer for a unit decline in the hydraulic head. Subtracting the mean value from the
observation GW depth of monitoring wells (Equation (2)) yields the GWLA, which can be
multiplied by the specific yield and converted to equivalent water height (Equation (3)).
This study assumed an average specific yield of 0.06 in Beijing [6,16].

GWLA(t) = GWL(t)− GWL, (2)

GWSA = 0.06× GWLA, (3)

where GWL(t) represents the average groundwater level for the month t, and GWL is the
averaged value of GWL for the entire time period.

3.3.2. Downscale of GRACE-Derived GWSA

The downscaled feature variables for Method 1 and Method 2 are ERA5-Land P,
GLEAM ET, CLSM SMSA, CLSM SNSA, CLSM CNSA, and CLSM temperature. All the
features have two spatial resolutions: 0.5◦ × 0.5◦ and 0.25◦ × 0.25◦. The target variables
for Method 1 are the six types of GRACE-derived GWSAs (CSR Mascon, GSFC Mascon,
JPL SH, CSR SH, GFZ SH, and JPL SH). Additionally, the target variables have only one
spatial resolution, which is 0.5◦ × 0.5◦. The target variable for Method 2 was derived from
data selection based on the correlation between the six GRACE-derived GWSAs and in situ
GWSAs in 14 counties of Beijing. Subsequently, the selected GRACE-derived GWSAs were
assembled into a complete grid based on latitude and longitude, which served as the target
for Method 2. The features for Method 3 were ERA5-Land P, GLEAM ET, CLSM SMSA,
CLSM SNSA, CLSM CNSA, CLSM temperature, JPL Mascon TWSA, and JPL Mascon
GWSA’. Except for JPL Mascon GWSA and JPL Mascon GWSA’, the other feature variables
have two spatial resolutions: 0.5◦ × 0.5◦ and 0.25◦ × 0.25◦. The spatial resolution of JPL
Mascon GWSA is 0.5◦ × 0.5◦, and the JPL Mascon GWSA’ is 0.25◦ × 0.25◦. Note that the JPL
Mascon GWSA’ was obtained bilinearly interpolated from 0.5◦ × 0.5◦ JPL Mascon GWSA
and significantly differed from the 0.25◦ × 0.25◦ JPL Mascon GWSA after downscaling.
The target for Method 3 was the in situ GWSA from 41 wells.

For Method 1 and Method 2, we divided the dataset into training and testing sets
based on the number of grid cells. Specifically, 21 grid cells (70%) were used as a training
set, while the remaining 9 grid cells (30%) comprised the testing set (Figure S3). We trained
the LSTM model using the features and targets with the spatial resolution of 0.5◦ × 0.5◦

from the training grid cells and tested the LSTM using features and targets with the spatial
resolution of 0.5◦ × 0.5◦ from the testing grid cells. Finally, we used the features with the
spatial resolution of 0.25◦ × 0.25◦ from all grid cells to predict the 0.25◦ × 0.25◦ GRACE-
derived GWSA (GWSADownsacleSIM). To reduce the modeling error of the downscale model,
we defined the residuals of the training set (errorTrain) as the differences between the true
values of targets from the training set (GWSATrainTruth) and the LSTM simulated values
(GWSATrainSIM) (Equation (4)). The residuals of the testing set (errorTest) are the difference
between the true values of the testing set’s target (GWSATestTruth) and the LSTM simulated
values (GWSATestSIM) (Equation (4)). Subsequently, errorTrain and errorTest were interpo-
lated to the 0.25◦ × 0.25◦ grids using the Kriging interpolation function (Figure S5), serving
as the downscaling model error errorDownscale (Equation (5)). Finally, GWSADownsacle added
to errorDownscale to obtain the final downscaled result (GWSADownsacle) (Equation (6)).

