Contribution of Photogrammetry for Geometric Quality Assessment of Satellite Data for Global Climate Monitoring
Abstract
:1. Introduction
2. Long-Term Monitoring of ECVs within GCOS
3. Geometric Quality Assessment (GQA) of ECVs Using Photogrammetry
3.1. A Review of ECVs Observed with Satellite Products
3.2. GQA of Satellite Sensors (in Particular Those Related to ECVs)
3.2.1. Various GQA Aspects and Measures
- Absolute and relative geometric accuracy;
- Image inner geometry;
- Pointing accuracy and variations in it along the orbit;
- Band-to-band (interband) registration accuracy;
- Stereoscopic capability.
3.2.2. MSG SEVIRI
3.2.3. AVHRR
3.2.4. MODIS
3.2.5. Sentinel-3 (OLCI and SLSTR)
4. Conclusions and Future Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- World Meteorological Organization. 2022 GCOS Implementation Plan; GCOS-244; World Meteorological Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Meteorological Organization. The Second Report on the Adequacy of the Global Observing Systems for Climate in Support of the UNFCCC; WMO TD 1143; WMO GCOS-82; WMO GCOS: Geneva, Switzerland, 2003; p. 81. [Google Scholar]
- World Meteorological Organization. 2004 GCOS Implementation Plan. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC; WMO TD 1219; WMO GCOS-92; WMO GCOS: Geneva, Switzerland, 2004; p. 136. [Google Scholar]
- Committee on Earth Observation Satellites (CEOS). Report on a Coordinated Response from Space Agencies Involved in Global Observations to the Needs Expressed in the Global Climate Observing System Implementation Plan. UNFCCC Document FCCC/SBSTA/2006/MISC.14. 2006. Available online: https://unfccc.int/documents/4416 (accessed on 25 July 2023).
- Karl, T.R.; Diamond, H.J.; Bojinski, S.; Butler, J.H.; Dolman, H.; Haeberli, W.; Harrison, D.E.; Nyong, A.; Rösner, S.; Seiz, G.; et al. Observation needs for climate information, prediction and application: Capabilities of existing and future observing systems. Procedia Environ. Sci. 2010, 1, 192–205. [Google Scholar] [CrossRef]
- Seiz, G.; Foppa, N.; Meier, M.; Paul, F. The role of satellite data within GCOS Switzerland. Remote Sens. 2011, 3, 767–780. [Google Scholar] [CrossRef]
- Dowell, M.; Lecomte, P.; Husband, R.; Schulz, J.; Mohr, T.; Tahara, Y.; Eckman, R.; Lindstrom, E.; Wooldridge, C.; Hilding, S.; et al. Strategy Towards an Architecture for Climate Monitoring from Space. 2013, p. 39. Available online: http://www.cgms-info.org/ (accessed on 30 July 2023).
- The Joint CEOS/CGMS Working Group on Climate (WGClimate). Space Agency Response to GCOS Implementation Plan. ESA-ECO-EOPS-WGCL-RP-17-0061. Version 2.2.1. 2018. Available online: www.ceos.org (accessed on 30 July 2023).
