Ecosystem Resistance and Resilience after Dry and Wet Events across Central Asia Based on Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Determination of Extreme Climate Events
2.4. Calculation of Ecosystem Resistance and Resilience
2.5. Changes in Land Cover Types
3. Results
3.1. Temporal and Spatial Changes in SPEI
3.2. Quantification of Ecosystem Resistance and Resilience
3.3. The Relationships between Drought Intensity and Ecosystem Resistance and Resilience
3.4. Changes in Land Cover Types during Drought and Wet Periods
4. Discussion
4.1. Climate Change in Central Asia
4.2. Ecosystem Resistance
4.3. Ecosystem Resilience
4.4. The Impacts of Climatic Conditions on Ecosystem Land Cover Types
4.5. Research Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Brando, P.M.; Nepstad, D.C.; Davidson, E.A.; Trumbore, S.E.; Ray, D.; Camargo, P. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: Results of a throughfall reduction experiment. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1839–1848. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Zou, J.; Ding, J.; Welp, M.; Huang, S.; Liu, B. Using MODIS data to analyse the ecosystem water use efficiency spatial-temporal variations across Central Asia from 2000 to 2014. Environ. Res. 2019, 182, 108985. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Zhang, Y.; Park Williams, A.; Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 2019, 5, eaau5740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; O’Sullivan, M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Chang. 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Obladen, N.; Dechering, P.; Skiadaresis, G.; Tegel, W.; Keßler, J.; Höllerl, S.; Kaps, S.; Hertel, M.; Dulamsuren, C.; Seifert, T.; et al. Tree mortality of European beech and Norway spruce induced by 2018–2019 hot droughts in central Germany. Agric. For. Meteorol. 2021, 307, 108482. [Google Scholar] [CrossRef]
- Zhi, L.; Chen, Y.; Fang, G.; Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Ding, J.; Welp, M.; Huang, S.; Liu, B. Assessing the Response of Ecosystem Water Use Efficiency to Drought During and after Drought Events across Central Asia. Sensors 2020, 20, 581. [Google Scholar] [CrossRef] [Green Version]
- Vargas, C.A.; Lagos, N.A.; Lardies, M.A.; Duarte, C.; Manríquez, P.H.; Aguilera, V.M.; Broitman, B.; Widdicombe, S.; Dupont, S. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 2017, 1, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donohue, I.; Petchey, O.L.; Montoya, J.M.; Jackson, A.L.; Mcnally, L.; Viana, M.; Healy, K.; Lurgi, M.; O’Connor, N.E.; Emmerson, M.C. On the dimensionality of ecological stability. Ecol. Lett. 2013, 16, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Hoover, D.L.; Knapp, A.K.; Smith, M.D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 2016, 95, 2646–2656. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, J.C.; Harmoney, K.; Henkin, Z.; Snyman, H.A.; Sternberg, M.; Willms, W.; Linstädter, A. Quantifying drylands’ drought resistance and recovery: The importance of drought intensity, dominant life history and grazing regime. Glob. Chang. Biol. 2015, 21, 1258–1270. [Google Scholar] [CrossRef]
- Donohue, I.; Hillebrand, H.; Montoya, J.M.; Petchey, O.L.; Pimm, S.L.; Fowler, M.S.; Healy, K.; Jackson, A.L.; Lurgi, M.; Mcclean, D. Navigating the complexity of ecological stability. Ecol. Lett. 2016, 19, 1172–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, Resiliency, and Vulnerability Criteria for Water Resource System Performance Evaluetion. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Pimm, S. The complexity and stability of ecosystems. Nature 1985, 315, 635–636. [Google Scholar] [CrossRef]