For Method 3, we divided the training and testing sets based on the number of wells.
Specifically, 30 wells (~73%) were used as the training set, while the remaining 10 wells
comprised the testing set. We trained the LSTM model using features and in situ GWSAs
with a spatial resolution of 0.5◦ × 0.5◦ from training wells and tested the 0.5◦ × 0.5◦

features and in situ GWSAs from testing wells. Finally, we used 0.25◦ × 0.25◦ features
to predict the 0.25◦ × 0.25◦ GRACE-derived GWSA (GWSADownsacleSIM). Because the 41
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wells were concentrated in the southeast corner and could not be interpolated to a complete
0.25◦ × 0.25◦ grid, Method 3 did not involve model error estimation. Instead, the model’s
predicted value (GWSADownsacleSIM) was served as the downscaled result (Equation (6)).

errorTrain = GWSATrainTruth − GWSATrainSIM
errorTest = GWSATestTruth − GWSATestSIM

, (4)

errorDownscale =

{
Kriging(errorTrain), the grid cell in training set
Kriging(errorTest), the grid cell in testing set

, (5)

GWSADownscale =

{
GWSADownscaleSIM + errorDownscale Method1 Method2
GWSADownscaleSIM Method3

, (6)

where errorTrain and errorTest represent the residual error of the training and testing set, re-
spectively. GWSATrainTruth and GWSATestTruth represent the target variables of the training
and testing set, respectively. GWSATrainSIM and GWSATestSIM represent the simulations
of the training and testing set, respectively. Kriging is the Kriging interpolation function,
errorDownscale represents the residual error of downscale, and GWSADownsacle represents
the GRACE-derived GWSA after downscaling.

In Method 1, the input and target variables are independent of the in situ GWSA. The
in situ GWSA was only used for verification of downscaled results. In Method 2, wells
data were used to select the GRACE-derived GWSA before downscaling. In Method 3,
we integrated the GRACE JPL Mascon GWSA with in situ GWSAs from 41 wells and
performed downscaling on the GRACE-derived GWSA. The specific details of these three
methods are presented in the SI.

3.4. Random Forest (RF)

In this study, we used the RF model to calculate the contributions of human and
climatic factors to the downscaled GRCAE-derived GWSA, with a primary focus on inves-
tigating the impact of the SNDWP-MR. The RF model [57–59] is a powerful ML model that
predicts a feature’s importance by ensembling multiple decision trees. RF model construc-
tion in this paper was conducted using SPSS Statistics software (Version 28.0 (R2021)) [60].
The formula for calculating the contributions of the influencing factors using the RF is as
follows:

contribution(j) =
∑T

t=1 ∑i∈treet I(v(i) = j)wi∆y2
i

∑T
t=1 ∑i∈treet wi∆y2

i
, (7)

where j represents the factor’s index, t is the decision tree’s index, v(i) is the weight of the
node i, and ∆yi is the prediction error of the node i.

4. Results
4.1. Reconstruction of GRACE-Dervied TWSAs

Figure 3 represents the correlation coefficient (CC), Nash–Sutcliffe efficiency (NSE),
and root mean square error (RMSE) for three DL model-reconstructed GRACE-derived
TWSAs compared to the true values of GRACE-derived TWSAs at the regional average
scale. Generally, the reconstructed results from all three DL models (LSTM/GRU/MLP) are
reasonably accurate, with CCs and NSEs both surpassing 0.8 and RMSEs RMSE ranging
from approximately 4 to 24 mm. The MLP demonstrates slightly lower performance,
especially on the GFZ SH TWSA, where NSE was 0.82. LSTM and GRU performed similarly,
and LSTM slightly outperformed GRU, except for a higher RMSE in GFZ SH TWSA
(12.97 mm). The highest accuracy of reconstructing GRACE-derived TWSAs was achieved
by the LSTM. In order to save computational resources, the reconstruction of GRACE-
derived TWSAs at a grid scale and GRACE-derived GWSA downscaling were used in the
LSTM model. Additionally, we will no longer employ GRU and MLP for the reconstruction
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and downscaling of GRACE data. Therefore, subsequent analysis will focus on LSTM
reconstruction results and the downscaling of GWSAs in Beijing using this model.
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Figure 3. The CC, NSE, and RMSE for three DL model-reconstructed GRACE-derived TWSAs
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Table 2 illustrates the CCs, NSEs, and RMSEs for the test and training sets when
we used LSTM to reconstruct six types of GRACE-derived TWSAs (CSR Mascon, GSFC
Mascon, JPL Mascon, CSR SH, GFZ SH, and JPL SH) at the regional average scale. The
training period ranged from January 2004 to December 2015. At the regional scale, the
six GRACE-derived TWSAs exhibited strong performance in both the training and testing
periods. Specifically, the CSR Mascon TWSA has the highest CC and NSE for both periods,
and the RMSE reached 6.16 mm to 14.46 mm. However, the JPL Mascon TWSA showed the
lowest NSE for the testing period, only 0.68. We also compared the CC, NSE, and RMSE
between the GRACE-derived TWSA reconstructed by LSTM and their truth values during
the entire period (2004~2021).