- World Meteorological Organization. 2010 GCOS Implementation Plan. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update); WMO TD 1523; WMO GCOS-138; WMO GCOS: Geneva, Switzerland, 2010; p. 180. [Google Scholar]
- World Meteorological Organization. 2016 GCOS Implementation Plan. The Global Observing System for Climate: Implementation Needs; GCOS-200; World Meteorological Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Kocaman Aksakal, S. Geometric Accuracy Investigations of SEVIRI High Resolution Visible (HRV) Level 1.5 Imagery. Remote Sens. 2013, 5, 2475–2491. [Google Scholar] [CrossRef]
- Seiz, G.; Baltsavias, E.; Gruen, A. Satellite- and Ground-Based Stereo Analysis of Clouds. J. Jpn. Soc. Photogramm. Remote Sens. 2003, 44, 36–45. [Google Scholar] [CrossRef]
- Clothiaux, E.E.; Fischer, J.; Quiby, J.; Seiz, G. Photogrammetry and Remote Sensing for Meteorological Applications—Challenges for the Future; Commemorative Volume for the 60th Birthday of Prof. Dr. Armin Grün; ETH Zurich: Zurich, Switzerland, 2004; 284p. [Google Scholar]
- Gruen, A.; Kocaman, S. Optical Sensors High Resolution: Geometry Validation Methodology; Technical Report Submitted to ESA/ESRIN. RFQ/3-11780/06/I-OL; ETH Zurich: Zurich, Switzerland, 2008. [Google Scholar]
- Kocaman, S.; Neuhaus, C.; Baltsavias, E.; Schindler, K. Geometric Quality Analysis of AVHRR Orthoimages. Remote Sens. 2015, 7, 3293–3319. [Google Scholar] [CrossRef]
- World Meteorological Organization. The 2022 GCOS ECVs Requirements; GCOS-245; World Meteorological Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Meteorological Organization. Systematic Observation Requirements for Satellite-Based Products for Climate; WMO TD 1338; WMO GCOS-107; WMO GCOS: Geneva, Switzerland, 2006; p. 90. [Google Scholar]
- Kocaman, S.; Debaecker, V.; Bas, S.; Saunier, S.; Garcia, K.; Just, D. A Comprehensive Geometric Quality Assessment Approach for MSG SEVIRI Imagery. Adv. Space Res. 2022, 69, 1462–1480. [Google Scholar] [CrossRef]
- Kocaman, S.; Baltsavias, E.; Schindler, K. Analysis of the Geometric Accuracy of Satellite-Based Products of GCOS Switzerland; Swiss GCOS Office at Meteoswiss: Zurich, Switzerland, 2014. [Google Scholar]
- Debaecker, V.; Saunier, S.; Kocaman, S.; Bas, S. Level 1 GQA Tool Study Algorithm Theoretical Basis Document (ATBD) for GQA Tool; Technical Report; GQA-TPZ-009-ATBD Issue 1.2; EUMETSAT: Darmstadt, Germany, 26 November 2020.
- Kocaman, S.; Saunier, S. Level 1 GQA Tool Study Report Part 1. Technical Report Submitted to EUMETSAT. GQA-TPZ-007-SREP Issue 1.1. 22 September 2019. Available online: https://www-cdn.eumetsat.int/files/2021-08/GQA-TPZ-007-SREP_1.1_Part1%20-%20Final.pdf (accessed on 9 July 2023).
- Kocaman, S.; Bas, S.; Debaecker, V.; Saunier, S. Level 1 GQA Tool Study Report Part 2. Technical Report Submitted to EUMETSAT. GQA-TPZ-017-SREP Issue 1.0. 7 July 2020. Available online: https://www-cdn.eumetsat.int/files/2021-08/GQA-TPZ-017-SREP_1.0_Part2%20-%20Final.pdf (accessed on 9 July 2023).
- Bas, S.; Debaecker, V.; Kocaman, S.; Saunier, S.; Garcia, K.; Just, D. Investigations on the Geometric Quality of AVHRR Level 1B Imagery Aboard MetOp-A. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2021, 89, 519–534. [Google Scholar] [CrossRef]
- Debaecker, V.; Kocaman, S.; Saunier, S.; Garcia, K.; Bas, S.; Just, D. On the Geometric Accuracy and Stability of MSG SEVIRI Images. Atmos. Environ. 2021, 262, 118645. [Google Scholar] [CrossRef]
- Kocaman, S.; Debaecker, V.; Bas, S.; Saunier, S.; Garcia, K.; Just, D. Investigations on the Global Image Datasets for the Absolute Geometric Quality Assessment of MSG SEVIRI Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1339–1346. [Google Scholar] [CrossRef]
