Mapping the National Seagrass Extent in Seychelles Using PlanetScope NICFI Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Datasets
2.3. Earth Observation Framework
2.3.1. Multitemporal Data Analytics for Planet NICFI Basemaps
2.3.2. Feature Engineering
2.3.3. Normalisation of Reference Data
2.3.4. Classification
2.4. Accuracy Assessment
3. Results
4. Discussion
4.1. Challenges
4.2. Transferability
4.3. Beyond PlanetScope
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, N.C.; van Dam, A.A.; Finlayson, C.M.; McInnes, R.J. Worth of wetlands: Revised global monetary values of coastal and inland wetland ecosystem services. Mar. Freshw. Res. 2019, 70, 1189–1194. [Google Scholar] [CrossRef]
- Malerba, M.E.; Duarte de Paula Costa, M.; Friess, D.A.; Schuster, L.; Young, M.A.; Lagomasino, D.; Serrano, O.; Hickey, S.M.; York, P.H.; Rasheed, M.; et al. Remote sensing for cost-effective blue carbon accounting. Earth-Sci. Rev. 2023, 238, 104337. [Google Scholar] [CrossRef]
- Unsworth, R.K.F.; Nordlund, L.M.; Cullen-Unsworth, L.C. Seagrass meadows support global fisheries production. Conserv. Lett. 2019, 12, e12566. [Google Scholar] [CrossRef]
- Hughes, A.R.; Williams, S.L.; Duarte, C.M.; Heck, K.L., Jr.; Waycott, M. Associations of concern: Declining seagrasses and threatened dependent species. Front. Ecol. Environ. 2009, 7, 242–246. [Google Scholar] [CrossRef]
- de los Santos, C.B.; Olivé, I.; Moreira, M.; Silva, A.; Freitas, C.; Araújo Luna, R.; Quental-Ferreira, H.; Martins, M.; Costa, M.M.; Silva, J.; et al. Seagrass meadows improve inflowing water quality in aquaculture ponds. Aquaculture 2020, 528, 735502. [Google Scholar] [CrossRef]
- Dunic, J.C.; Brown, C.J.; Connolly, R.M.; Turschwell, M.P.; Côté, I.M. Long-term declines and recovery of meadow area across the world’s seagrass bioregions. Glob. Change Biol. 2021, 27, 4096–4109. [Google Scholar] [CrossRef]
- Duffy, J.E.; Benedetti-Cecchi, L.; Trinanes, J.; Muller-Karger, F.E.; Ambo-Rappe, R.; Boström, C.; Buschmann, A.H.; Byrnes, J.; Coles, R.G.; Creed, J.; et al. Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Front. Mar. Sci. 2019, 6, 317. [Google Scholar] [CrossRef]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef]
- Fortes, M.D.; Ooi, J.L.S.; Tan, Y.M.; Prathep, A.; Bujang, J.S.; Yaakub, S.M. Seagrass in Southeast Asia: A review of status and knowledge gaps, and a road map for conservation. Bot. Mar. 2018, 61, 269–288. [Google Scholar] [CrossRef]
- Mtwana Nordlund, L.; Koch, E.W.; Barbier, E.B.; Creed, J.C. Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions. PLoS ONE 2016, 11, e0163091. [Google Scholar] [CrossRef]
- Losciale, R.; Day, J.; Heron, S. Conservation status, research, and knowledge of seagrass habitats in World Heritage properties. Conserv. Sci. Pract. 2022, 4, e12830. [Google Scholar] [CrossRef]
- Zhou, Q.; Ke, Y.; Wang, X.; Bai, J.; Zhou, D.; Li, X. Developing seagrass index for long term monitoring of Zostera japonica seagrass bed: A case study in Yellow River Delta, China. ISPRS J. Photogramm. Remote Sens. 2022, 194, 286–301. [Google Scholar] [CrossRef]
- Unsworth, R.K.F.; McKenzie, L.J.; Collier, C.J.; Cullen-Unsworth, L.C.; Duarte, C.M.; Eklöf, J.S.; Jarvis, J.C.; Jones, B.L.; Nordlund, L.M. Global challenges for seagrass conservation. Ambio 2019, 48, 801–815. [Google Scholar] [CrossRef]