Table 2. CC, NSE, and RMSE between the truth values of GRACE-derived TWSAs and reconstructed
GRACE-derived TWSAs during the training and testing periods.

GRACE Errors Train Period (2004~2015) Test Period (2016~2021)

CSR Mascon
CC 0.99 0.88

NSE 0.98 0.76
RMSE (mm) 6.16 14.46

GSFC Mascon
CC 0.97 0.84

NSE 0.98 0.71
RMSE (mm) 7.83 16.16

JPL Mascon
CC 0.99 0.83

NSE 0.98 0.68
RMSE (mm) 8.00 14.16

CSR SH
CC 0.96 0.86

NSE 0.93 0.73
RMSE (mm) 8.77 14.68

GFZ SH
CC 0.95 0.87

NSE 0.91 0.72
RMSE (mm) 12.56 14.05

JPL SH
CC 0.99 0.84

NSE 0.98 0.70
RMSE (mm) 4.27 13.78
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Figure 4a–f shows, on a regional average scale, the six GRACE-derived TWSAs time
series and the reconstructed TWSAs time series using LSTM in Beijing from 2004 to 2021
and their error metrics (CC, NSE, and RMSE) in the entire time period. The results show
good consistency between the reconstructed GRACE-derived TWSA and their truth value,
with CCs and NSEs both exceeding 0.9 and RMSEs ranging from 8 to 13 mm. JPL SH TWSA
has the lowest RMSE, indicating the highest reconstruction capability (CC: 0.98, NSE: 0.96,
RMSE: 8.38 mm). Conversely, GFZ SH TWSA displays the lowest CC and NSE (CC: 0.96,
NSE: 0.92, RMSE: 12.97 mm).
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Figure 4. The truth values of GRACE-derived TWSAs and reconstructed GRACE-derived TWSAs
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Mascon, (b) GSFC Mascon, (c) JPL Mascon, (d) CSR SH, (e) GFZ SH, and (f) JPL SH.

Comparison of GRACE-derived TWSA reconstructed by LSTM with previous research
findings [28,30,61] and their truth values reveals the following: the CC between the recon-
structed CSR Mascon TWSA and its truth value is 0.98, NSE is 0.97, and RMSE is 9.08 mm.
The values reported by Uz et al. (2022) were CC: 0.6, NSE: 0.42, and RMSE: 22.59 mm. Li
et al. (2020) reported CC: 0.91, NSE: 0.60, and RMSE: 30.42 mm, an improvement of 6.59%,
61.67%, and 70.15%, respectively. Similarly, for the JPL SH TWSA reconstructed by LSTM,
the CC was 0.98, NSE was 0.96, and RMSE was 8.38 mm, whereas Humphrey and Gud-
mundsson (2019) reported CC: 0.59, NSE: −0.08, and RMSE: 41.41 mm. It is worth noting
that they conducted global-scale reconstructions of GRACE-derived TWSAs and exhibited
global consistency but significant errors in small-scale regions. In comparison, this study
significantly improves on these previous results in reconstructing GRACE-derived TWSAs
at small scales using LSTM.