- Cumming, G.S.; Collier, J. Change and Identity in Complex Systems. Ecol. Soc. 2005, 53, 585–607. [Google Scholar] [CrossRef] [Green Version]
- Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478. [Google Scholar] [CrossRef] [Green Version]
- Malone, S.L.; Tulbure, M.G.; Pérez-Luque, A.J.; Assal, T.J.; Bremer, L.L.; Drucker, D.P.; Hillis, V.; Varela, S.; Goulden, M.L. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery. Ecosphere 2016, 7, e01561. [Google Scholar] [CrossRef]
- Jassal, R.S.; Black, T.A.; Spittlehouse, D.L.; Brümmer, C.; Nesic, Z. Evapotranspiration and Water Use Efficiency in Different-Aged Pacific Northwest Douglas-Fir Stands. Agric. For. Meteorol. 2009, 149, 1168–1178. [Google Scholar] [CrossRef]
- Guo, Y.; Han, R.L.; Liang, Z.S. Effect of soil drought on growth and water use efficiency characteristics of four native gramineous grasses in Loess Plateau. Acta Prataculturae Sin. 2010, 19, 21–30. [Google Scholar]
- Tang, X.; Li, H.; Desai, A.R.; Nagy, Z.; Luo, J.; Kolb, T.E.; Olioso, A.; Xu, X.; Yao, L.; Kutsch, W. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Sci. Rep. 2014, 4, 7483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Guan, H.; Batelaan, O.; McVicar, T.R.; Long, D.; Piao, S.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Peng, J.; Liang, W.; Yang, Y.; Liu, Y. Spatial–temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000–2010. Sci. Total Environ. 2016, 565, 105–122. [Google Scholar] [CrossRef]
- Lu, X.; Zhuang, Q. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens. Environ. 2010, 114, 1924–1939. [Google Scholar] [CrossRef]
- Ponce-Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, H.; Peng, C.; Liu, J.; Wei, X.; Fang, X.; Liu, S.; Zhou, G.; Yu, S. Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China. Ecol. Model. 2011, 222, 2414–2429. [Google Scholar] [CrossRef]
- Emmerich, W.E. Ecosystem Water Use Efficiency in a Semiarid Shrubland and Grassland Community. Rangel. Ecol. Manag. 2007, 60, 464–470. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S. Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Turnbull, L.; Wainwright, J.; Brazier, R.E. A conceptual framework for understanding semi-arid land degradation: Ecohydrological interactions across multiple-space and time scales. Ecohydrology 2010, 1, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.; Hollin, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 2004, 85, 3438–3447. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 2016, 544, 46–57. [Google Scholar] [CrossRef]
- Karnieli, A.; Gilad, U.; Ponzet, M.; Svoray, T.; Mirzadinov, R.; Fedorina, O. Assessing land-cover change and degradation in the Central Asian deserts using satellite image processing and geostatistical methods. J. Arid Environ. 2008, 72, 2093–2105. [Google Scholar] [CrossRef]
- Siegfried, T.; Bernauer, T.; Guiennet, R.; Sellars, S.; Robertson, A.W.; Mankin, J.; Bauer-Gottwein, P.; Yakovlev, A. Will climate change exacerbate water stress in Central Asia? Clim. Chang. 2012, 112, 881–899. [Google Scholar] [CrossRef]
- Sommer, R.; Glazirina, M.; Yuldashev, T.; Otarov, A.; Ibraeva, M.; Martynova, L.; Bekenov, M.; Kholov, B.; Ibragimov, N.; Kobilov, R. Impact of climate change on wheat productivity in Central Asia. Agric. Ecosyst. Environ. 2013, 178, 78–99. [Google Scholar] [CrossRef]
