Spatiotemporal Variation and Factors Influencing Water Yield Services in the Hengduan Mountains, China
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Source and Processing
3. Research Methods
3.1. Water Yield Model
3.2. Trend Analysis and Testing
4. Results
4.1. Spatial Pattern of HDMR Water Yield
4.2. Trend Analysis of HDMR Water Yield
4.3. Factors Influencing Water Yield
4.3.1. The Influence of Climatic Factors on Water Yield
4.3.2. The Influence of LULC on Water Yield
5. Discussion
5.1. Verification of InVEST
5.2. Effect of Vegetation Cover on WY
5.3. Factors Affecting Water Yield at Different Altitude Gradients
5.4. Uncertainty and Limitations
6. Conclusions
- The spatial pattern of water yield in the Hengduan Mountains for the past 20 years is consistent, showing a general decrease from southeast to northwest. For most of this 20-year period, the average annual water yield was concentrated between 300 mm and 700 mm, occupying about 95% of the area. The southwestern and eastern regions have high values of water yield, whereas the higher elevations in the northwestern area have low values.
- The water yield in the HDMR first decreased, reaching a minimum of 406 mm in 2011, and then increased from 2001 to 2020. It reached higher levels in 2004, 2018, and 2020. The water yield in the central and western HDMR decreased, whereas the eastern Sichuan Basin region showed an increase.
- The water yield services of the HDMR are affected by climate, vegetation, and elevation. Climatic factors are the primary influencing factors on the spatial and temporal variation of water yield in the area. Precipitation as the source of water yield is the main variable affecting the spatial and temporal patterns of water yield, and in most areas, evapotranspiration and land surface temperature have a negative impact on water yield.
- Water yield varies greatly with altitudinal gradient, generally showing a decreasing and then increasing trend, with the lowest water yield at about 3000 m above sea level, which may be related to LULC at different altitudes. On the altitudinal gradient, precipitation and actual evapotranspiration had a high direct effect, and land surface temperature and forest proportion had a high indirect effect on water yield through actual evapotranspiration.
- The relationship between the NDVI and water yield is not a simple linear relation-ship and varies significantly with altitude. In the low and middle altitude regions, the two are positively correlated, while in the high-altitude region, they are negatively correlated.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corvalan, C.; Hales, S.; McMichael, A.J.; Butler, C.; McMichael, A. Ecosystems and Human Well-Being: Health Synthesis; World Health Organization: Geneva, Switzerland, 2005; Volume 1. [Google Scholar]
- Chan, K.M.; Shaw, M.R.; Cameron, D.R.; Underwood, E.C.; Daily, G.C. Conservation planning for ecosystem services. PLoS Biol. 2006, 4, e379. [Google Scholar]
- Lian, X.; Qi, Y.; Wang, H.; Zhang, J.; Yang, R. Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water 2019, 12, 11. [Google Scholar]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar]
- Alcamo, J.; FlÖRke, M.; MÄRker, M. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 2007, 52, 247–275. [Google Scholar]
- Wu, S.; Zhou, W.; Yan, K.; Zhang, X. Response of the Water Conservation Function to Vegetation Dynamics in the Qinghai–Tibetan Plateau Based on MODIS Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1675–1686. [Google Scholar]