Figure 5 shows the spatial distribution of accuracy between the reconstructed TWSAs
using LSTM and their true values as well as the scatter density plots. Where “x” repre-
sents the training grids, and “o” represents the testing grids. Figure 5 also displays the
maximum, minimum, mean, and standard deviation (std) of CC, NSE, and RMSE. For
Mascon products (Figure 5a–l), in summary, the six types of GRACE-derived TWSAs did
not exhibit overfitting, with the accuracy of the testing set comparable to the accuracy of
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the training set. The CCs of three Mascon TWSAs varied from 0.86 to 0.99, with NSEs
ranging from 0.74 to 0.98 and RMSEs ranging from 4.29 to 39.62 mm. The scatter plot
density fit goodness was also very close to 1. The GSFC Mascon TWSA outperformed the
CSR Mascon TWSA and JPL Mascon TWSA and was more stable, with an average CC of
0.97, NSE of 0.95, and RMSE of 13.68 mm. From a spatial perspective in terms of accuracy
distribution, the western region showed higher accuracy than the eastern region, while the
southern region had higher accuracy than the northern region for Mascon TWSAs. Among
the Mascon products, GSFC Mascon TWSA achieved the highest accuracy at the grid scale,
with CC exceeding 0.96, NSE exceeding 0.9, and RMSE below 18.14 mm. Conversely,
CSR Mascon TWSA displayed the lowest accuracy at the grid scale, with CC, NSE, and
RMSE ranging from 0.86 to 0.98, 0.74 to 0.96, and 9.67 to 25.49 mm, respectively. The JPL
Mascon TWSA also exhibited lower stability than others, reflecting a std of approximately
7.79 mm. Additionally, the scatter plot density quality for the JPL Mascon TWSA was
relatively lower, with some scatter data points showing less concentration. For SH Products
(Figure 5m–x), in general, the CCs of three SH TWSAs varied from 0.68 to 0.99, NSEs were
between 0.30 and 0.97, and RMSEs ranged from 8.53 to 26.92 mm. The CSR SH TWSA
outperformed GFZ SH TWSA and JPL SH TWSA, and the averaged CC was 0.94, NSE
was 0.89, and RMSE was 12.67 mm, less stable with a std of 3.12 mm. Additionally, the
scatter density fit of the CSR SH TWSA showed the highest goodness of fit, with data points
mostly concentrated around the central location. In contrast to the Mascon products, the
SH products showed greater accuracy in the eastern region than the western region. CSR
SH exhibited slightly higher accuracy than GFZ SH and JPL SH at the grid scale, with CC
exceeding 0.80, NSE exceeding 0.64, and RMSE below 19.14 mm, while the CC, NSE, and
RMSE of GFZ SH and JPL SH were 0.68~0.99, 0.30~0.97, and 8.53~26.92 mm, respectively.

4.2. Downscaling of GRACE-Derived GWSAs

Figure 6 shows the spatial distribution accuracy between the GRACE-derived GWSAs
and in situ GWSAs from 41 wells before downscaling and calculates their maximum,
minimum, mean, and std. From Figure 6, in general, the accuracies of GRACE-derived
GWSAs before downscaling based on the three methods (Method 1, Method 2, and Method
3) are poor, with larger errors compared to in situ GWSAs. Method 2 exhibits the greatest
deviation from in situ GWSAs and is less stable, with an average CC of 0.20, NSE of −0.04,
and an average RMSE of 141.73 mm. The accuracy of the GRACE-derived GWSA before
downscaling using Method 2 is not significantly different from Method 1 when compared
to in situ GWSAs. The mean CC of Method 2 is 0.27, the average NSE is −0.07, and the
average RMSE is 130.04 mm. Method 3 has a mean CC of 0.25, a mean NSE of −0.15, and
an average RMSE of 125.72 mm.
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Figure 7 shows the spatial distribution accuracy between the GRACE-derived GWSAs
and in situ GWSAs from 41 wells after downscaling and calculates their maximum, min-
imum, mean, and std. Compared to Figure 6, the differences between the three types of
GRACE-derived GWSAs (Method 1, Method 2, and Method 3) and the in situ GWSAs all
reduced, with Method 3 (Figure 7g–i) showing the most significant reduction. For Method
3, the averaged CC was 0.58, around twice as much as the value of 0.30 obtained before
downscaling. The average NSE was increased from −0.15 to 0.12, and the average RMSE
decreased from 125.72 mm to 122.44 mm. For Method 1 (Figure 7a–c), the maximum value
of CC was slightly improved and increased from 0.75 to 0.76. Additionally, the average
RMSE was 128.83 mm, which improved by 1.57%. For Method 2 (Figure 7d–f), the CC, NSE,
and RMSE all improved, with the average CC increasing from 0.20 to 0.27, an improvement
of 35.00%. The average RMSE was 134.00 mm, with NSE rising from −0.49 to −0.03 and
RMSE reducing from 141.73 mm to 141.64 mm. Additionally, the stabilities of CC, NSE, and
RMSE were improved. Therefore, Method 3 is the most effective approach for downscaling
GRACE-derived GWSAs. Furthermore, we conducted a statistical analysis of the CC, NSE,
and RMSE for both the training and test sets during the downscaling process, as shown in
Figure S5 and Tables S1 and S2.
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Figure 8 shows the linear fit between the downscaled GRACE-derived GWSAs using
three methods (Method 1, Method 2, and Method 3) in situ GWSAs from the Beijing Plain
at the regional average scale and a Taylor diagram for accuracy comparison. We used
three different colors of symbols to present the three methods (Method 1, Method 2, and
Method 3) in the legend of the Taylor diagram. From Figure 8d, it can be seen that the
downscaled GWSA based on Method 1 and Method 2, when compared to the in situ GWSA
at the regional scale, exhibited similar performance to a std of approximately 25 mm, a
centered root square difference (RMSD) of around 60 mm, and a CC of approximately 0.4.
The downscaled GRACE-derived GWSA using Method 3 was in the best agreement with
the observed GWSA, with an RMSE of 44.28 mm, CC of 0.75, and NSE of 0.47 (Figure 8c).
Method 3 performed well at the regional averaged scale, exhibiting the highest CC, NSE,
and the lowest RMSE. The downscaling GRACE-derived GWSAs using Method 1 and
Method 2 both exhibited relatively low correlations with the in situ GWSA from the Beijing
Plain. Method 1 had a CC of 0.36, and Method 2 had a CC of 0.37. Therefore, Method 3
effectively improved the downscale performances of small-scale GRACE-derived GWSAs
in Beijing by integrating GRACE data and observed data.
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We think there are two main reasons for the low correlation. Firstly, the quality of
the in situ GWSA from Beijing Plain was not high. This in situ GWSA was derived from
the monthly averaged groundwater depth of 14 counties in Beijing. The detailed steps to
process the monthly average groundwater depths from 14 counties into the in situ GWSA
of Beijing Plain are outlined in the attachment. Secondly, GRACE-derived GWSAs (CSR
Mascon, GSFC Mascon, JPL Mascon, CSR SH, GFZ SH, and JPL SH) before downscaling
exhibited a significant discrepancy with the in situ GWSA from the Beijing Plain. The
approaches in Method 1 and Method 2 can only enhance the spatial resolution but not
improve the correlation at the regional average scale. Method 3, which integrates in situ
data from 41 wells, shows some improvement in correlation with the in-situ Beijing Plain.