- Wright, C.K.; De Beurs, K.M.; Henebry, G.M. Land surface anomalies preceding the 2010 Russian heat wave and a link to the North Atlantic oscillation. Environ. Res. Lett. 2014, 9, 124015. [Google Scholar] [CrossRef]
- Han, Q.; Luo, G.; Li, C.; Shakir, A.; Wu, M.; Saidov, A. Simulated grazing effects on carbon emission in Central Asia. Agric. For. Meteorol. 2016, 216, 203–214. [Google Scholar] [CrossRef]
- Kim, H.W.; Hwang, K.; Mu, Q.; Lee, S.O.; Choi, M. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE J. Civ. Eng. 2012, 16, 229–238. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Zscheischler, J.; Mahecha, M.D.; Von Buttlar, J.; Harmeling, S.; Jung, M.; Rammig, A.; Randerson, J.T.; Schölkopf, B.; Seneviratne, S.I.; Tomelleri, E. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 2014, 9, 035001. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiao, J.; Ju, W.; Zhou, Y.; Wang, S.; Wu, X. Water use efficiency of China’s terrestrial ecosystems and responses to drought. Sci. Rep. 2015, 5, 13799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J. A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index–SPEI. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Angulo-Martínez, M. A Multiscalar Global Drought Dataset: The SPEIbase: A New Gridded Product for the Analysis of Drought Variability and Impacts. Bull. Am. Meteorol. Soc. 2010, 91, 1351–1356. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; He, W.; Zhou, Y.; Ju, W.; Xiao, J.; Li, X.; Liu, Y.; Xu, S.; Bi, W.; Zhang, X. Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecol. Indic. 2022, 136, 108646. [Google Scholar] [CrossRef]
- Yang, S.; Meng, D.; Xiaojuan, L.I.; Xinling, W.U. Multi-scale responses of vegetation changes relative to the SPEI meteorological drought index in North China in 2001–2014. Acta Ecol. Sin. 2018, 38, 1028–1039. [Google Scholar] [CrossRef]
- Avotniece, Z.; Rodinov, V.; Lizuma, L.; Briede, A.; Kļaviņš, M. Trends in the frequency of extreme climate events in Latvia. Baltica 2010, 23, 135–148. [Google Scholar]
- Colombo, A.F.; Etkin, D.; Karney, B.W. Climate Variability and the Frequency of Extreme Temperature Events for Nine Sites across Canada: Implications for Power Usage. J. Clim. 1999, 12, 2490–2502. [Google Scholar] [CrossRef]
- Grotjahn, R.; Black, R.; Leung, R.; Wehner, M.F.; Barlow, M.; Bosilovich, M.; Gershunov, A.; Gutowski, W.J.; Gyakum, J.R.; Katz, R.W. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Clim. Dyn. 2016, 46, 1151–1184. [Google Scholar] [CrossRef] [Green Version]
- Zwiers, F.W.; Alexander, L.V.; Hegerl, G.C.; Knutson, T.R.; Kossin, J.P.; Naveau, P.; Nicholls, N.; Schär, C.; Seneviratne, S.I.; Zhang, X. Climate Extremes: Challenges in Estimating and Understanding Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events. In Climate Science for Serving Society; Asrar, G.R., Hurrell, J.W., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Hegerl, G.C. Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.F.; Smith, R.L.; Bala, G.; Duffy, P. The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Clim. Dyn. 2009, 34, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Vanloocke, A.; Twine, T.E.; Zeri, M.; Bernacchi, C.J. A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agric. For. Meteorol. 2012, 164, 82–95. [Google Scholar] [CrossRef]