- Losciale, R.; Hay, R.; Rasheed, M.; Heron, S. ‘The public perception of the role, importance, and vulnerability of seagrass. A case study from the Great Barrier Reef’. Environ. Dev. 2022, 44, 100757. [Google Scholar] [CrossRef]
- Buelow, C.A.; Connolly, R.M.; Turschwell, M.P.; Adame, M.F.; Ahmadia, G.N.; Andradi-Brown, D.A.; Bunting, P.; Canty, S.W.J.; Dunic, J.C.; Friess, D.A.; et al. Ambitious global targets for mangrove and seagrass recovery. Curr. Biol. 2022, 32, 1641–1649.e1643. [Google Scholar] [CrossRef]
- Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote Sens. 2018, 10, 1227. [Google Scholar] [CrossRef]
- Phinn, S.; Roelfsema, C.; Kovacs, E.; Canto, R.; Lyons, M.; Saunders, M.; Maxwell, P. Mapping, Monitoring and Modelling Seagrass Using Remote Sensing Techniques. In Seagrasses of Australia: Structure, Ecology and Conservation; Larkum, A.W.D., Kendrick, G.A., Ralph, P.J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 445–487. [Google Scholar]
- Rowlands, G.; Purkis, S.; Riegl, B.; Metsamaa, L.; Bruckner, A.; Renaud, P. Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia. Mar. Pollut. Bull. 2012, 64, 1222–1237. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Blume, A.; Pertiwi, A.P.; Lee, C.B.; Traganos, D. Bahamian seagrass extent and blue carbon accounting using Earth Observation. Front. Mar. Sci. 2023, 10, 1058460. [Google Scholar] [CrossRef]
- Traganos, D.; Lee, C.B.; Blume, A.; Poursanidis, D.; Čižmek, H.; Deter, J.; Mačić, V.; Montefalcone, M.; Pergent, G.; Pergent-Martini, C.; et al. Spatially Explicit Seagrass Extent Mapping Across the Entire Mediterranean. Front. Mar. Sci. 2022, 9, 871799. [Google Scholar] [CrossRef]
- Traganos, D.; Pertiwi, A.P.; Lee, C.B.; Blume, A.; Poursanidis, D.; Shapiro, A. Earth observation for ecosystem accounting: Spatially explicit national seagrass extent and carbon stock in Kenya, Tanzania, Mozambique and Madagascar. Remote Sens. Ecol. Conserv. 2022, 8, 778–792. [Google Scholar] [CrossRef]
- Trinh, X.T.; Takeuchi, W. 30 Years National Scale Seagrass Mapping in Vietnam with Landsat and Sentinel Imagery on Google Earth Engine. In Proceedings of the 40th Asian Conference on Remote Sensing (ACRS 2019), Daejeon, Republic of Korea, 14–18 October 2019. [Google Scholar]
- Sebastian, T.; Sreenath, K.R.; Sreeram, M.P.; Ranith, R. Dwindling seagrasses: A multi-temporal analysis on Google Earth Engine. Ecol. Inform. 2023, 74, 101964. [Google Scholar] [CrossRef]
- Planet Team. Planet Application Program Interface: In Space for Life on Earth. 2017. Available online: https://api.planet.com (accessed on 1 December 2022).
- Sano, E.E.; Bolfe, É.L.; Parreiras, T.C.; Bettiol, G.M.; Vicente, L.E.; Sanches, I.D.A.; Victoria, D.d.C. Estimating Double Cropping Plantations in the Brazilian Cerrado through PlanetScope Monthly Mosaics. Land 2023, 12, 581. [Google Scholar] [CrossRef]
- Rowlands, G.; Antat, S.; Baez, S.; Cupidon, A.; Faure, A.; Harlay, J.; Lee, C.; Martin, L.; Masque, P.; Morgan, M.; et al. The Seychelles Seagrass Mapping and Carbon Assessment; Government of Seychelles, Ministry of Agriculture: Victoria Mahe, Seychelles, 2023.
- Central Intelligence Agency. The World Factbook 2021: Seychelles. Available online: https://www.cia.gov/the-world-factbook/countries/seychelles/ (accessed on 15 March 2023).