4.3. Spatial and Temporal Analysis of GWSAs before and after SNDWP-MR

To investigate the contribution of the SNDWP-MR to GW recovery in Beijing, we
divided the study period into two stages: Period I (2004.1~2014.12) before SNDWP-MR
and Period II (2015.1~2021.12) after SNDWP-MR. We analyzed the trends of downscaled
GRACE-derived GWSAs during these two periods at a regional average scale. Figure 9a
shows the monthly downscaled GRACE-derived GWSAs using three methods, in situ
GWSAs from the Beijing Plain, and P. Additionally, Figure 9b shows the yearly downscaled
GARCE-derived GWSAs, in situ GWSA from the Beijing Plain, and P. Overall, the trends of
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downscaled GRACE-derived GWSAs using three methods demonstrate an agreement with
observed data. During Period I, the downscaled GRACE-derived GWSAs both showed a
declining trend. In contrast, during Period II, they both showed an increasing trend.
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However, there was a time lag of 5~6 months between precipitation and the in situ
GWSA. The maximum value of the in situ GWSA occurred around December each year,
and the minimum value occurred around June, while precipitation reached its maximum
value around June every year. The downscaled GRACE-derived GWSA using Method 3,
which incorporates in situ GWSAs, shows a time lag between GWSA and precipitation
of approximately 5~6 months, like that of the in situ GWSA. However, the downscaled
GRACE-derived GWSAs using Method 1 and Method 2 exhibited a shorter time lag,
approximately 3~4 months, between precipitation and the in situ GWSA (Figure S5). The
maximum value appeared from September to October, while the minimum value occurred
from March to April each year. On a yearly scale, the variations in downscaled GRACE-
derived GWSAs were closely related to precipitation. In other words, in years with higher
precipitation, GWSAs tend to increase, while in years with lower precipitation, they tend
to decrease.

The time lags between precipitation and downscaled GRACE-derived GWSAs based
on Methods 1 and 2 were shorter compared to the in situ GWSA. There are two possible
explanations for this: (1) replenishment of GW through precipitation requires time, so the
measurable response of GW to precipitation is delayed; (2) the study area primarily consists
of deep, confined aquifers, which do not respond to GW changes as quickly, or to the same
degree, as shallow, unconfined aquifers.