- Jia, G.; Hu, W.; Zhang, B.; Li, G.; Shen, S.; Gao, Z.; Li, Y. Assessing impacts of the Ecological Retreat project on water conservation in the Yellow River Basin. Sci. Total Env. 2022, 828, 154483. [Google Scholar]
- Yin, G.; Wang, X.; Zhang, X.; Fu, Y.; Hao, F.; Hu, Q. InVEST Model-Based Estimation of Water Yield in North China and Its Sensitivities to Climate Variables. Water 2020, 12, 1692. [Google Scholar]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Env. 2020, 733, 139423. [Google Scholar]
- Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the InVEST Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar]
- Wang, X.; Liu, G.; Lin, D.; Lin, Y.; Lu, Y.; Xiang, A.; Xiao, S. Water yield service influence by climate and land use change based on InVEST model in the monsoon hilly watershed in South China. Geomat. Nat. Hazards Risk 2022, 13, 2024–2048. [Google Scholar]
- Yang, X.; Chen, R.; Meadows, M.E.; Ji, G.; Xu, J. Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Supply 2020, 20, 1035–1045. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Env. 2020, 702, 134581. [Google Scholar]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, 1–13. [Google Scholar]
- Palomo, I. Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review. Mt. Res. Dev. 2017, 37, 179–187. [Google Scholar]
- Grêt-Regamey, A.; Weibel, B. Global assessment of mountain ecosystem services using earth observation data. Ecosyst. Serv. 2020, 46, 101213. [Google Scholar]
- Xiong, P.; Chen, Z.; Jia, Z.; Wang, Z.; Palta, J.A.; Xu, B. Variability in leaf wettability and surface water retention of main species in semiarid Loess Plateau of China. Ecohydrology 2018, 11, e2021. [Google Scholar]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol. Earth Syst. Sci. 2007, 11, 983–995. [Google Scholar] [CrossRef]
- Crimmins, S.M.; Dobrowski, S.Z.; Greenberg, J.A.; Abatzoglou, J.T.; Mynsberge, A.R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 2011, 331, 324–327. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. USA 1998, 95, 14839–14842. [Google Scholar] [CrossRef]
- Brooks, P.D.; Vivoni, E.R. Mountain ecohydrology: Quantifying the role of vegetation in the water balance of montane catchments. Ecohydrology 2008, 1, 187–192. [Google Scholar] [CrossRef]
- Wilcox, B.P. Transformative ecosystem change and ecohydrology: Ushering in a new era for watershed management. Ecohydrology 2010, 3, 126–130. [Google Scholar] [CrossRef]
- Goulden, M.L.; Bales, R.C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc. Natl. Acad. Sci. USA 2014, 111, 14071–14075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, N. Spatial Variation and Terrain Gradient Effect of Ecosystem Services in Heihe River Basin over the Past 20 Years. Sustainability 2021, 13, 11271. [Google Scholar] [CrossRef]
- Wang, L.-J.; Ma, S.; Jiang, J.; Zhao, Y.-G.; Zhang, J.-C. Spatiotemporal Variation in Ecosystem Services and Their Drivers among Different Landscape Heterogeneity Units and Terrain Gradients in the Southern Hill and Mountain Belt, China. Remote Sens. 2021, 13, 1375. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, Y.-P.; Wang, L.-J.; Zhang, J.-C. Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. For. Ecol. Manag. 2021, 482, 118856. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, S.; Cao, L.; Wang, Y.; Zhao, Y.; Zhang, W. Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349, 346–356. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, B.; Han, F.; Pang, Y. Diversity and geographical pattern of altitudinal belts in the Hengduan Mountains in China. J. Mt. Sci. 2010, 7, 123–132. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, S.; Zhang, B. Do Ecological Restoration Projects Improve Water-Related Ecosystem Services? Evidence from a Study in the Hengduan Mountain Region. Int. J. Environ. Res. Public Health 2022, 19, 3860. [Google Scholar] [CrossRef]