- Benzaken, D.; Hoareau, K. From concept to practice: The blue economy in Seychelles. In The Blue Economy in Sub-Saharan Africa: Working for a Sustainable Future; Sparks, D., Ed.; Routledge: London, UK, 2021; pp. 143–157. [Google Scholar]
- The Nature Conservancy. Evaluation of Ecosystem Goods and Services for Seychelles’ Existing and Proposed Protected Area System; An Unpublished Report to Government of Seychelles—MACCE and SWIOFish3 Programme; The Nature Conservancy: Arlington, VA, USA, 2022; p. 78. [Google Scholar]
- Chanda, A. Blue Carbon Dynamics in the Indian Ocean Seagrass Ecosystems. In Blue Carbon Dynamics of the Indian Ocean, 1st ed.; Chanda, A., Das, S., Ghosh, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 145–169. [Google Scholar]
- Hamylton, S.; Hagan, A.; Bunbury, N.; Fleischer-Dogley, F.; Spencer, T. Mapping the Lagoon at Aldabra Atoll, Western Indian Ocean; Papers: Part B; University of Wollongong, Faculty of Science, Medicine and Health: Wollongong, NSW, Australia, 2018. [Google Scholar]
- Payet, R.; Agricole, W. Climate Change in the Seychelles: Implications for Water and Coral Reefs. AMBIO A J. Hum. Environ. 2006, 35, 182–189. [Google Scholar] [CrossRef]
- Duarte, B.; Martins, I.; Rosa, R.; Matos, A.R.; Roleda, M.Y.; Reusch, T.B.H.; Engelen, A.H.; Serrão, E.A.; Pearson, G.A.; Marques, J.C.; et al. Climate Change Impacts on Seagrass Meadows and Macroalgal Forests: An Integrative Perspective on Acclimation and Adaptation Potential. Front. Mar. Sci. 2018, 5, 190. [Google Scholar] [CrossRef]
- Ingram, J.C.; Dawson, T.P. The impacts of a river effluent on the coastal seagrass habitats of Mahé, Seychelles. S. Afr. J. Bot. 2001, 67, 483–487. [Google Scholar] [CrossRef]
- Mackie, A.S.Y.; Oliver, P.G.; Darbyshire, T.; Mortimer, K. Shallow marine benthic invertebrates of the Seychelles Plateau: High diversity in a tropical oligotrophic environment. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 363, 203–228. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Barnes, R.S.K.; Smith, D.J.; Rothery, P.; Coral & Coastal Ecology of the Seychelles Research Programme. Littoral biodiversity across scales in the Seychelles, Indian Ocean. Mar. Biodivers. 2009, 39, 109–119. [Google Scholar] [CrossRef]
- Daly, R.; Stevens, G.; Daly, C.K. Rapid marine biodiversity assessment records 16 new marine fish species for Seychelles, West Indian Ocean. Mar. Biodivers. Rec. 2018, 11, 6. [Google Scholar] [CrossRef]
- Schutter, M.S.; Hicks, C.C. Networking the Blue Economy in Seychelles: Pioneers, resistance, and the power of influence. J. Political Ecol. 2019, 26, 425–447. [Google Scholar] [CrossRef]
- Lizcano-Sandoval, L.; Anastasiou, C.; Montes, E.; Raulerson, G.; Sherwood, E.; Muller-Karger, F.E. Seagrass distribution, areal cover, and changes (1990–2021) in coastal waters off West-Central Florida, USA. Estuar. Coast. Shelf Sci. 2022, 279, 108134. [Google Scholar] [CrossRef]
- Wicaksono, P.; Maishella, A.; Wahyudi, A.a.J.; Hafizt, M. Multitemporal seagrass carbon assimilation and aboveground carbon stock mapping using Sentinel-2 in Labuan Bajo 2019–2020. Remote Sens. Appl. Soc. Environ. 2022, 27, 100803. [Google Scholar] [CrossRef]
- Vizzari, M. PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine. Remote Sens. 2022, 14, 2628. [Google Scholar] [CrossRef]
- Wicaksono, P.; Lazuardi, W. Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int. J. Remote Sens. 2018, 39, 5739–5765. [Google Scholar] [CrossRef]
- Roca, M.; Navarro, G.; García-Sanabria, J.; Caballero, I. Monitoring Sand Spit Variability Using Sentinel-2 and Google Earth Engine in a Mediterranean Estuary. Remote Sens. 2022, 14, 2345. [Google Scholar] [CrossRef]
- Roy, D.P.; Huang, H.; Boschetti, L.; Giglio, L.; Yan, L.; Zhang, H.H.; Li, Z. Landsat-8 and Sentinel-2 burned area mapping—A combined sensor multi-temporal change detection approach. Remote Sens. Environ. 2019, 231, 111254. [Google Scholar] [CrossRef]
- Thales Alenia Space. Sentinel-2 Products Specification Document. Sentinel 2 Document Library. 2022, p. 552. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2-level-1-to-level-1c-product-specifications (accessed on 1 December 2022).