- Kocaman Aksakal, S.; Baltsavias, E.; Schindler, K. Geometric Accuracy Investigations of AVHRR Orthoimages. In Proceedings of the 35th Asian Conference on Remote Sensing, Nay Pyi Taw, Myanmar, 27–31 October 2014. [Google Scholar]
- Kocaman Aksakal, S.; Baltsavias, E.; Schindler, K. Geometric accuracy assessment of AVHRR orthoimages from METOP-2. In Proceedings of the EUMETSAT Conference, Geneva, Switzerland, 22–26 September 2014. [Google Scholar]
- Kocaman Aksakal, S.; Baltsavias, E.; Schindler, K. Geometric Accuracy Assessment of MSG-SEVIRI Level 1.5 Imagery. In Proceedings of the Joint EUMETSAT/AMS Conference, Vienna, Austria, 16–20 September 2013. [Google Scholar]
- Kocaman Aksakal, S.; Baltsavias, E.; Schindler, K. Analysis of the Geometric Accuracy of MSG-SEVIRI Imagery with Focus on Estimation of Climate Variables. In Proceedings of the 34th Asian Conference on Remote Sensing, Bali, Indonesia, 20–24 October 2013. [Google Scholar]
- Gruen, A. Development and Status of Image Matching in Photogrammetry. Photogramm. Rec. 2012, 27, 36–57. [Google Scholar] [CrossRef]
- Gruen, A. Adaptive least squares correlation: A powerful image matching technique. S. Afr. J. Photogramm. Remote Sens. Cartogr. 1985, 3, 175–187. [Google Scholar]
- Saunders, R. Satellite-based ECV products. In Proceedings of the Copernicus Workshop on Climate Observation Requirements, Reading, UK, 29 June–2 July 2015; Available online: https://www.ecmwf.int/sites/default/files/elibrary/2015/13467-satellite-based-ecv-products.pdf (accessed on 30 July 2023).
- Leachtenauer, J.C.; Malila, W.; Irvine, J.; Colburn, L.; Salvaggio, N. General image-quality equation: GIQE. Appl. Opt. 1997, 36, 8322–8328. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, I.; Kocaman, S.; Saunier, S.; Albinet, C. Radiometric Quality Assessment for Maxar HD Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 797–804. [Google Scholar] [CrossRef]
- Valenzuela, A.Q.; Reyes, J.C.G. Basic spatial resolution metrics for satellite imagers. IEEE Sens. J. 2019, 19, 4914–4922. [Google Scholar] [CrossRef]
- Gruen, A. The accuracy potential of the modern bundle block adjustment in aerial photogrammetry. Photogramm. Eng. Remote Sens. 1982, 48, 45–54. [Google Scholar]
- EUMETSAT. 2023. Available online: https://www.eumetsat.int/mtg-data (accessed on 7 July 2023).
- Picart, S.S.; Marsouin, A.; Legendre, G.; Roquet, H.; Péré, S.; Nano-Ascione, N.; Gianelli, T. A Sea Surface Temperature data record (2004–2012) from Meteosat Second Generation satellites. Remote Sens. Environ. 2020, 240, 111687. [Google Scholar] [CrossRef]
- Meyer, H.; Schmidt, J.; Detsch, F.; Nauss, T. Hourly gridded air temperatures of South Africa derived from MSG SEVIRI. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 261–267. [Google Scholar] [CrossRef]
- Martins, J.P.A.; Trigo, I.F.; Ghilain, N.; Jimenez, C.; Göttsche, F.-M.; Ermida, S.L.; Olesen, F.-S.; Gellens-Meulenberghs, F.; Arboleda, A. An All-Weather Land Surface Temperature Product Based on MSG/SEVIRI Observations. Remote Sens. 2019, 11, 3044. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y.; Jiménez-Muñoz, J.C.; Skokovic, D.; Sòria, G. Near real-time estimation of Sea and Land surface temperature for MSG SEVIRI sensors. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102096. [Google Scholar] [CrossRef]
- García-Haro, F.J.; Camacho, F.; Martínez, B.; Campos-Taberner, M.; Fuster, B.; Sánchez-Zapero, J.; Gilabert, M.A. Climate Data Records of Vegetation Variables from Geostationary SEVIRI/MSG Data: Products, Algorithms and Applications. Remote Sens. 2019, 11, 2103. [Google Scholar] [CrossRef]