- Zhang, X.; Moran, M.S.; Zhao, X.; Liu, S.; Zhou, T.; Ponce-Campos, G.E.; Liu, F. Impact of prolonged drought on rainfall use efficiency using MODIS data across China in the early 21st century. Remote Sens. Environ. 2014, 150, 188–197. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Doyen, L.; Béné, C.; Borgomeo, E.; Wyrwoll, P.R. Realizing resilience for decision-making. Nature 2019, 2, 907–913. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D. An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. J. Ecol. 2011, 99, 656–663. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, R.; Wen, Z.; Khalifa, M.; Zheng, C.; Ren, H.; Zhang, Z.; Wang, Z. Assessing the impacts of drought on net primary productivity of global land biomes in different climate zones. Ecol. Indic. 2021, 130, 108146. [Google Scholar] [CrossRef]
- Geng, G.; Zhou, H.; Wang, T. Assessing the relationship between drought and vegetation dynamics in northern China during 1982–2015. Theor. Appl. Climatol. 2022, 148, 467–479. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Jin, L.; Zhang, Q.; Li, J.; Chen, J. Rapid warming in mid-latitude central Asia for the past 100 years. Front. Earth Sci. China 2009, 3, 42. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and future climate change in northwest China. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Chen, F.H.; Huang, W.; Jin, L.Y.; Chen, J.H.; Wang, J.S. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China Earth Sci. 2011, 54, 10. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; De Jeu, R. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankaran, M. Droughts and the ecological future of tropical savanna vegetation. J. Ecol. 2019, 107, 1531–1549. [Google Scholar] [CrossRef] [Green Version]
- Sibret, T.; Verbruggen, W.; Peaucelle, M.; Verryckt, L.T.; Bauters, M.; Combe, M.; Boeckx, P.; Verbeeck, H. High photosynthetic capacity of Sahelian C3 and C4 plants. Photosynth. Res. 2021, 147, 161–175. [Google Scholar] [CrossRef]
- Gherardi, L.A.; Sala, O.E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl. Acad. Sci. USA 2015, 112, 12735–12740. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hong, S.; Liu, D.; Piao, S. Susceptibility of vegetation low-growth to climate extremes on Tibetan Plateau. Agric. For. Meteorol. 2023, 331, 109323. [Google Scholar] [CrossRef]
- Zhongmin, H.; Guirui, Y.; Jiangwen, F.; Huaping, Z.; Shaoqiang, W.; Shenggong, L. Precipitation-use efficiency along a 4500-km grassland transect. Glob. Ecol. Biogeogr. 2010, 19, 842–851. [Google Scholar] [CrossRef]
- Cuddington, K. Legacy effects: The persistent impact of ecological interactions. Biol. Theory 2011, 6, 203–210. [Google Scholar] [CrossRef]
- Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [Google Scholar] [CrossRef]
- Monger, C.; Sala, O.E.; Duniway, M.C.; Goldfus, H.; Meir, I.A.; Poch, R.M.; Throop, H.L.; Vivoni, E.R. Legacy effects in linked ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ. 2015, 13, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, M.; Wang, Q.; Liu, R.; Zhao, Y.; Zhang, D. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and -accumulation effects. Sci. Total Environ. 2023, 860, 160527. [Google Scholar] [CrossRef]
- Qiu, R.; Li, X.; Han, G.; Xiao, J.; Ma, X.; Gong, W. Monitoring drought impacts on crop productivity of the U.S. Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv. Agric. For. Meteorol. 2022, 323, 109038. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.-L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2015, 36, 3. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Tian, C.; Chen, C.; Duan, Z.; Zhu, Q.; Sun, L.Z. Growth and carbohydrate dynamic of perennial ryegrass seedlings during PEG-simulated drought and subsequent recovery. Plant Physiol. Biochem. 2020, 154, 85–93. [Google Scholar] [CrossRef]