In 2021, the downscaled GRACE-derived GWSAs using three methods deviated
slightly from the in situ GWSA, which may be related to the GRACE-derived TWSA and
the rapid escalation in precipitation, as it did not detect any signal of a dramatic rise in
TWSA in 2021. Although Method 3 incorporates in situ data for downscaled GWSA, the
collected in situ data used in this study covered the period from 2005 to 2016 and, therefore,
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does not reflect any substantial increase in GWSA in 2021. We will discuss the uncertainty
of the downscaled GRACE-derived GWSA in Section 5.

Figure 10 depicts the trends of GRACE-derived GWSAs before downscaling during
two periods at the grid scale. Overall, the spatial details of GRACE-derived GWSAs
before downscaling appear relatively coarse. From a spatial perspective, before the im-
plementation of SNDWP-MR, the GRACE-derived GWSAs both exhibited a declining
trend. Moreover, the trends using three methods before downscaling exhibited a more
significant decline rate. After the implementation of SNDWP-MR, the GRACE-derived
GWSAs generally exhibited an increasing trend. However, there were a few grid cells in the
southwestern region that continued to show a declining trend, and these grid cells had the
most significant decreasing trend before the implementation of SNDWP-MR (Figure 10a–c).
For Method 1 (Figure 10d) and Method 3 (Figure 10f), the trends in the northwest region had
a higher rate of increase than the southeastern region. However, for Method 2 (Figure 10e),
the trends rose most rapidly along the southeast diagonal. The spatial distributions of
trends from these methods (Method 1, Method 2, and Method 3) exhibited some differences,
likely attributed to the uncertainties of GRACE-derived GWSAs.
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Figure 10. Spatial distribution of the GRACE-derived GWSA trends before downscaling before and
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(d) Method 1, (e) Method 2, and (f) Method 3.

Figure 11 depicts the trends of GRACE-derived GWSAs after downscaling using three
methods during two periods at the grid scale. The three downscaled results (Figure 11)
present more detailed spatial features than the original GRACE-derived GWSA (Figure 10).
Method 1 and Method 2 (Figure 11a,b) (Figure 11d–e) exhibit trends after downscaling that
are consistent with the original results (Figure 10a,b) (Figure 10d–e), which indicates that the
downscaling approaches based on Method 1 and Method 2, improved the spatial resolution
of the GRACE-derived GWSAs. However, the downscaling approach based on Method
3 not only improved the spatial resolution but also altered the spatial distribution of the
trends. This is because the downscaling approach of Method 3 incorporated in situ GWSAs
from 41 wells. From Figure 11c, it is evident that before SNDWP-MR, the spatial trend of the
downscaled GRACE-derived GWSA based on Method 3 reached −50 to 0 mm/y. Before
downscaling, the range was−10 to 0 mm/y. Similarly, after SNDWP-MR, the spatial trends
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of the downscaled GRACE-derived GWSA based on Method 3 (Figure 11f) ranged from
0 to 50 mm/y, whereas before downscaling (Figure 10f), the range was only 0 to 10 mm/y.
The reasons for the differences in the spatial distribution of downscaled GRACE-derived
GWSA trends among the three methods will be discussed in Section 5.
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implementation of SNDWP-MR. (d) Method 1, (e) Method 2, and (f) Method 3.

4.4. The Influence Factors on GWSA

Before SNDWP-MR, there was a shortage of approximately 1 km3/y between water
supply and water use, leading to the depletion of GW in Beijing [3]. To further understand
the water usage and supply situation in Beijing during the study period, data on different
components of the water supply and water allocation were obtained from the Beijing Water
Resources Statistics Year Books (Figure 12a).
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We utilized the RF to estimate the impacts of human and climatic factors on Beijing’s
GWSA. From Figure 12b, it is evident that human factors outweigh climate factors in
importance. Before SNDWP-MR, human factors accounted for 69.30%, while climate
factors contributed 30.70%. Among the human factors, the contributions of agricultural and
industrial water use (the predominant human factors) were 21.40% and 16.10%, respectively;
the contribution of SNDWP-ER was only 4.80%. However, water diversion by SNDWP-
MR and suppression of agricultural water use caused a significant shift in contribution
patterns. After SNDWP-MR, the contribution of human factors decreased to 57.70%, while
climate factors increased to 42.30%. Notably, agricultural water usage and SNDWP-MR
water volume emerged as the primary human factors, contributing 19.30% and 18.30%,
respectively.

5. Discussion

This study employed three DL models to fill the gaps in GRACE-derived TWSAs
and utilized a robust hybrid statistical downscaling method to evaluate the application
of GRACE for monitoring GWSAs at a small-scale. We also quantified the impact of
human and climatic factors on the downscaled GWSA in Beijing before and after the
implementation of SNDWP-MR.