- Roy, D.P.; Huang, H.; Houborg, R.; Martins, V.S. A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery. Remote Sens. Environ. 2021, 264, 112586. [Google Scholar] [CrossRef]
- Kovacs, E.M.; Roelfsema, C.; Udy, J.; Baltais, S.; Lyons, M.; Phinn, S. Cloud Processing for Simultaneous Mapping of Seagrass Meadows in Optically Complex and Varied Water. Remote Sens. 2022, 14, 609. [Google Scholar] [CrossRef]
- Lyons, M.B.; Roelfsema, C.M.; Kennedy, E.V.; Kovacs, E.M.; Borrego-Acevedo, R.; Markey, K.; Roe, M.; Yuwono, D.M.; Harris, D.L.; Phinn, S.R.; et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 2020, 6, 557–568. [Google Scholar] [CrossRef]
- Li, J.; Fabina, N.S.; Knapp, D.E.; Asner, G.P. The Sensitivity of Multi-spectral Satellite Sensors to Benthic Habitat Change. Remote Sens. 2020, 12, 532. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef]
- Cordeiro, M.C.R.; Martinez, J.-M.; Peña-Luque, S. Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sens. Environ. 2021, 253, 112209. [Google Scholar] [CrossRef]
- Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; Van de Giesen, N. A 30 m Resolution Surface Water Mask Including Estimation of Positional and Thematic Differences Using Landsat 8, SRTM and OpenStreetMap: A Case Study in the Murray-Darling Basin, Australia. Remote Sens. 2016, 8, 386. [Google Scholar] [CrossRef]
- Lee, C.B.; Traganos, D.; Reinartz, P. A Simple Cloud-Native Spectral Transformation Method to Disentangle Optically Shallow and Deep Waters in Sentinel-2 Images. Remote Sens. 2022, 14, 590. [Google Scholar] [CrossRef]
- Lyzenga, D.R.; Malinas, N.P.; Tanis, F.J. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Hamylton, S. An evaluation of waveband pairs for water column correction using band ratio methods for seabed mapping in the Seychelles. Int. J. Remote Sens. 2011, 32, 9185–9195. [Google Scholar] [CrossRef]
- Achanta, R.; Süsstrunk, S. Superpixels and Polygons Using Simple Non-iterative Clustering. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4895–4904. [Google Scholar]
- Liu, Z.Y.-C.; Chamberlin, A.J.; Tallam, K.; Jones, I.J.; Lamore, L.L.; Bauer, J.; Bresciani, M.; Wolfe, C.M.; Casagrandi, R.; Mari, L.; et al. Deep Learning Segmentation of Satellite Imagery Identifies Aquatic Vegetation Associated with Snail Intermediate Hosts of Schistosomiasis in Senegal, Africa. Remote Sens. 2022, 14, 1345. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A. Thematic Classification Accuracy Assessment with Inherently Uncertain Boundaries: An Argument for Center-Weighted Accuracy Assessment Metrics. Remote Sens. 2020, 12, 1905. [Google Scholar] [CrossRef]
- NEP-WCMC, Short FT. Global Distribution of Seagrasses (Version 7.1). Seventh Update to the Data Layer Used in Green and Short (2003). 2021. Available online: https://data.unep-wcmc.org/datasets/7 (accessed on 1 February 2023).
