Analysis of BDS/GPS Deformation Monitoring for the Lake Sarez Dam
Abstract
:1. Introduction
2. Study Area and Monitoring System
3. Methods and Strategies
4. Results and Discussion
4.1. Result of Baseline Network
4.2. Result of PPP
4.3. Result of RTK
4.4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ischuk, A.R. Usoi Rockslide Dam and Lake Sarez, Pamir Mountains, Tajikistan, Natural and Artificial Rockslide Dams ed.; Evans, S., Hermanns, R., Strom, A., Scarascia-Mugnozza, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 133, pp. 423–440. [Google Scholar]
- Schuster, R.L.; Alford, D. Usoi Landslide Dam and Lake Sarez, Pamir Mountains, Tajikistan. Environ. Eng. Geosci. 2004, 10, 151–168. [Google Scholar] [CrossRef]
- Yang, L.X. Study on the treatment of Sarez dammed lake in Tajikistan. Express Water Resour. Hydropower Inf. 2008, 29, 1–4. [Google Scholar] [CrossRef]
- Ischuk, A.R. Usoy natural dam: Problem of security (Lake Sarez, Pamir Mountains, Tadjikistan). Ital. J. Eng. Geol. Environ. 2006, 1, 189–192. [Google Scholar] [CrossRef]
- Gan, J.; Hu, J.; Li, Z.W.; Yang, C.J.; Liu, J.H.; Sun, Q.; Zheng, W.J. Mapping Three-Dimensional Co-Seismic Surface Deformations Associated With The 2015 Mw7.2 Murghab Earthquake Based on Insar And Characteristics of Crustal Strain. Sci. China Earth Sci. 2018, 61, 1451–1466. [Google Scholar] [CrossRef]
- Risley, J.C.; Walder, J.S.; Denlinger, R.P. Usoi Dam Wave Overtopping and Flood Routing in the Bartang and Panj Rivers, Tajikistan. Nat. Hazards 2006, 38, 375–390. [Google Scholar] [CrossRef]
- Elliott, A.; Elliott, J.; Hollingsworth, J.; Kulikova, G.; Parsons, B.; Walker, R. Satellite imaging of the 2015 M 7.2 earthquake in the Central Pamir, Tajikistan, elucidates a sequence of shallow strike-slip ruptures of the Sarez-Karakul fault. Geophys. J. Int. 2020, 221, 1696–1718. [Google Scholar] [CrossRef]
- Zhu, C.M.; Zhang, X.; Fang, H.; Wang, W.S. Monitoring and Dynamic Analysis of Water Level of Sarez Lake by Remote Sensing Technology Basedon Icesat-1/2 Laser Altimeter System. Acta Geod. et Cartogr. Sin. 2021, 1, 29–34. [Google Scholar] [CrossRef]
- Alford, D.; Schuster, R. Usoi Landslide Dam and Lake Sarez: An Assessment of Hazard and Risk in the Pamir Mountains, Tajikistan; United Nations: New York, NY, USA, 2000; pp. 23–42. [Google Scholar]
- Grebby, S.; Sowter, A.; Gee, D.; Athab, A.; Barreda, B.; Betsabé, D.; Girindran, R.; Marsh, S. Remote Monitoring of Ground Motion Hazards in High Mountain Terrain Using Insar: A Case Study of The Lake Sarez Area, Tajikistan. Appl. Sci. 2021, 11, 8738. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- He, X.; Shi, G.; Xiao, R. Integration of GPS and DInSAR for 3-D Defoormation Monitoring Based on Ant Colony Optimization. J. Tongji Univ. (Nat. Sci.) 2015, 43, 1594–1600. [Google Scholar]
- Notti, D.; Calò, F.; Cigna, F.; Manunta, M.; Herrera, G.; Berti, M.; Meisina, C.; Tapete, D.; Zucca, F. A User-Oriented Methodology for DInSAR Time Series Analysis and Interpretation: Landslides and Subsidence Case Studies. Pure Appl. Geophys. 2015, 172, 3081–3105. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Z.; Li, Z. Recent Progress in Retrieving and Predicting Mining-induced 3D Displace-ments Using lnSAR. Acta Geod. et Cartogr. Sin. 2019, 48, 135–144. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, P. Current Performance of Open Position Service with Almost Fully Deployed Multi-GNSS Constellations: GPS, GLONASS, GALILEO, BDS-2, AND BDS-3. Adv. Space Res. 2022, 69, 1994–2019. [Google Scholar] [CrossRef]
- Huang, G.; Du, S.; Wang, D. GNSS Techniques for Real-Time Monitoring of Landslides: A Review. Satell. Navig. 2023, 4, 5. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, Z.; Huang, G.; Du, Y.; Wang, D. Review of GNSS Landslide Monitoring and Early Warning. Acta Geod. et Cartogr. Sin. 2022, 10, 1985–2000. [Google Scholar]
- Hohensinn, R.; Stauffer, R.; Glaner, M.F.; Pinzón, I.D.H.; Vuadens, E.; Rossi, Y.; Clinton, J.; Rothacher, M. Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the u-blox ZED-F9P for Kinematic Monitoring Applications. Remote Sens. 2022, 14, 5100. [Google Scholar] [CrossRef]