- Shi, Z.; Deng, W.; Zhang, S. Spatio-temporal pattern changes of land space in Hengduan Mountains during 1990–2015. J. Geogr. Sci. 2018, 28, 529–542. [Google Scholar] [CrossRef]
- Xianghao, Z. Study of Protection and Construction of Mountain Ecological Security Barrier in China. J. Mt. Sci. 2008, 26, 2–11. [Google Scholar]
- Lynch, H.J.; Wurtman, R.J.; Ronsheim, P. Activity and melatonin rhythms among rats with recourse to dark burrows. Prog. Clin. Biol. Res. 1982, 92, 75–86. [Google Scholar] [PubMed]
- Yin, L.; Dai, E.; Xie, G.; Zhang, B. Effects of Land-Use Intensity and Land Management Policies on Evolution of Regional Land System: A Case Study in the Hengduan Mountain Region. Land 2021, 10, 528. [Google Scholar] [CrossRef]
- Dai, E.; Wang, Y. Attribution analysis for water yield service based on the geographical detector method: A case study of the Hengduan Mountain region. J. Geogr. Sci. 2020, 30, 1005–1020. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E.; Ge, Q.; Zhang, X.; Yu, C. Spatial heterogeneity of ecosystem services and their trade-offs in the Hengduan Mountain region, Southwest China. Catena 2021, 207, 105632. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Liu, L.; Zhao, H.; Ru, H.; Wu, J.; Deng, Y. Spatiotemporal Evolution and Attribution Analysis of Water Yield in the Xiangjiang River Basin (XRB) Based on the InVEST Model. Water 2023, 15, 514. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Xiang-yu, L.; Chong-chong, Y.; Yi, W.; Tao, Z.; Jian, S. Spatiotemporal Variation Characteristics and Its Driving Forces of Water Conservation Function on the Tibetan Plateau from 1995 to 2014. Acta Agrestia Sin. 2021, 29, 80–92. [Google Scholar]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2018. [Google Scholar]
- Fu, B.P. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 12–19. [Google Scholar] [CrossRef]
- Gupta, S.C.; Larson, W.E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Yang, R.; Yang, M.; Gao, R. Temporal and spatial variation of precipitation in the Hengduan Mountains region in China and its relationship with elevation and latitude. Atmos. Res. 2018, 213, 1–16. [Google Scholar] [CrossRef]
- Yunling, H.; Yiping, Z. Influences of Corridor-barrier Function on the Spatial Characteristics of Temperature and Precipitation in the Longitudinal Range-Gorge Region(LRGR). J. Mt. Sci. 2007, 25, 169–176. [Google Scholar]
- Li, Y.; Feng, A.; Liu, W.; Ma, X.; Dong, G. Variation of Aridity Index and the Role of Climate Variables in the Southwest China. Water 2017, 9, 743. [Google Scholar] [CrossRef]
- Yan, G.; Wu, Z.; Li, D. Comprehensive Analysis of the Persistent Drought Events in Southwest China. Disaster Adv. 2013, 6, 306–315. [Google Scholar]
- Yu, Y.H.; Sun, X.Q.; Wang, J.L.; Zhang, J.P. Using InVEST to evaluate water yield services in Shangri-La, Northwestern Yunnan, China. PeerJ 2022, 10, e12804. [Google Scholar] [CrossRef]
- Delphin, S.; Escobedo, F.J.; Abd-Elrahman, A.; Cropper, W.P. Urbanization as a land use change driver of forest ecosystem services. Land Use Policy 2016, 54, 188–199. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Fu, B. Estimation of regional evapotranspiration in alpine area and its response to land use change: A case study in Three-River Headwaters region of Qinghai-Tibet Plateau, China. Chin. Geogr. Sci. 2012, 22, 437–449. [Google Scholar] [CrossRef]