- Ye, C.; Sun, J.; Liu, M.; Xiong, J.; Zong, N.; Hu, J.; Huang, Y.; Duan, X.; Tsunekawa, A. Concurrent and Lagged Effects of Extreme Drought Induce Net Reduction in Vegetation Carbon Uptake on Tibetan Plateau. Remote Sens. 2020, 12, 2347. [Google Scholar] [CrossRef]
- Cheng, X.; An, S.; Chen, J.; Li, B.; Liu, Y.; Liu, S. Spatial relationships among species, above-ground biomass, N, and P in degraded grasslands in Ordos Plateau, northwestern China. J. Arid Environ. 2007, 68, 652–667. [Google Scholar] [CrossRef]
- Krull, E.S.; Skjemstad, J.O.; Burrows, W.H.; Bray, S.G.; Wynn, J.G.; Bol, R.; Spouncer, L.; Harms, B. Recent vegetation changes in central Queensland, Australia: Evidence from delta C-13 and C-14 analyses of soil organic matter. Geoderma 2005, 126, 241–259. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol. Evol. 2003, 18, 648–656. [Google Scholar] [CrossRef]
- Walker, B.H.; Meyers, J.A. Thresholds in Ecological and Social–Ecological Systems: A Developing Database. Ecol. Soc. 2004, 9, 3438–3447. [Google Scholar] [CrossRef]
- Chen, T.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Jiang, L.; Chang, C.; Tuerhanjiang, L. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Sci. Total Environ. 2018, 653, 1311–1325. [Google Scholar] [CrossRef]
- Huang, X.; Luo, G.; Han, Q. Temporospatial patterns of human appropriation of net primary production in Central Asia grasslands. Ecol. Indic. Integr. Monit. Assess. Manag. 2018, 91, 555–561. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Gafforov, K.; Kurban, A.; De Maeyer, P. Monitoring land sensitivity to desertification in Central Asia: Convergence or divergence? Sci. Total Environ. 2019, 658, 669–683. [Google Scholar] [CrossRef]
- Li, S.; He, S.; Xu, Z.; Liu, Y.; von Bloh, W. Desertification process and its effects on vegetation carbon sources and sinks vary under different aridity stress in Central Asia during 1990–2020. Catena 2023, 221, 106767. [Google Scholar] [CrossRef]
- Huang, W.; Duan, W.; Chen, Y. Unravelling lake water storage change in Central Asia: Rapid decrease in tail-end lakes and increasing risks to water supply. J. Hydrol. 2022, 614, 128546. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.; Li, J.; Dashtseren, A.; Li, Y.; Altanbagana, M. Comparative analysis of driving forces of land use/cover change in the upper, middle and lower reaches of the Selenga River Basin. Land Use Policy 2022, 117, 106118. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Ran, Y.; Feng, M.; Nian, Y.; Tan, M.; Chen, X. Investigate the relationships between the Aral Sea shrinkage and the expansion of cropland and reservoir in its drainage basins between 2000 and 2020. Int. J. Digit. Earth 2021, 14, 661–677. [Google Scholar] [CrossRef]
- Zan, C.; Liu, T.; Huang, Y.; Bao, A.; Yan, Y.; Ling, Y.; Wang, Z.; Duan, Y. Spatial and temporal variation and driving factors of wetland in the Amu Darya River Delta, Central Asia. Ecol. Indic. 2022, 139, 108898. [Google Scholar] [CrossRef]
SPEI | Drought Classification |
---|---|
≤−2.0 | Extreme drought |
−2.0–−1.0 | Moderate drought |
−1.0–−0.5 | Mild drought |
−0.5–0.5 | Normal |
0.5–1.0 | Mild wet |
1.0–2.0 | Moderate wet |