- Yang, Y.X.; Liu, L.; Li, J.L.; Yang, Y.F.; Zhang, T.Q.; Mao, Y.; Sun, B.J.; Ren, X. Featured services and performance of BDS-3. Sci. Bull. 2021, 66, 2135–2143. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Yang, Y.X.; Zeng, A.M.; Ma, Y.Y. Accuracy Assessment of Signal in Space of BDS-3 Global System. J. Geod. Geodyn. 2020, 40, 1000–1006. [Google Scholar] [CrossRef]
- Yuan, Y.B.; Mi, X.L.; Zhang, B.C. Initial Assessment of Single- and Dual-frequency BDS-3 RTK Positioning. Satell. Navig. 2020, 1, 31. [Google Scholar] [CrossRef]
- Han, J.; Tu, R.; Wang, W.; Zhao, F.; Bayindalai, S.G.M.; Eronsho, A.; Liu, W.J.; Lu, X. Application of deformation monitoring of sarez kol dam based on Beidou technology. Satell. Appl. 2022, 4, 35–40. [Google Scholar] [CrossRef]
- Han, J.Q.; Huang, G.W.; Zhang, Q.; Tu, R.; Du, Y.; Wang, X. A New Azimuth-Dependent Elevation Weight (ADEW) Model for Real-Time Deformation Monitoring in Complex Environment by Multi-GNSS. Sensors 2018, 18, 2473. [Google Scholar] [CrossRef]
- Zhang, X.H.; Li, X.X.; Li, P. Review of GNSS PPP and Its Application. Acta Geod. Et Cartogr. Sin. 2017, 46, 1399–1407. [Google Scholar]
Monitoring Site | Base Site | Length of Baseline (Unit: m) | Height Difference (Unit: m) |
---|---|---|---|
USY03 | USY02 | 1123.420 | −1.990 |
USY07 | USY02 | 4417.171 | 9.553 |
USY08 | USY02 | 2969.246 | −12.622 |
USY09 | USY02 | 3741.964 | −2.410 |
USY10 | USY02 | 1512.075 | 7.758 |
USY11 | USY02 | 1451.140 | 8.261 |
USY12 | USY02 | 2761.681 | 7.049 |
Parameter Setting | Baseline Network Solution | PPP | RTK |
---|---|---|---|
Satellite system | BDS + GPS | BDS + GPS | BDS + GPS |
Ephemeris type | IGS precise ephemeris | IGS precise ephemeris | Broadcast ephemeris |
Elevation mask angle | 10° | 10° | 10° |
Sampling rate | 30 s | 30 s | 1 s |
Cycle slip processing strategy | MW combination + GF combination | MW combination + GF combination | MW combination + GF combination |
Ambiguity processing strategy | Double difference ambiguity LAMBDA fixed | Nondifference ambiguity floating point solution | Double difference ambiguity LAMBDA fixed |
Ionospheric error | First-order dual-frequency ionospheric cancellation, high-order precise ionospheric product correction | Dual-frequency ionospheric elimination | Double difference elimination |
Tropospheric error | GPT2 model + piecewise constant estimation | Saastamoinen model + random walk estimation | Double difference elimination |
Site | Total Displacement (Unit: mm) | Monthly Rate (Unit: mm/m) | ||||
---|---|---|---|---|---|---|
E–W | N–S | U–D | E–W | N–S | U–D | |
USY03 | 19.2 | 23.9 | −12.1 | 1.2 | 1.5 | −0.8 |
USY07 | −11.5 | −14.4 | −19.7 | −1.9 | −2.4 | −3.3 |
USY09 | −14.6 | −18.1 | −3.9 | −2.4 | −3.0 | −0.6 |
USY08 | 27.8 | 21.1 | −22.3 | 4.6 | 3.5 | −3.7 |
USY12 | 24.6 | 13.6 | −22.2 | 4.1 | 2.3 | −3.7 |
USY10 | 2.8 | −4.5 | −13.8 | 0.5 | −0.7 | −2.3 |
USY11 | 7.9 | −11.2 | −13.0 | 1.3 | −1.9 | −2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Tu, R.; Lu, X.; Fan, L.; Zhuang, W.; Wang, W.; Zhao, F.; Dalai, B.; Shonazarovich, G.M.; Safarov, M. Analysis of BDS/GPS Deformation Monitoring for the Lake Sarez Dam. Remote Sens. 2023, 15, 4773. https://doi.org/10.3390/rs15194773
Han J, Tu R, Lu X, Fan L, Zhuang W, Wang W, Zhao F, Dalai B, Shonazarovich GM, Safarov M. Analysis of BDS/GPS Deformation Monitoring for the Lake Sarez Dam. Remote Sensing. 2023; 15(19):4773. https://doi.org/10.3390/rs15194773
Chicago/Turabian StyleHan, Junqiang, Rui Tu, Xiaochun Lu, Lihong Fan, Wenquan Zhuang, Weisheng Wang, Feng Zhao, Bayin Dalai, Gulayozov Majid Shonazarovich, and Mustafo Safarov. 2023. "Analysis of BDS/GPS Deformation Monitoring for the Lake Sarez Dam" Remote Sensing 15, no. 19: 4773. https://doi.org/10.3390/rs15194773
APA StyleHan, J., Tu, R., Lu, X., Fan, L., Zhuang, W., Wang, W., Zhao, F., Dalai, B., Shonazarovich, G. M., & Safarov, M. (2023). Analysis of BDS/GPS Deformation Monitoring for the Lake Sarez Dam. Remote Sensing, 15(19), 4773. https://doi.org/10.3390/rs15194773