- Ghilain, N.; Arboleda, A.; Batelaan, O.; Ardö, J.; Trigo, I.; Barrios, J.M.; Gellens-Meulenberghs, F. A new retrieval algorithm for soil moisture index from thermal infrared sensor on-board geostationary satellites over Europe and Africa and its validation. Remote Sens. 2019, 11, 1968. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; De Feis, I.; Amoroso, M.; Venafra, S.; Trigo, I.F.; Watts, P. Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances. Atmos. Meas. Tech. 2013, 6, 3613–3634. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Göttsche, F.; Trigo, I.F.; Watts, P. Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: A validation and intercomparison study. Atmos. Meas. Tech. 2015, 8, 2981–2997. [Google Scholar] [CrossRef]
- Nain, J.; Mueller, J. Improving band to band registration accuracy of SEVIRI level 1.5 products. In Proceedings of the Image and Signal Processing for Remote Sensing XXV, International Society for Optics and Photonics, Strasbourg, France, 9–12 September 2019; Volume 11155, p. 1115503. [Google Scholar] [CrossRef]
- Shi, J.; Tomasi, C. Good features to track. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Tomasi, C.; Kanade, T. Detection and Tracking of Point Features; Technical Report CMU-CS-91-132; Carnegie Mellon University: Pittsburgh, PA, USA, April 1991. [Google Scholar]
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679. [Google Scholar]
- De Bartolomei, M.; Müller, J.; Nain, J.; Munro, R.; Sunda, M.; Horn, C.; Mammone, C.; Debaecker, V.; Kocaman, S. Image Geometric Quality Assessment in the EPS-SG Calibration and Validation. In Proceedings of the EUMETSAT Meteorological Satellite Conference 2022, Brussels, Belgium, 19–23 September 2022. [Google Scholar]
- Cournet, M.; Giros, A.; Dumas, L.; Delvit, J.M.; Greslou, D.; Languille, F.; Michel, J. 2D Sub-Pixel Disparity Measurement Using QPEC/Medicis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 291–298. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Improving Landsat Multispectral Scanner (MSS) geolocation by least-squares-adjustment based time-series co-registration. Remote Sens. Environ. 2021, 252, 112181. [Google Scholar] [CrossRef]
- Tan, B.; Dellomo, J.J.; Folley, C.N.; Grycewicz, T.J.; Houchin, S.; Isaacson, P.J.; Johnson, P.D.; Porter, B.C.; Reth, A.D.; Thiyanaratnam, P.; et al. GOES-R series image navigation and registration performance assessment tool set. J. Appl. Remote Sens. 2020, 14, 032405. [Google Scholar] [CrossRef]
- EUMETSAT. AVHRR Level 1b Product Guide. Doc. no: EUM/OPS-EPS/MAN/04/0029, Issue: v3A. 21 January 2011. Available online: https://www-cdn.eumetsat.int/files/2020-04/pdf_avhrr_l1b_product_guide.pdf (accessed on 25 July 2023).
- EUMETSAT. AVHRR Factsheet. Doc. no: EUM/OPS/DOC/09/5183, Issue: v1C e-Signed. 1 December 2015. Available online: https://www-cdn.eumetsat.int/files/2020-04/pdf_avhrr_factsheet.pdf (accessed on 25 July 2023).
- Schmidt, M.; King, E.A.; McVicar, T.R. Assessing the geometric accuracy of AVHRR data processed with a state vector based navigation system. Can. J. Remote Sens. 2008, 34, 496–508. [Google Scholar] [CrossRef]
- Wu, X.; Naegeli, K.; Wunderle, S. Geometric accuracy assessment of coarse-resolution satellite datasets: A study based on AVHRR GAC data at the sub-pixel level. Earth Syst. Sci. Data 2020, 12, 539–553. [Google Scholar] [CrossRef]
- Xiong, J.; Toller, G.; Chiang, V.; Sun, J.; Esposito, J.; Barnes, W. MODIS Level 1B Algorithm Theoretical Basis Document; NASA MODIS Characterization Support Team: Washington, DC, USA, 2005.
- NASA MODIS Characterization Support Team. MODIS Level 1B Algorithm Theoretical Basis Document Version 4. 14 June 2013. Available online: https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/MODIS_L1B_ATBD_ver8_finalupload.pdf (accessed on 25 July 2023).