We used a generalized three-cornered hat (TCH) to estimate the uncertainty of down-
scaled GRACE-derived GWSAs [53] (Method 1, Method 2, and Method 3) at a regional
average scale. Additionally, the uncertainty of in situ GWSAs was quantified by assuming
±20% uncertainty of the specific yield [17]. The shaded area in Figure 9 represents the un-
certainty of GWSA. Whether at a monthly or yearly scale, the uncertainties of downscaled
GWSAs and in situ GWSAs are relatively small. At the regional scale, the uncertainty will
not have a significant adverse impact on the downscaled GWSA.

In the past, there have been numerous studies of the temporal and spatial evolution of
the GWSA in NCP and their cause. Feng et al. (2013) were the first to use GRACE data to
estimate the depletion rate, finding a depletion rate of 22.00 ± 3.00 mm/y for the GWSA
in the NCP from 2003 to 2013 [1]. Zhang et al. (2021) analyzed the GWL from 617 wells
and compared the data with GRACE-derived GWSA [17]. The results showed a GWSA
depletion rate of 19.10 ± 5.10 mm/y from 2003 to 2014 and a GW recovery rate of 1.80
± 0.70 mm per year from 2015 to 2018. Zhao et al. (2019) determined a GW depletion
pace of 17.00 ± 1.00 mm/y in the NCP from 2004 to 2016 using GRACE (-FO) data and
CLSM [62]. Long et al. (2020) used well observation data to estimate a GWSA depletion
rate of 17.50 ± 0.80 mm/y on the Beijing Plain from 2005 to 2014 [5]. In this study, Method
3 estimated a GWSA depletion rate in Beijing of 17.68 ± 4.46 mm/y from 2004 to 2014 and
a recovery rate of 10.00 ± 4.77 mm/y from 2015 to 2021, which is basically consistent with
the results of previous studies and monitoring well data. The results of Methods 1 and
2 were significantly different from the in-situ observations. During period I, the downscaled
GWSA based on Method 1 showed a declining trend at a rate of −4.07 ± 1.60 mm/y and
the downscaled GWSA based on Method 2 is −4.39 ± 2.48 mm/y. During period II, the
trend of the downscaled GWSA based on Method 1 is 5.04 ± 5.00 mm/y, and the trend of
the downscaled GWSA based on Method 2 is 20.25 ± 7.40 mm/y (Table 3).

Table 3. Trends of the downscaled GWSA during Period I and Period II.

Trend (mm/y) * Method 1 Method 2 Method 3

Period I (2004~2014) −4.07 ± 1.60 −4.39 ± 2.48 −17.68 ± 4.46
Period II (2015~2021) 5.04 ± 5.00 20.25 ± 7.40 10.00 ± 4.77

‘*’ indicates the trend is significant at a 95% level.

There are four possible reasons for these significant differences in results between the
three methods and in situ data (Figure 11 and Table 3): (1) due to spatial and temporal reso-
lution limitations, the original GRACE observations have a high degree of uncertainty in
small-scale areas at grid scale; (2) GW monitoring wells in the eastern plain are mainly deep,
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confined wells. Studies have shown that from 2015 to 2017, GWLs in shallow, unconfined
wells remained stable, while those in deep confined wells decreased rapidly [63]. Hence,
the trend of GWSA estimation based on Method 3 is inevitably closer to the measured data;
(3) CLSM has limited representativeness for simulating GWSA in the NCP. The simulated
GWSA is limited by the soil profile water storage capacity, which is a product of the fixed
depth of bedrock and porosity. Döll et al. (2014) suggested that CLSM cannot reproduce
the effect of long-term [8], intense GW depletion in large-scale irrigation areas such as the
NCP and northern India. Although GW extraction for irrigation has caused a significant
decline in GWSA in the NCP, simulating GWSA by CLSM does not reflect this trend [64];
(4) CLSM lacks a dynamic module to simulate surface water and therefore cannot simulate
surface water anomalies in Beijing. Thus, separating non-groundwater components from
GRACE-derived TWSA vastly reduces the accuracy. However, some studies have indicated
the contribution of surface water to TWSA in northern China can be ignored [25].