- Huang, X.; Luo, G.; Lv, N. Spatio-temporal patterns of grassland evapotranspiration and water use efficiency in arid areas. Ecol. Res. 2017, 32, 523–535. [Google Scholar] [CrossRef]
- Bi, H.; Liu, B.; Wu, J.; Yun, L.; Chen, Z.; Cui, Z. Effects of precipitation and landuse on runoff during the past 50 years in a typical watershed in Loess Plateau, China. Int. J. Sediment Res. 2009, 24, 352–364. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Zhang, Y.; Liu, C. Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China. Water Resour. Res. 2020, 56, e2019WR027019. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.; Li, L.Z.X.; Chen, A.; Wang, X.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.; Zeng, Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Li, X. Mountain Attitude Classification Indexes Adjustment Based on Multi-Source Data in Chinaon Multi-Source Data in China. Sci. Geogr. Sin. 2017, 37, 1577–1584. [Google Scholar]
- Zhang, W.; Ning, J.; Song, K.; Li, X.; Wang, Y.; Wang, X.; Qin, G. The Response of Vegetation Cover to the Variation of Heat and Water Conditions in Upper Minjiang Watershed, China. J. Mt. Sci. 2013, 31, 280–286. [Google Scholar]
- Chen, X.; Liu, L.; Su, Y.; Yuan, W.; Liu, X.; Liu, Z.; Zhou, G. Quantitative association between the water yield impacts of forest cover changes and the biophysical effects of forest cover on temperatures. J. Hydrol. 2021, 600, 126529. [Google Scholar] [CrossRef]
- Liu, N.; Sun, P.; Caldwell, P.V.; Harper, R.; Liu, S.; Sun, G. Trade-off between watershed water yield and ecosystem productivity along elevation gradients on a complex terrain in southwestern China. J. Hydrol. 2020, 590, 125449. [Google Scholar] [CrossRef]
- Kurzweil, J.R.; Metlen, K.; Abdi, R.; Strahan, R.; Hogue, T.S. Surface water runoff response to forest management: Low-intensity forest restoration does not increase surface water yields. For. Ecol. Manag. 2021, 496, 119387. [Google Scholar] [CrossRef]
- Balthazar, V.; Vanacker, V.; Molina, A.; Lambin, E.F. Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol. Indic. 2015, 48, 63–75. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Wang, Y.; Zhang, Y.; Shen, J.; Qin, D.; Li, S. Trade-off analyses of multiple mountain ecosystem services along elevation, vegetation cover and precipitation gradients: A case study in the Taihang Mountains. Ecol. Indic. 2019, 103, 94–104. [Google Scholar] [CrossRef]
- Guo, Q.; Yu, C.; Xu, Z.; Yang, Y.; Wang, X. Impacts of climate and land-use changes on water yields: Similarities and differences among typical watersheds distributed throughout China. J. Hydrol. Reg. Stud. 2023, 45, 101294. [Google Scholar] [CrossRef]
- Aghsaei, H.; Mobarghaee Dinan, N.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef]
- Sun, P.; Liu, S.; Jiang, H.; Lü, Y.; Liu, J.; Lin, Y.; Liu, X. Hydrologic Effects of NDVI Time Series in a Context of Climatic Variability in an Upstream Catchment of the Minjiang River1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1132–1143. [Google Scholar] [CrossRef]
- Liu, M.; Min, L.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. The Impact of Land Use Change on Water-Related Ecosystem Services in the Bashang Area of Hebei Province, China. Sustainability 2021, 13, 716. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Dumont, M.; Saadi, M.; Oudin, L.; Lachassagne, P.; Nugraha, B.; Fadillah, A.; Bonjour, J.L.; Muhammad, A.; Hendarmawan; Dörfliger, N.; et al. Assessing rainfall global products reliability for water resource management in a tropical volcanic mountainous catchment. J. Hydrol. Reg. Stud. 2022, 40, 101037. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, Q.; Zhang, C.; Chen, X.; Li, Q. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in central Asia. J. Geophys. Res. Atmos. 2016, 121, 5648–5663. [Google Scholar] [CrossRef]