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef] [PubMed]
- Bannari, A.; Ali, T.S.; Abahussain, A. The capabilities of Sentinel-MSI (2A/2B) and Landsat-OLI (8/9) in seagrass and algae species differentiation using spectral reflectance. Ocean Sci. 2022, 18, 361–388. [Google Scholar] [CrossRef]
- Bird, T.J.; Bates, A.E.; Lefcheck, J.S.; Hill, N.A.; Thomson, R.J.; Edgar, G.J.; Stuart-Smith, R.D.; Wotherspoon, S.; Krkosek, M.; Stuart-Smith, J.F.; et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Conserv. 2014, 173, 144–154. [Google Scholar] [CrossRef]
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Kwan, C.; Zhu, X.; Gao, F.; Chou, B.; Perez, D.; Li, J.; Shen, Y.; Koperski, K.; Marchisio, G. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images. Sensors 2018, 18, 1051. [Google Scholar] [CrossRef]
PlanetScope NICFI | Sentinel-2 | |
---|---|---|
Temporal Range | December 2015 to present | June 2015 to present (Level 1) March 2017 to present (Level 2) |
Image Type | Half-yearly composite (December 2015 to August 2020) Monthly composite (September 2020 to present) | Single Images |
Image Level | Surface reflectance | Top of Atmosphere (Level 1) Surface Reflectance (Level 2) |
Spectral Resolution | Four bands (R, G, B, N) | 13 bands |
Spatial Resolution | 4.77 m | 10 m 20 m 60 m |
Temporal Resolution of Sensor | 36 h on average [48] | 5 days |
Pre-processing/Atmospheric Correction | MODIS-based atmospheric correction Normalisation and harmonisation to Landsat SR data | Radiometric correction, Orthorectification (Level 1) Atmospheric correction (Level 2) |
North | Central | South | |
---|---|---|---|
Overall Accuracy | 69.7% | 73.4% | 75.7% |
Producer’s Accuracy (seagrass) | 62.6% | 89.2% | 86.9% |
User’s Accuracy (seagrass) | 63.9% | 77.7% | 81.5% |
F1 score (seagrass) | 63.3% | 83.1% | 84.1% |
Seed Grid size | 10 | 15 | 15 |
Compactness | 0.6 | 0.6 | 0.8 |
Size for Reduce Connected Components | 1000 | 100 | 1000 |
Region | Total Predicted Seagrass Area (km2) | ||
---|---|---|---|
Planet NICFI | Allen Coral Atlas | Combined Approach | |
North | 39.41 | 7.48 | 356.90 |
Central | 428.18 | 24.72 | 725.82 |
South | 331.38 | 174.63 | 337.93 |
Total | 798.97 | 206.83 | 1420.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.B.; Martin, L.; Traganos, D.; Antat, S.; Baez, S.K.; Cupidon, A.; Faure, A.; Harlay, J.; Morgan, M.; Mortimer, J.A.; et al. Mapping the National Seagrass Extent in Seychelles Using PlanetScope NICFI Data. Remote Sens. 2023, 15, 4500. https://doi.org/10.3390/rs15184500
Lee CB, Martin L, Traganos D, Antat S, Baez SK, Cupidon A, Faure A, Harlay J, Morgan M, Mortimer JA, et al. Mapping the National Seagrass Extent in Seychelles Using PlanetScope NICFI Data. Remote Sensing. 2023; 15(18):4500. https://doi.org/10.3390/rs15184500
Chicago/Turabian StyleLee, C. Benjamin, Lucy Martin, Dimosthenis Traganos, Sylvanna Antat, Stacy K. Baez, Annabelle Cupidon, Annike Faure, Jérôme Harlay, Matthew Morgan, Jeanne A. Mortimer, and et al. 2023. "Mapping the National Seagrass Extent in Seychelles Using PlanetScope NICFI Data" Remote Sensing 15, no. 18: 4500. https://doi.org/10.3390/rs15184500
APA StyleLee, C. B., Martin, L., Traganos, D., Antat, S., Baez, S. K., Cupidon, A., Faure, A., Harlay, J., Morgan, M., Mortimer, J. A., Reinartz, P., & Rowlands, G. (2023). Mapping the National Seagrass Extent in Seychelles Using PlanetScope NICFI Data. Remote Sensing, 15(18), 4500. https://doi.org/10.3390/rs15184500