- Bisceglie, M.; Episcopo, R.; Galdi, C.; Ullo, S.L. Destriping MODIS data using overlapping field-of-view method. IEEE Trans. Geosci. Remote Sens. 2009, 47, 637–651. [Google Scholar] [CrossRef]
- Bouali, M.; Ignatov, A. Estimation of Detector Biases in MODIS Thermal Emissive Bands. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4339–4348. [Google Scholar] [CrossRef]
- Arnold, G.T.; Hubanks, P.A.; Platnick, S.; King, M.D.; Bennartz, R. Impact of Aqua Misregistration on MYD06 Cloud Retrieval Properties. In Proceedings of the MODIS Science Team Meeting, Washington, DC, USA, 26–28 January 2010. [Google Scholar]
- Lin, G.G.; Wolfe, R.E.; Zhang, P.; Tilton, J.C.; Dellomo, J.J.; Tan, B. Thirty-six combined years of MODIS geolocation trending. In Proceedings of the Earth Observing Systems XXIV, San Diego, CA, USA, 11–15 August 2019; Volume 11127, pp. 219–230. [Google Scholar] [CrossRef]
- Sentinel-3. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3 (accessed on 25 July 2023).
- Bourg, L.; Bruniquel, J.; Henocq, C.; Morris, H.; Dash, J.; Preusker, R.; Dransfeld, S. Copernicus Sentinel-3 OLCI Land User Handbook. 14 April 2023. Available online: https://sentinel.esa.int/documents/247904/4598066/Sentinel-3-OLCI-Land-Handbook.pdf (accessed on 17 July 2023).
- Polehampton, E.; Cox, C.; Smith, D.; Ghent, D.; Wooster, M.; Xu, W.; Bruniquel, K.; Henocq, C.; Dransfeld, S. Copernicus Sentinel-3 SLSTR Land User Handbook. 14 April 2023. Available online: https://sentinel.esa.int/documents/247904/4598082/Sentinel-3-SLSTR-Land-Handbook.pdf (accessed on 17 July 2023).
- Carr, J.L.; Wu, D.L.; Friberg, M.D.; Summers, T.C. Multi-LEO Satellite Stereo Winds. Remote Sens. 2023, 15, 2154. [Google Scholar] [CrossRef]
- Saunier, S.; Pflug, B.; Lobos, I.M.; Franch, B.; Louis, J.; De Los Reyes, R.; Debaecker, V.; Cadau, E.G.; Boccia, V.; Gascon, F.; et al. Sen2Like: Paving the Way towards Harmonization and Fusion of Optical Data. Remote Sens. 2022, 14, 3855. [Google Scholar] [CrossRef]
- Mannan, R.; Halsall, K.; Albinet, C.; Ottavianelli, G.; Goryl, P.; Boccia, V.; Melchiorre, A.; Piro, A.; Giudici, D.; Fox, N.; et al. ESA’s Earthnet data assessment pilot: Paving the way for new space players. In Proceedings of the International Society for Optics and Photonics, Sensors, Systems, and Next-Generation Satellites XXIII, Strasbourg, France, 10 October 2019; Volume 11151. [Google Scholar] [CrossRef]
- ESA EDAP. Earthnet Data Assessment Pilot Project. 2022. Available online: https://earth.esa.int/eogateway/activities/edap (accessed on 30 July 2023).
- Saunier, S.; Karakas, G.; Yalcin, I.; Done, F.; Mannan, R.; Albinet, C.; Goryl, P.; Kocaman, S. SkySat Data Quality Assessment within the EDAP Framework. Remote Sens. 2022, 14, 1646. [Google Scholar] [CrossRef]
- Copernicus. Contributing Missions. Available online: https://www.copernicus.eu/en/contributing-missions (accessed on 30 July 2023).
- QA4EO. Available online: https://qa4eo.org/ (accessed on 30 July 2023).