- Hua, T.; Zhao, W.; Liu, Y.; Wang, S.; Yang, S. Spatial Consistency Assessments for Global Land-Cover Datasets: A Comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens. 2018, 10, 1846. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J. Uncertainty Analysis of Multisource Land Cover Products in China. Sustainability 2021, 13, 8857. [Google Scholar] [CrossRef]
- He, Y.; Xiong, Q.; Yu, L.; Yan, W.; Qu, X. Impact of Climate Change on Potential Distribution Patterns of Alpine Vegetation in the Hengduan Mountains Region, China. Mt. Res. Dev. 2020, 40, R48–R54. [Google Scholar] [CrossRef]
- Dong, W.; Wang, G.; Guo, L.; Sun, J.; Sun, X. Evaluation of Three Gridded Precipitation Products in Characterizing Extreme Precipitation over the Hengduan Mountains Region in China. Remote Sens. 2022, 14, 4408. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Yang, R.; Yang, M.; Gao, R. Temporal and Spatial Distribution of Maximum Daily Precipitation in Hengduan Mountainous Region of China and Its Probability Characteristics. J. Hydrol. Eng. 2020, 25, 05020039. [Google Scholar] [CrossRef]
- Ning, B.; Yang, X.; Chang, L. Changes of temperature and precipitation extremes in Hengduan Mountains, Qinghai-Tibet Plateau in 1961–2008. Chin. Geogr. Sci. 2012, 22, 422–436. [Google Scholar] [CrossRef]
Data Types | Resolution | Period | Data Sources | Brief Introduction |
---|---|---|---|---|
Land use/land cover (LULC) | 500 m | 2001–2020 | MODIS MCD12Q1, Terrestrial Process Distributed Activity Archiving Center (LP DAAC) (https://lpdaac.usgs.gov/, accessed on 9 February 2023) | The data was reclassified into six categories based on Table 2. |
Digital elevation model (DEM) | 500 m | - | Resources and Environmental Sciences and Data Center, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 9 February 2023) | Radar topographic mapping SRTM derived from the U.S. Space Shuttle Endeavour. |
Precipitation (PR) | 1/24° | 2001–2020 | Monthly climate and climate–water balance datasets on the global land surface, TerraClimate (https://www.nature.com/, accessed on 9 February 2023) | Monthly values were synthesized into annual precipitation data for further analysis |
Reference evapotranspiration (ET0) | 1/24° | 2001–2020 | Monthly climate and climate–water balance datasets on the global land surface, TerraClimate (https://www.nature.com/, accessed on 9 February 2023) | Monthly values were synthesized into annual reference evapotranspiration data for further analysis |
Land surface temperature (LST) | 1000 m | 2001–2020 | MODIS MOD11A2, Terrestrial Process Distributed Activity Archiving Center (LP DAAC) (https://lpdaac.usgs.gov/, accessed on 9 February 2023) | |
Soil | 1000 m | - | Soil dataset of China at the Harmonized World Soil Database (HWSD) (v1.1) (2009) (http://poles.tpdc.ac.cn/, accessed on 9 February 2023) | Involves maximum soil root depth (mm), clay content (%), powder content (%), sand content (%), organic matter content (%), etc. |
NDVI | 500 m | 2001–2020 | MODIS MOD13A1, Terrestrial Process Distributed Activity Archiving Center (LP DAAC) (https://lpdaac.usgs.gov/, accessed on 9 February 2023) | The maximum value of annual. NDVI was obtained using the maximum value synthesis method (MVC) after removing outliers. |
Watershed | (Vector data) | - | Sciences and Data Center, Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 9 February 2023) | Includes all river networks in the country and all sub-basins with an area greater than 100 km2 |