The downscale approach of Method 3 was used to address the lack of monitoring
wells in the study area. Only 41 wells were available, as other observation wells had to
be excluded due to data gaps of more than 3.50 years, loss of location information, or
failure to distinguish confined and unconfined wells. The monitoring wells were primarily
concentrated in the south of the study area. The specific yields were also uneven, and
monitoring wells data covered only 2005 to 2016, shorter than the study period (2004~2021).
Despite these limitations, a high spatial resolution downscaled GRACE-derived GWSA
was obtained based on Method 3 at a small-scale study area. The results for this area are
consistent with previous research and show good consistency with the measured data.
This suggests that the approach developed in this research provides a new approach to
exploring small-scale GRACE-derived GWSAs. Although, in this study, we underestimated
the GWSA in Beijing and did not detect the sharp increase in the 2021 GWSA signal, the
results will be greatly improved if the period wells data match the study period.

6. Conclusions

This study proposed a robust hybrid statistical downscaling method, which was arrived
at by first comparing and analyzing the accuracy of three DL models (LSTM/GRU/MLP) in
reconstructing GRACE-derived TWSAs and constructing a long-term TWSAs dataset for Beijing.
Subsequently, the best-performing DL model was used in conjunction with three strategies for
monitoring well observation data, achieving downscale estimates for 0.25◦ × 0.25◦ GRACE-
derived GWSAs in Beijing from 2004 to 2021. Finally, the RF model was employed to quantify
the contributions of human factors (domestic, industrial, and agricultural water use, etc.) and
climate factors (such as P, ET, and runoff) to GRACE-derived GWSAs in Beijing before and after
the implementation of SNDWP-MR. The principal findings can be summarized as follows:

1. Six different GRACE-derived TWSA time series were reconstructed for Beijing from
2004 to 2021, with the LSTM model performing the best, followed by GRU with
slightly lower performance, and MLP, which performed the worst.

2. On the regional average scale, the trends of GRACE-derived GWSAs in Beijing,
estimated based on the three downscaling strategies, are consistent with the trend of
measured well data, although the trend rates differ slightly. Before the implementation
of SNDWP-MR, the trends all showed decreasing levels, but the rates of decline
differed. The downscaled GRACE-derived GWSA based on Method 3 was the closest
to the measured well data, at −17.68 ± 4.46 mm/y. After the implementation of the
SNDWP-MR, the trends all showed recovering levels; the GRACE-derived GWSA
based on Method 3 was also the best, with an increased rate of 10.00 ± 4.77 mm/y.

3. Before the implementation of SNDWP-MR, the GWSA in Beijing showed a decreasing
trend, to which human factors contributed 69.30% (21.40% for domestic water use and
16.10% for agricultural water use), while climate factors contributed 30.70%. After
the implementation of SNDWP-MR, the GWSA showed obvious recovery, to which
human factors contributed 57.70% (19.30% attributable to agricultural water use and
18.30% to the SNDWP-MR).
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4. The contributions of the GWSA before and after the implementation of SNDWP-
MR showed that SNDWP-MR was effective in alleviating groundwater depletion in
Beijing.

This study employed multiple strategies to combine GRACE/GRACE-FO with well-
monitoring data using DL methods for downscaling to determine the GWSA in Beijing at
a spatial resolution of 0.25◦ × 0.25◦. It is significant that the well data not only served as
validation data and target variables but was also used as input data to integrate GRACE
data for some of the DL models. Additionally, analyzing the GWSA in Beijing as a whole
is insufficient for comprehensive monitoring and effective management of underground
water resources. The potential of satellite gravity technology to monitor a small-scale
GWSA will, therefore, be further explored. To achieve a more detailed understanding
of groundwater resources, Beijing should be divided into different hydrogeological units
and administrative regions to facilitate the acquisition of high-precision and high-spatial-
resolution underground water data. The resulting accumulated dataset will provide new
data and technical support for water resource management and decision-making. By
considering the individual characteristics of each hydrogeological unit and administrative
region, it will be possible to develop improved management strategies and make informed
decisions regarding water resources.
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0.25◦ × 0.25◦ spatial resolution. Kriging represents Kriging interpolation; Figure S5: The accuracy of
training and testing sets for Method 1 and Method 2. “x” represents the training grid cells, and “o“
represents testing grid cells. (a)~(c) Method 1, (d)~(f) Method 2; Table S1: The accuracy of training set
for Method 3; Table S2: The accuracy of testing set for Method 3 [65–69].
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