Satellite/ Product | Product | Imaging Date(s) | GSD * | Bands | Usage | GQA Types | Source | References |
---|---|---|---|---|---|---|---|---|
SEVIRI aboard Meteosat 8 | Level 1.5 | 2008, 23 January 2020 | 1 km and 3 km | HRV, VIS0.6, VIS0.8, IR10.8 | Target (assessed) images | Absolute, relative, band-to-band | EUMETSAT ** | [20,21,25] |
SEVIRI aboard Meteosat 10 | Level 1.5 | 5 January 2020 | 1 km and 3 km | HRV, VIS0.6, VIS0.8, IR10.8 | Target (assessed) images | Absolute, relative, band-to-band | EUMETSAT | [21,25] |
SEVIRI aboard Meteosat 11 | Level 1.5 | 1 July 2018–1 June 2019 at 12:00 UTC | 1 km and 3 km | HRV, VIS0.6, VIS0.8, IR10.8 | Target (assessed) images | Absolute, relative, band-to-band | EUMETSAT | [21,25] |
AVHRR aboard MetOP-A | Level 1B | 2008, 5 February 2020, 5 March 2020, 5 April 2020 | 1.1 km | 1, 2, 3A | Target (assessed) images | Absolute, relative, band-to-band | EUMETSAT | [20,23,24] |
Sentinel-3 OLCI | Level 1 | 2019, 2020 | 300 m | B4, B7, B17 | Target (assessed) images | Absolute, relative, band-to-band | ESA ***, EUMETSAT | [23] |
Sentinel-3 SLSTR | Level 1 | 2019, 2020 | 500 m | S3, S6, S7, S8, F1, F2 | Target (assessed) images | Absolute, relative, band-to-band | ESA, EUMETSAT | [23] |
MODIS aboard Terra and Aqua | Level 1B | 2008 | 250 m, 500 m, 1 km | All bands except 5, 13–16, 21, 24–30, 33–36 for Terra and B6 for Aqua | Target (assessed) images | Absolute, relative, band-to-band | NASA | [20] |
Landsat 4–5 and 7 | Landsat GLS2010 L1 (orthorectified) | 2008–2012 | 30 m | B4, B5, B6, B10 | Reference | Absolute | NASA/USGS | [26] |
MERIS **** aboard Envisat-1 | L3 mosaic weekly synthesis (orthorectified) | 2018–2020 | 260 m × 300 m | B7, B12, B13 | Reference | Absolute | ESA CCI | [26] |
Sentinel-2 | Cloudless mosaic (orthorectified) | Yearly mosaics (2016, 2018–2021) | 10 m | RGB | Reference | Absolute | EOX IT Services | [26] |
ECV Product | Domain | Requirement | |||||
---|---|---|---|---|---|---|---|
Horizontal Resolution | Vertical Resolution | Temporal Resolution | Timeliness | Measurement Uncertainty (2σ) | Stability (per Decade) | ||
Cloud cover | Atmospheric | G: 25 m B: 100 m T: 500 m | - | G: 1 h B: 24 h T: 720 h | G: 1 h B: 3 h T: 12 h | G: 3% B: 6% T: 12% | G: 0.3% B: 0.6% T: 1.2% |
Sea Surface Temperature (SST) | Oceanic | G: 5 km B: - T: 100 km | - | G: 1 h B: - T: 7 d | G: 3 h B: - T: 24 h | G: 0.05 K B: - T: 0.3 K | G: 0.01 K B: - T: 0.1 K |
Land Cover | Terrestrial | G: 10 m–300 m B: 300 m–1 km T: >1 km | - | G: 1 month B: 12 months T: 60 months | G: 3 months B: 12 months T: 60 months | G: 5% B: 20% T: 35% | G: 5% B: 15% T: 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocaman, S.; Seiz, G. Contribution of Photogrammetry for Geometric Quality Assessment of Satellite Data for Global Climate Monitoring. Remote Sens. 2023, 15, 4575. https://doi.org/10.3390/rs15184575
Kocaman S, Seiz G. Contribution of Photogrammetry for Geometric Quality Assessment of Satellite Data for Global Climate Monitoring. Remote Sensing. 2023; 15(18):4575. https://doi.org/10.3390/rs15184575
Chicago/Turabian StyleKocaman, Sultan, and Gabriela Seiz. 2023. "Contribution of Photogrammetry for Geometric Quality Assessment of Satellite Data for Global Climate Monitoring" Remote Sensing 15, no. 18: 4575. https://doi.org/10.3390/rs15184575
APA StyleKocaman, S., & Seiz, G. (2023). Contribution of Photogrammetry for Geometric Quality Assessment of Satellite Data for Global Climate Monitoring. Remote Sensing, 15(18), 4575. https://doi.org/10.3390/rs15184575