Actual total water yield | - | - | Water Resources Bulletin | For verification of water yield |
Primary Classification | Secondary Classification | Lulc_veg | Root_depth | Kc |
---|---|---|---|---|
forest | Evergreen Needleleaf Forests | 1 | 5000 | 0.9 |
Evergreen Broadleaf Forests: | ||||
Closed Shrublands | ||||
Open Shrublands | ||||
Mixed Forests | ||||
Deciduous Needleleaf Forests | ||||
Deciduous Broadleaf Forests | ||||
grass land | Woody Savannas | 1 | 600 | 0.65 |
Savannas | ||||
Grasslands | ||||
farm land | Croplands | 1 | 500 | 0.65 |
Cropland/Natural Vegetation Mosaics | ||||
waterbody | Permanent Wetlands | 0 | 1 | 1 |
Permanent Snow and Ice | ||||
Water Bodies | ||||
construction land | Urban and Built-up Lands | 0 | 1 | 0.3 |
unused land | Barren | 0 | 1 | 0.25 |
MK Value | Area (km2) | Percentage (%) |
---|---|---|
Z < −2.56 | 1851.972131 | 0.37 |
−2.56 < Z < −1.96 | 33,856.09 | 6.83 |
−1.96 < Z < −1.65 | 27,356.32 | 5.52 |
−1.65 < Z < 1.65 | 394,143.04 | 79.61 |
1.65 < Z < 1.96 | 25,559.08 | 5.16 |
1.96 < Z < 2.56 | 11,525.34 | 2.32 |
Z > 2.56 | 783.72 | 0.15 |
Forest | Grass Land | Farm Land | Water | Construction Land | Unused Land | |
---|---|---|---|---|---|---|
2001 | 16.33 | 76.46 | 2.22 | 0.52 | 0.13 | 4.35 |
2002 | 16.29 | 76.60 | 2.26 | 0.45 | 0.13 | 4.27 |
2003 | 16.26 | 76.65 | 2.29 | 0.41 | 0.13 | 4.26 |
2004 | 16.36 | 76.61 | 2.27 | 0.41 | 0.13 | 4.23 |
2005 | 16.47 | 76.63 | 2.23 | 0.42 | 0.13 | 4.12 |
2006 | 16.55 | 76.68 | 2.20 | 0.39 | 0.13 | 4.05 |
2007 | 16.69 | 76.62 | 2.18 | 0.38 | 0.13 | 4.01 |
2008 | 16.69 | 76.63 | 2.19 | 0.38 | 0.13 | 3.99 |
2009 | 16.65 | 76.75 | 2.18 | 0.36 | 0.13 | 3.94 |
2010 | 16.53 | 76.88 | 2.16 | 0.37 | 0.13 | 3.92 |
2011 | 16.57 | 76.95 | 2.10 | 0.39 | 0.13 | 3.86 |
2012 | 16.50 | 77.09 | 2.07 | 0.39 | 0.13 | 3.83 |
2013 | 16.67 | 77.01 | 2.01 | 0.40 | 0.13 | 3.79 |
2014 | 16.74 | 76.95 | 1.96 | 0.40 | 0.13 | 3.82 |
2015 | 16.92 | 76.85 | 1.91 | 0.39 | 0.13 | 3.81 |
2016 | 17.12 | 76.67 | 1.89 | 0.40 | 0.13 | 3.80 |
2017 | 17.45 | 76.30 | 1.83 | 0.40 | 0.13 | 3.89 |
2018 | 17.42 | 76.04 | 1.77 | 0.46 | 0.13 | 4.18 |
2019 | 17.51 | 76.15 | 1.69 | 0.50 | 0.13 | 4.02 |
2020 | 17.92 | 76.00 | 1.62 | 0.49 | 0.14 | 3.83 |
LST | PR | Unused Land | Grassland | Forest | NDVI | AET | |
---|---|---|---|---|---|---|---|
Direct path coefficient | −0.097 | 0.810 *** | −0.032 | −0.113 ** | −0.068 * | 0.131 * | −0.719 *** |
Indirect path coefficient | −0.563 * | −0.237 | 0.122 | 0.024 | −0.225 * | 0.150 | - |
Total path coefficient | −0.660 *** | 0.573 *** | 0.090 | −0.090 | −0.293 * | 0.280 | −0.719 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Q.; Han, L.; Lv, L.; Shao, H.; Qi, J. Spatiotemporal Variation and Factors Influencing Water Yield Services in the Hengduan Mountains, China. Remote Sens. 2023, 15, 4087. https://doi.org/10.3390/rs15164087
Shao Q, Han L, Lv L, Shao H, Qi J. Spatiotemporal Variation and Factors Influencing Water Yield Services in the Hengduan Mountains, China. Remote Sensing. 2023; 15(16):4087. https://doi.org/10.3390/rs15164087
Chicago/Turabian StyleShao, Qiufang, Longbin Han, Lingfeng Lv, Huaiyong Shao, and Jiaguo Qi. 2023. "Spatiotemporal Variation and Factors Influencing Water Yield Services in the Hengduan Mountains, China" Remote Sensing 15, no. 16: 4087. https://doi.org/10.3390/rs15164087
APA StyleShao, Q., Han, L., Lv, L., Shao, H., & Qi, J. (2023). Spatiotemporal Variation and Factors Influencing Water Yield Services in the Hengduan Mountains, China. Remote Sensing, 15(16), 4087. https://doi.org/10.3390/rs15164087