≥2.0 | Extreme wet |
Land Cover Types | Abbreviation | Area in 2001 | Area in 2004 | Change Area | Percentages of Change (%) |
---|---|---|---|---|---|
Evergreen Needleleaf forest | CL.1 | 1374.00 | 1426.00 | 52.00 | 3.78 |
Evergreen Broadleaf forest | CL.2 | 12.00 | 10.00 | −2.00 | −16.67 |
Deciduous Needleleaf forest | CL.3 | 206.00 | 165.00 | −41.00 | −19.90 |
Deciduous Broadleaf Forest | CL.4 | 3299.00 | 1872.00 | −1427.00 | −43.26 |
Mixed Forest | CL.5 | 10,407.00 | 9371.00 | −1036.00 | −9.95 |
Closed Shrublands | CL.6 | 406.00 | 425.00 | 19.00 | 4.68 |
Open Shrublands | CL.7 | 94,815.00 | 98,688.00 | 3873.00 | 4.08 |
Woody Savannas | CL.8 | 6421.00 | 7827.00 | 1406.00 | 21.90 |
Savannas | CL.9 | 14,151.00 | 13,616.00 | −535.00 | −3.78 |
Grassland | CL.10 | 3,204,181.00 | 3,216,833.00 | 12,652.00 | 0.39 |
Permanent Wetland | CL.11 | 9971.00 | 10,121.00 | 150.00 | 1.50 |
Croplands | CL.12 | 269,326.00 | 270,230.00 | 904.00 | 0.34 |
Urban and Built-up Lands | CL.13 | 21,551.00 | 21,574.00 | 23.00 | 0.11 |
Cropland/Natural Vegetation Mosaics | CL.14 | 389.00 | 312.00 | −77.00 | −19.79 |
Permanent Snow and Ice | CL.15 | 25,159.00 | 33,942.00 | 8783.00 | 34.91 |
Barren | CL.16 | 1,855,576.00 | 1,829,938.00 | −25,638.00 | −1.38 |
Water Bodies | CL.17 | 122,960.00 | 123,854.00 | 894.00 | 0.73 |
CL.1 | CL.2 | CL.3 | CL.4 | CL.5 | CL.6 | CL.7 | CL.8 | CL.9 | CL.10 | CL.11 | CL.12 | CL.13 | CL.14 | CL.15 | CL.16 | CL.17 | |
CL.1 | 1220 | 0 | 0 | 0 | 5 | 0 | 0 | 63 | 2 | 50 | 33 | 0 | 0 | 0 | 0 | 1 | 0 |
CL.2 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
CL.3 | 0 | 0 | 88 | 1 | 1 | 0 | 0 | 47 | 10 | 48 | 10 | 0 | 0 | 0 | 0 | 1 | 0 |
CL.4 | 0 | 0 | 0 | 1807 | 137 | 71 | 0 | 662 | 265 | 354 | 0 | 1 | 0 | 2 | 0 | 0 | 0 |
CL.5 | 63 | 0 | 68 | 39 | 9162 | 0 | 0 | 761 | 142 | 155 | 14 | 0 | 0 | 0 | 2 | 1 | 0 |
CL.6 | 0 | 0 | 0 | 4 | 0 | 317 | 0 | 40 | 19 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CL.7 | 0 | 0 | 0 | 0 | 0 | 0 | 89,908 | 2 | 2 | 4509 | 0 | 11 | 0 | 0 | 29 | 352 | 2 |
CL.8 | 58 | 0 | 8 | 8 | 40 | 24 | 4 | 5383 | 368 | 474 | 10 | 0 | 0 | 6 | 25 | 12 | 1 |
CL.9 | 4 | 0 | 0 | 7 | 6 | 0 | 5 | 369 | 11,369 | 2341 | 31 | 10 | 1 | 7 | 0 | 1 | 0 |
CL.10 | 44 | 0 | 1 | 6 | 15 | 13 | 4919 | 486 | 1349 | 3,167,638 | 1315 | 17,706 | 19 | 32 | 27 | 10,326 | 285 |
CL.11 | 37 | 0 | 0 | 0 | 5 | 0 | 0 | 11 | 35 | 895 | 8515 | 2 | 0 | 0 | 0 | 157 | 314 |
CL.12 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 2 | 16,836 | 1 | 252,451 | 2 | 18 | 0 | 2 | 1 |
CL.13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21,551 | 0 | 0 | 0 | 0 |
CL.14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 53 | 40 | 0 | 46 | 0 | 247 | 0 | 0 | 0 |
CL.15 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 100 | 2 | 0 | 0 | 0 | 23,875 | 1131 | 49 |
CL.16 | 0 | 0 | 0 | 0 | 0 | 0 | 3837 | 0 | 0 | 23,328 | 86 | 3 | 1 | 0 | 9967 | 1,817,546 | 808 |
CL.17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 104 | 0 | 0 | 0 | 15 | 408 | 122,394 |
Land Cover Types | Abbreviation | Area in 2007 | Area in 2009 | Change Area | Percentages of Change (%) |
---|---|---|---|---|---|
Evergreen Needleleaf forest | CL.1 | 1617.00 | 1646.00 | 29.00 | 1.79 |
Evergreen Broadleaf forest | CL.2 | 10.00 | 10.00 | 0.00 | 0.00 |
Deciduous Needleleaf forest | CL.3 | 182.00 | 170.00 | −12.00 | −6.59 |
Deciduous Broadleaf Forest | CL.4 | 1468.00 | 1245.00 | −223.00 | −15.19 |
Mixed Forest | CL.5 | 8965.00 | 8748.00 | −217.00 | −2.42 |
Closed Shrublands | CL.6 | 284.00 | 309.00 | 25.00 | 8.80 |
Open Shrublands | CL.7 | 106,585.00 | 114,514.00 | 7929.00 | 7.44 |
Woody Savannas | CL.8 | 8818.00 | 9162.00 | 344.00 | 3.90 |
Savannas | CL.9 | 14,253.00 | 14,004.00 | −249.00 | −1.75 |
Grassland | CL.10 | 3,197,295.00 | 3,187,299.00 | −9996.00 | −0.31 |
Permanent Wetland | CL.11 | 9776.00 | 9228.00 | −548.00 | −5.61 |
Croplands | CL.12 | 272,627.00 | 268,068.00 | −4559.00 | −1.67 |
Urban and Built-up Lands | CL.13 | 21,606.00 | 21,623.00 | 17.00 | 0.08 |
Cropland/Natural Vegetation Mosaics | CL.14 | 343.00 | 371.00 | 28.00 | 8.16 |
Permanent Snow and Ice | CL.15 | 37,184.00 | 43,477.00 | 6293.00 | 16.92 |
Barren | CL.16 | 1,835,808.00 | 1,837,774.00 | 1966.00 | 0.11 |
Water Bodies | CL.17 | 123,383.00 | 122,556.00 | −827.00 | −0.67 |
CL.1 | CL.2 | CL.3 | CL.4 | CL.5 | CL.6 | CL.7 | CL.8 | CL.9 | CL.10 | CL.11 | CL.12 | CL.13 | CL.14 | CL.15 | CL.16 | CL.17 | |
CL.1 | 1524 | 0 | 0 | 0 | 2 | 0 | 0 | 15 | 0 | 60 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
CL.2 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CL.3 | 2 | 0 | 140 | 0 | 2 | 0 | 0 | 26 | 1 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
CL.4 | 0 | 0 | 0 | 1163 | 81 | 7 | 0 | 155 | 32 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CL.5 | 41 | 0 | 14 | 17 | 8549 | 0 | 0 | 302 | 23 | 17 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
CL.6 | 0 | 0 | 0 | 1 | 0 | 240 | 0 | 19 | 3 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CL.7 | 0 | 0 | 0 | 0 | 0 | 0 | 103,864 | 7 | 1 | 923 | 0 | 13 | 0 | 0 | 9 | 1768 | 0 |
CL.8 | 44 | 0 | 10 | 52 | 83 | 31 | 1 | 7970 | 232 | 385 | 2 | 0 | 0 | 7 | 1 | 0 | 0 |
CL.9 | 3 | 0 | 3 | 9 | 11 | 8 | 1 | 375 | 12,590 | 1211 | 12 | 3 | 3 | 23 | 0 | 1 | 0 |
CL.10 | 23 | 0 | 2 | 3 | 20 | 22 | 9661 | 279 | 1094 | 3,159,968 | 138 | 9689 | 13 | 20 | 113 | 16,241 | 9 |
CL.11 | 9 | 0 | 1 | 0 | 0 | 0 | 0 | 8 | 18 | 1037 | 8611 | 1 | 0 | 0 | 9 | 69 | 13 |
CL.12 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 5 | 14,239 | 1 | 258,346 | 1 | 24 | 0 | 0 | 0 |
CL.13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21,606 | 0 | 0 | 0 | 0 |
CL.14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 4 | 22 | 0 | 14 | 0 | 297 | 0 | 0 | 0 |
CL.15 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 33,930 | 3220 | 17 |
CL.16 | 0 | 0 | 0 | 0 | 0 | 0 | 973 | 0 | 1 | 9200 | 110 | 2 | 0 | 0 | 9400 | 1,815,852 | 270 |
CL.17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 163 | 335 | 0 | 0 | 0 | 15 | 623 | 122,247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Ding, J.; Huang, S.; Liu, B. Ecosystem Resistance and Resilience after Dry and Wet Events across Central Asia Based on Remote Sensing Data. Remote Sens. 2023, 15, 3165. https://doi.org/10.3390/rs15123165
Zou J, Ding J, Huang S, Liu B. Ecosystem Resistance and Resilience after Dry and Wet Events across Central Asia Based on Remote Sensing Data. Remote Sensing. 2023; 15(12):3165. https://doi.org/10.3390/rs15123165
Chicago/Turabian StyleZou, Jie, Jianli Ding, Shuai Huang, and Bohua Liu. 2023. "Ecosystem Resistance and Resilience after Dry and Wet Events across Central Asia Based on Remote Sensing Data" Remote Sensing 15, no. 12: 3165. https://doi.org/10.3390/rs15123165
APA StyleZou, J., Ding, J., Huang, S., & Liu, B. (2023). Ecosystem Resistance and Resilience after Dry and Wet Events across Central Asia Based on Remote Sensing Data. Remote Sensing, 15(12), 3165. https://doi.org/10.3390/rs15123165